
Advanced topics in programming languages Michaelmas 2025

Introduction & overview

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

About the class

Intraseminar structure

Structure

High marks

Low marks

PL

Languages

Processing

11:05am 12:15pm 12:30pm 12:55pm

student
presentation

student
presentation

student
presentation

di
sc

us
sio

n

di
sc

us
sio

n

di
sc

us
sio

n mini-lecture:
next week’s

topic

Interseminar structure

Structure

High marks

Low marks

PL

Languages

Processing

Seminar 1
(10 Oct)

Seminar 2
(20 Oct)

Seminar 3
(27 Oct)

taming
functions

effect
handlers

depen
typ

re
lea

se
d

du
e

essay

re
lea

se
d

du
e

essay

re
lea

se
d

essay

What you’ll do each week

Structure

High marks

Low marks

PL

Languages

Processing

Introductory mini-lecture Background reading Read papers

Optional: wider reading Write & submit essay Take part in discussion

Outrageous but Meaningful Coincidences
Dependent type-safe syntax and evaluation

Conor McBride
University of Strathclyde
conor@cis.strath.ac.uk

Abstract
Tagless interpreters for well-typed terms in some object language
are a standard example of the power and benefit of precise indexing
in types, whether with dependent types, or generalized algebraic
datatypes. The key is to reflect object language types as indices
(however they may be constituted) for the term datatype in the host
language, so that host type coincidence ensures object type coinci-
dence. Whilst this technique is widespread for simply typed object
languages, dependent types have proved a tougher nut with nontriv-
ial computation in type equality. In their type-safe representations,
Danielsson [2006] and Chapman [2009] succeed in capturing the
equality rules, but at the cost of representing equality derivations
explicitly within terms. This article delivers a type-safe represen-
tation for a dependently typed object language, dubbed KIPLING,
whose computational type equality just appropriates that of its host,
Agda. The KIPLING interpreter example is not merely de rigeur—
it is key to the construction. At the heart of the technique is that key
component of generic programming, the universe.

1. Introduction
Last century, we learned from Altenkirch and Reus [1999] how to
represent simply typed terms precisely as an inductive family of
datatypes [Dybjer 1991] in a dependently typed language. The idea
is to make the type system of the host language police the typing
rules of the object language by indexing the datatype representing
object terms with a representation of object types. The payoff is
that programs which manipulate the object language can take type
safety for granted—well-typedness of object language terms be-
comes a matter of basic hygiene for the host. There is a rich litera-
ture of work which exploits this technique, both in the dependently
typed setting and in Haskell-like languages with sufficiently precise
typing mechanisms. For a small selection, see Baars and Swierstra
[2004]; Brady and Hammond [2006]; Carette et al. [2009]; Chen
and Xi [2003]; Pasalic et al. [2002].
This paper makes the jump to representing dependently typed

object languages in a precise type-safe manner, a problem compli-
cated by the fact that object language type equality requires non-
trivial computation. However, the host language type system also
boasts a computational equality: let us steal it. If we can push object
language computation into host language types, object type equal-

[Copyright notice will appear here once ’preprint’ option is removed.]

ity becomes a matter of coincidence, specified by the outrageously
simple method of writing the same variable in two places! The key
is to choose our coincidences with care: we should not ask for coin-
cidence in what types say if we only want coincidence in what types
mean. Once we have found what host type captures the ‘meaning’
of object types, we can index by it and proceed as before.

The representation recipe. Recall the basic type-safe encoding
method, working in Agda [Norell 2008]. First, define types.

data ! : Set where
ι : !
! : ! → ! → !

Next, define contexts, with de Bruijn [1972] indices typed as wit-
nesses to context membership.

data Cx : Set where
E : Cx
, : Cx → ! → Cx

data " : Cx → ! → Set where
top : ∀ {Γ τ } → Γ , τ " τ
pop : ∀ {Γ σ τ } → Γ " τ → Γ , σ " τ

Finally, define terms by giving an indexed syntax reflecting the
typing rules which, fortunately, are syntax-directed. I make the
traditional use of comment syntax to suggest typing rules.

data $: Cx → ! → Set where

-- variables witness context membership
var : ∀ {Γ τ } → Γ " τ

--————————
→ Γ $ τ

-- λ-abstraction extends the context
lam : ∀ {Γ σ τ } → Γ , σ $ τ

--————————————
→ Γ $ σ ! τ

-- application demands a type coincidence
app : ∀ {Γ σ τ } → Γ $ σ ! τ → Γ $ σ

--———————————————————
→ Γ $ τ

Notice how, for app, the domain of the function and the argu-
ment type must coincide. Agda will reject apps unless the candi-
dates for σ are definitionally equal in type !: it’s really checking
types. Moreover, with ‘implicit syntax’ [Norell 2007] combining
insights from Damas and Milner [1982] via Pollack [1992] with
pattern unification from Miller [1991], Agda makes a creditable
effort at type inference for object language terms!
McKinna and I [McBride and McKinna 2004] showed how to

write a typechecker which yields typed terms from raw preterms,

1 2010/6/8

A Unified Theory of Garbage Collection

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Tracing and reference counting are uniformly viewed as being fun-
damentally different approaches to garbage collection that possess
very distinct performance properties. We have implemented high-
performance collectors of both types, and in the process observed
that the more we optimized them, the more similarly they behaved
— that they seem to share some deep structure.

We present a formulation of the two algorithms that shows that
they are in fact duals of each other. Intuitively, the difference is that
tracing operates on live objects, or “matter”, while reference count-
ing operates on dead objects, or “anti-matter”. For every operation
performed by the tracing collector, there is a precisely correspond-
ing anti-operation performed by the reference counting collector.

Using this framework, we show that all high-performance col-
lectors (for example, deferred reference counting and generational
collection) are in fact hybrids of tracing and reference counting.
We develop a uniform cost-model for the collectors to quantify the
trade-offs that result from choosing different hybridizations of trac-
ing and reference counting. This allows the correct scheme to be
selected based on system performance requirements and the ex-
pected properties of the target application.

General Terms
Algorithms, Languages, Performance

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storagemanagement; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Garbage col-
lection

Keywords
Tracing, Mark-and-Sweep, Reference Counting, Graph Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 $5.00.

1. INTRODUCTION
By 1960, the two fundamental approaches to storage reclama-

tion, namely tracing [33] and reference counting [18] had been de-
veloped.

Since then there has been a great deal of work on garbage collec-
tion, with numerous advances in both paradigms. For tracing, some
of the major advances have been iterative copying collection [15],
generational collection [41, 1], constant-space tracing [36], barrier
optimization techniques [13, 45, 46], soft real-time collection [2, 7,
8, 14, 26, 30, 44], hard real-time collection [5, 16, 23], distributed
garbage collection [29], replicating copying collection [34], and
multiprocessor concurrent collection [21, 22, 27, 28, 39].

For reference counting, some of the major advances have been
incremental freeing [42], deferred reference counting [20], cycle
collection [17, 32, 6], compile-time removal of counting opera-
tions [9], and multiprocessor concurrent collection [3, 19, 31].

However, all of these advances have been refinements of the two
fundamental approaches that were developed at the dawn of the era
of high-level languages.

Tracing and reference counting have consistently been viewed as
being different approaches to storage reclamation. We have imple-
mented both types of collector: a multiprocessor concurrent refer-
ence counting collector with cycle collection [3, 6] and a uniproces-
sor real-time incremental tracing collector [4, 5]. In this process,
we found some striking similarities between the two approaches.
In particular, once substantial optimizations had been applied to
the naı̈ve algorithms, the difficult issues that arose were remark-
ably similar. This led us to speculate that the two algorithms in fact
share a “deep structure”.

In this paper we show that the two fundamental approaches to
storage reclamation, namely tracing and reference counting, are al-
gorithmic duals of each other. Intuitively, one can think of tracing
as operating upon live objects or “matter”, while reference count-
ing operates upon dead objects or “anti-matter”. For every oper-
ation performed by the tracing collector, there is a corresponding
“anti-operation” performed by the reference counting collector.

Approaching the two algorithms in this way sheds new light on
the trade-offs involved, the potential optimizations, and the pos-
sibility of combining reference counting and tracing in a unified
storage reclamation framework.

We begin with a qualitative comparison of tracing and reference
counting (Section 2) and then show that the two algorithms are in
fact duals of each other (Section 3). We then show that all real-
istic, high-performance collectors are in fact hybrids that combine
tracing and reference counting (Section 4). We then discuss the
problem of cycle collection (Section 5) and extend our framework
to collectors with arbitrary numbers of separate heaps (Section 6).
Using our categorization of collectors, we then present a uniform

50

A Unified Theory of Garbage Collection

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Tracing and reference counting are uniformly viewed as being fun-
damentally different approaches to garbage collection that possess
very distinct performance properties. We have implemented high-
performance collectors of both types, and in the process observed
that the more we optimized them, the more similarly they behaved
— that they seem to share some deep structure.

We present a formulation of the two algorithms that shows that
they are in fact duals of each other. Intuitively, the difference is that
tracing operates on live objects, or “matter”, while reference count-
ing operates on dead objects, or “anti-matter”. For every operation
performed by the tracing collector, there is a precisely correspond-
ing anti-operation performed by the reference counting collector.

Using this framework, we show that all high-performance col-
lectors (for example, deferred reference counting and generational
collection) are in fact hybrids of tracing and reference counting.
We develop a uniform cost-model for the collectors to quantify the
trade-offs that result from choosing different hybridizations of trac-
ing and reference counting. This allows the correct scheme to be
selected based on system performance requirements and the ex-
pected properties of the target application.

General Terms
Algorithms, Languages, Performance

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storagemanagement; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Garbage col-
lection

Keywords
Tracing, Mark-and-Sweep, Reference Counting, Graph Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 $5.00.

1. INTRODUCTION
By 1960, the two fundamental approaches to storage reclama-

tion, namely tracing [33] and reference counting [18] had been de-
veloped.

Since then there has been a great deal of work on garbage collec-
tion, with numerous advances in both paradigms. For tracing, some
of the major advances have been iterative copying collection [15],
generational collection [41, 1], constant-space tracing [36], barrier
optimization techniques [13, 45, 46], soft real-time collection [2, 7,
8, 14, 26, 30, 44], hard real-time collection [5, 16, 23], distributed
garbage collection [29], replicating copying collection [34], and
multiprocessor concurrent collection [21, 22, 27, 28, 39].

For reference counting, some of the major advances have been
incremental freeing [42], deferred reference counting [20], cycle
collection [17, 32, 6], compile-time removal of counting opera-
tions [9], and multiprocessor concurrent collection [3, 19, 31].

However, all of these advances have been refinements of the two
fundamental approaches that were developed at the dawn of the era
of high-level languages.

Tracing and reference counting have consistently been viewed as
being different approaches to storage reclamation. We have imple-
mented both types of collector: a multiprocessor concurrent refer-
ence counting collector with cycle collection [3, 6] and a uniproces-
sor real-time incremental tracing collector [4, 5]. In this process,
we found some striking similarities between the two approaches.
In particular, once substantial optimizations had been applied to
the naı̈ve algorithms, the difficult issues that arose were remark-
ably similar. This led us to speculate that the two algorithms in fact
share a “deep structure”.

In this paper we show that the two fundamental approaches to
storage reclamation, namely tracing and reference counting, are al-
gorithmic duals of each other. Intuitively, one can think of tracing
as operating upon live objects or “matter”, while reference count-
ing operates upon dead objects or “anti-matter”. For every oper-
ation performed by the tracing collector, there is a corresponding
“anti-operation” performed by the reference counting collector.

Approaching the two algorithms in this way sheds new light on
the trade-offs involved, the potential optimizations, and the pos-
sibility of combining reference counting and tracing in a unified
storage reclamation framework.

We begin with a qualitative comparison of tracing and reference
counting (Section 2) and then show that the two algorithms are in
fact duals of each other (Section 3). We then show that all real-
istic, high-performance collectors are in fact hybrids that combine
tracing and reference counting (Section 4). We then discuss the
problem of cycle collection (Section 5) and extend our framework
to collectors with arbitrary numbers of separate heaps (Section 6).
Using our categorization of collectors, we then present a uniform

50

A Unified Theory of Garbage Collection

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Tracing and reference counting are uniformly viewed as being fun-
damentally different approaches to garbage collection that possess
very distinct performance properties. We have implemented high-
performance collectors of both types, and in the process observed
that the more we optimized them, the more similarly they behaved
— that they seem to share some deep structure.

We present a formulation of the two algorithms that shows that
they are in fact duals of each other. Intuitively, the difference is that
tracing operates on live objects, or “matter”, while reference count-
ing operates on dead objects, or “anti-matter”. For every operation
performed by the tracing collector, there is a precisely correspond-
ing anti-operation performed by the reference counting collector.

Using this framework, we show that all high-performance col-
lectors (for example, deferred reference counting and generational
collection) are in fact hybrids of tracing and reference counting.
We develop a uniform cost-model for the collectors to quantify the
trade-offs that result from choosing different hybridizations of trac-
ing and reference counting. This allows the correct scheme to be
selected based on system performance requirements and the ex-
pected properties of the target application.

General Terms
Algorithms, Languages, Performance

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storagemanagement; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Garbage col-
lection

Keywords
Tracing, Mark-and-Sweep, Reference Counting, Graph Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 $5.00.

1. INTRODUCTION
By 1960, the two fundamental approaches to storage reclama-

tion, namely tracing [33] and reference counting [18] had been de-
veloped.

Since then there has been a great deal of work on garbage collec-
tion, with numerous advances in both paradigms. For tracing, some
of the major advances have been iterative copying collection [15],
generational collection [41, 1], constant-space tracing [36], barrier
optimization techniques [13, 45, 46], soft real-time collection [2, 7,
8, 14, 26, 30, 44], hard real-time collection [5, 16, 23], distributed
garbage collection [29], replicating copying collection [34], and
multiprocessor concurrent collection [21, 22, 27, 28, 39].

For reference counting, some of the major advances have been
incremental freeing [42], deferred reference counting [20], cycle
collection [17, 32, 6], compile-time removal of counting opera-
tions [9], and multiprocessor concurrent collection [3, 19, 31].

However, all of these advances have been refinements of the two
fundamental approaches that were developed at the dawn of the era
of high-level languages.

Tracing and reference counting have consistently been viewed as
being different approaches to storage reclamation. We have imple-
mented both types of collector: a multiprocessor concurrent refer-
ence counting collector with cycle collection [3, 6] and a uniproces-
sor real-time incremental tracing collector [4, 5]. In this process,
we found some striking similarities between the two approaches.
In particular, once substantial optimizations had been applied to
the naı̈ve algorithms, the difficult issues that arose were remark-
ably similar. This led us to speculate that the two algorithms in fact
share a “deep structure”.

In this paper we show that the two fundamental approaches to
storage reclamation, namely tracing and reference counting, are al-
gorithmic duals of each other. Intuitively, one can think of tracing
as operating upon live objects or “matter”, while reference count-
ing operates upon dead objects or “anti-matter”. For every oper-
ation performed by the tracing collector, there is a corresponding
“anti-operation” performed by the reference counting collector.

Approaching the two algorithms in this way sheds new light on
the trade-offs involved, the potential optimizations, and the pos-
sibility of combining reference counting and tracing in a unified
storage reclamation framework.

We begin with a qualitative comparison of tracing and reference
counting (Section 2) and then show that the two algorithms are in
fact duals of each other (Section 3). We then show that all real-
istic, high-performance collectors are in fact hybrids that combine
tracing and reference counting (Section 4). We then discuss the
problem of cycle collection (Section 5) and extend our framework
to collectors with arbitrary numbers of separate heaps (Section 6).
Using our categorization of collectors, we then present a uniform

50

A Unified Theory of Garbage Collection

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Tracing and reference counting are uniformly viewed as being fun-
damentally different approaches to garbage collection that possess
very distinct performance properties. We have implemented high-
performance collectors of both types, and in the process observed
that the more we optimized them, the more similarly they behaved
— that they seem to share some deep structure.

We present a formulation of the two algorithms that shows that
they are in fact duals of each other. Intuitively, the difference is that
tracing operates on live objects, or “matter”, while reference count-
ing operates on dead objects, or “anti-matter”. For every operation
performed by the tracing collector, there is a precisely correspond-
ing anti-operation performed by the reference counting collector.

Using this framework, we show that all high-performance col-
lectors (for example, deferred reference counting and generational
collection) are in fact hybrids of tracing and reference counting.
We develop a uniform cost-model for the collectors to quantify the
trade-offs that result from choosing different hybridizations of trac-
ing and reference counting. This allows the correct scheme to be
selected based on system performance requirements and the ex-
pected properties of the target application.

General Terms
Algorithms, Languages, Performance

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storagemanagement; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Garbage col-
lection

Keywords
Tracing, Mark-and-Sweep, Reference Counting, Graph Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 $5.00.

1. INTRODUCTION
By 1960, the two fundamental approaches to storage reclama-

tion, namely tracing [33] and reference counting [18] had been de-
veloped.

Since then there has been a great deal of work on garbage collec-
tion, with numerous advances in both paradigms. For tracing, some
of the major advances have been iterative copying collection [15],
generational collection [41, 1], constant-space tracing [36], barrier
optimization techniques [13, 45, 46], soft real-time collection [2, 7,
8, 14, 26, 30, 44], hard real-time collection [5, 16, 23], distributed
garbage collection [29], replicating copying collection [34], and
multiprocessor concurrent collection [21, 22, 27, 28, 39].

For reference counting, some of the major advances have been
incremental freeing [42], deferred reference counting [20], cycle
collection [17, 32, 6], compile-time removal of counting opera-
tions [9], and multiprocessor concurrent collection [3, 19, 31].

However, all of these advances have been refinements of the two
fundamental approaches that were developed at the dawn of the era
of high-level languages.

Tracing and reference counting have consistently been viewed as
being different approaches to storage reclamation. We have imple-
mented both types of collector: a multiprocessor concurrent refer-
ence counting collector with cycle collection [3, 6] and a uniproces-
sor real-time incremental tracing collector [4, 5]. In this process,
we found some striking similarities between the two approaches.
In particular, once substantial optimizations had been applied to
the naı̈ve algorithms, the difficult issues that arose were remark-
ably similar. This led us to speculate that the two algorithms in fact
share a “deep structure”.

In this paper we show that the two fundamental approaches to
storage reclamation, namely tracing and reference counting, are al-
gorithmic duals of each other. Intuitively, one can think of tracing
as operating upon live objects or “matter”, while reference count-
ing operates upon dead objects or “anti-matter”. For every oper-
ation performed by the tracing collector, there is a corresponding
“anti-operation” performed by the reference counting collector.

Approaching the two algorithms in this way sheds new light on
the trade-offs involved, the potential optimizations, and the pos-
sibility of combining reference counting and tracing in a unified
storage reclamation framework.

We begin with a qualitative comparison of tracing and reference
counting (Section 2) and then show that the two algorithms are in
fact duals of each other (Section 3). We then show that all real-
istic, high-performance collectors are in fact hybrids that combine
tracing and reference counting (Section 4). We then discuss the
problem of cycle collection (Section 5) and extend our framework
to collectors with arbitrary numbers of separate heaps (Section 6).
Using our categorization of collectors, we then present a uniform

50

A Unified Theory of Garbage Collection

David F. Bacon
dfb@watson.ibm.com

Perry Cheng
perryche@us.ibm.com

V.T. Rajan
vtrajan@us.ibm.com

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

ABSTRACT
Tracing and reference counting are uniformly viewed as being fun-
damentally different approaches to garbage collection that possess
very distinct performance properties. We have implemented high-
performance collectors of both types, and in the process observed
that the more we optimized them, the more similarly they behaved
— that they seem to share some deep structure.

We present a formulation of the two algorithms that shows that
they are in fact duals of each other. Intuitively, the difference is that
tracing operates on live objects, or “matter”, while reference count-
ing operates on dead objects, or “anti-matter”. For every operation
performed by the tracing collector, there is a precisely correspond-
ing anti-operation performed by the reference counting collector.

Using this framework, we show that all high-performance col-
lectors (for example, deferred reference counting and generational
collection) are in fact hybrids of tracing and reference counting.
We develop a uniform cost-model for the collectors to quantify the
trade-offs that result from choosing different hybridizations of trac-
ing and reference counting. This allows the correct scheme to be
selected based on system performance requirements and the ex-
pected properties of the target application.

General Terms
Algorithms, Languages, Performance

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storagemanagement; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.2 [Operating Systems]: Storage Management—Garbage col-
lection

Keywords
Tracing, Mark-and-Sweep, Reference Counting, Graph Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 $5.00.

1. INTRODUCTION
By 1960, the two fundamental approaches to storage reclama-

tion, namely tracing [33] and reference counting [18] had been de-
veloped.

Since then there has been a great deal of work on garbage collec-
tion, with numerous advances in both paradigms. For tracing, some
of the major advances have been iterative copying collection [15],
generational collection [41, 1], constant-space tracing [36], barrier
optimization techniques [13, 45, 46], soft real-time collection [2, 7,
8, 14, 26, 30, 44], hard real-time collection [5, 16, 23], distributed
garbage collection [29], replicating copying collection [34], and
multiprocessor concurrent collection [21, 22, 27, 28, 39].

For reference counting, some of the major advances have been
incremental freeing [42], deferred reference counting [20], cycle
collection [17, 32, 6], compile-time removal of counting opera-
tions [9], and multiprocessor concurrent collection [3, 19, 31].

However, all of these advances have been refinements of the two
fundamental approaches that were developed at the dawn of the era
of high-level languages.

Tracing and reference counting have consistently been viewed as
being different approaches to storage reclamation. We have imple-
mented both types of collector: a multiprocessor concurrent refer-
ence counting collector with cycle collection [3, 6] and a uniproces-
sor real-time incremental tracing collector [4, 5]. In this process,
we found some striking similarities between the two approaches.
In particular, once substantial optimizations had been applied to
the naı̈ve algorithms, the difficult issues that arose were remark-
ably similar. This led us to speculate that the two algorithms in fact
share a “deep structure”.

In this paper we show that the two fundamental approaches to
storage reclamation, namely tracing and reference counting, are al-
gorithmic duals of each other. Intuitively, one can think of tracing
as operating upon live objects or “matter”, while reference count-
ing operates upon dead objects or “anti-matter”. For every oper-
ation performed by the tracing collector, there is a corresponding
“anti-operation” performed by the reference counting collector.

Approaching the two algorithms in this way sheds new light on
the trade-offs involved, the potential optimizations, and the pos-
sibility of combining reference counting and tracing in a unified
storage reclamation framework.

We begin with a qualitative comparison of tracing and reference
counting (Section 2) and then show that the two algorithms are in
fact duals of each other (Section 3). We then show that all real-
istic, high-performance collectors are in fact hybrids that combine
tracing and reference counting (Section 4). We then discuss the
problem of cycle collection (Section 5) and extend our framework
to collectors with arbitrary numbers of separate heaps (Section 6).
Using our categorization of collectors, we then present a uniform

50

Presentation slot assignments

Structure

High marks

Low marks

PL

Languages

Processing

Date Topic Speaker 1 Speaker 2 Speaker 3
20 Oct Taming functions TBD TBD TBD
27 Oct Effect handlers TBD TBD TBD
3 Nov Dependent types TBD TBD TBD
10 Nov Module systems TBD TBD TBD
17 Nov Verified compilation TBD TBD TBD
24 Nov Partial evaluation TBD TBD TBD
1 Dec Program synthesis TBD TBD TBD

How to get high marks in this class

How to get a high mark in an essay

Structure

High marks

Low marks

PL

Languages

Processing

Essay marks are awarded for understanding,
for insight and analysis,

and for writing quality.
Essays should be around 1500 words.

1. Contextualise widely 5. Describe originally
2. Analyse deeply 6. Synthesise insightfully
3. Appraise thoughtfully 7. Expound illustratively
4. Elucidate carefully 8. Write stylishly

Media

Structure

High marks

Low marks

PL

Languages

Processing

Read a book Read another book Read some papers
Outrageous but Meaningful Coincidences

Dependent type-safe syntax and evaluation

Conor McBride
University of Strathclyde
conor@cis.strath.ac.uk

Abstract
Tagless interpreters for well-typed terms in some object language
are a standard example of the power and benefit of precise indexing
in types, whether with dependent types, or generalized algebraic
datatypes. The key is to reflect object language types as indices
(however they may be constituted) for the term datatype in the host
language, so that host type coincidence ensures object type coinci-
dence. Whilst this technique is widespread for simply typed object
languages, dependent types have proved a tougher nut with nontriv-
ial computation in type equality. In their type-safe representations,
Danielsson [2006] and Chapman [2009] succeed in capturing the
equality rules, but at the cost of representing equality derivations
explicitly within terms. This article delivers a type-safe represen-
tation for a dependently typed object language, dubbed KIPLING,
whose computational type equality just appropriates that of its host,
Agda. The KIPLING interpreter example is not merely de rigeur—
it is key to the construction. At the heart of the technique is that key
component of generic programming, the universe.

1. Introduction
Last century, we learned from Altenkirch and Reus [1999] how to
represent simply typed terms precisely as an inductive family of
datatypes [Dybjer 1991] in a dependently typed language. The idea
is to make the type system of the host language police the typing
rules of the object language by indexing the datatype representing
object terms with a representation of object types. The payoff is
that programs which manipulate the object language can take type
safety for granted—well-typedness of object language terms be-
comes a matter of basic hygiene for the host. There is a rich litera-
ture of work which exploits this technique, both in the dependently
typed setting and in Haskell-like languages with sufficiently precise
typing mechanisms. For a small selection, see Baars and Swierstra
[2004]; Brady and Hammond [2006]; Carette et al. [2009]; Chen
and Xi [2003]; Pasalic et al. [2002].
This paper makes the jump to representing dependently typed

object languages in a precise type-safe manner, a problem compli-
cated by the fact that object language type equality requires non-
trivial computation. However, the host language type system also
boasts a computational equality: let us steal it. If we can push object
language computation into host language types, object type equal-

[Copyright notice will appear here once ’preprint’ option is removed.]

ity becomes a matter of coincidence, specified by the outrageously
simple method of writing the same variable in two places! The key
is to choose our coincidences with care: we should not ask for coin-
cidence in what types say if we only want coincidence in what types
mean. Once we have found what host type captures the ‘meaning’
of object types, we can index by it and proceed as before.

The representation recipe. Recall the basic type-safe encoding
method, working in Agda [Norell 2008]. First, define types.

data ! : Set where
ι : !
! : ! → ! → !

Next, define contexts, with de Bruijn [1972] indices typed as wit-
nesses to context membership.

data Cx : Set where
E : Cx
, : Cx → ! → Cx

data " : Cx → ! → Set where
top : ∀ {Γ τ } → Γ , τ " τ
pop : ∀ {Γ σ τ } → Γ " τ → Γ , σ " τ

Finally, define terms by giving an indexed syntax reflecting the
typing rules which, fortunately, are syntax-directed. I make the
traditional use of comment syntax to suggest typing rules.

data $: Cx → ! → Set where

-- variables witness context membership
var : ∀ {Γ τ } → Γ " τ

--————————
→ Γ $ τ

-- λ-abstraction extends the context
lam : ∀ {Γ σ τ } → Γ , σ $ τ

--————————————
→ Γ $ σ ! τ

-- application demands a type coincidence
app : ∀ {Γ σ τ } → Γ $ σ ! τ → Γ $ σ

--———————————————————
→ Γ $ τ

Notice how, for app, the domain of the function and the argu-
ment type must coincide. Agda will reject apps unless the candi-
dates for σ are definitionally equal in type !: it’s really checking
types. Moreover, with ‘implicit syntax’ [Norell 2007] combining
insights from Damas and Milner [1982] via Pollack [1992] with
pattern unification from Miller [1991], Agda makes a creditable
effort at type inference for object language terms!
McKinna and I [McBride and McKinna 2004] showed how to

write a typechecker which yields typed terms from raw preterms,

1 2010/6/8

How to get a high mark in a presentation

Structure

High marks

Low marks

PL

Languages

Processing

Presentation marks are awarded for clarity,
for effective communication,

and for selection and organisation of topics

1. engage with the audience 4. explain the problem
2. empathize with the audience 5. bring out the key idea
3. bring people along 6. have one key example

Media

Structure

High marks

Low marks

PL

Languages

Processing

Read a book Look at some slides

Photo © James Millar/TEDxExeter

Watch a presentation

How to get low marks in this class

How to get a low mark in an essay

Structure

High marks

Low marks

PL

Languages

Processing

1. be exclusively critical 3. assert without evidence
2. quote extensively 4. stay vague and noncommittal

How to get a low mark in a presentation

Structure

High marks

Low marks

PL

Languages

Processing

1. read your slides
Section no.1
Section no. 2
Section no.3
Section no. 4

Subsection no.1.1

two points

1 my first point
2 my second point

Sascha Frank Beamer Class a little nicer 2

1. my first point
2. my second point

Section no.1
Section no. 2
Section no.3
Section no. 4

Lists I
Lists II

lots of text
lorem ipsum dolor sit amet consectetur adipiscing elit donec convallis
ultrices placerat suspendisse scelerisque arcu felis eu suscipit arcu dapibus
vitae quisque ornare sem vitae libero dapibus sollicitudin suspendisse
potenti proin vitae molestie enim proin id rhoncus risus nunc varius lacus
a dictum placerat donec sit amet velit massa praesent a posuere elit
aliquam eu facilisis ex donec a neque ac ex rhoncus posuere
x + y2 = f (z) aenean posuere interdum nisix + y2 = f (z) elementum
varius nunc eu ipsum lorem ipsum dolor sit amet consectetur adipiscing
elit donec convallis ultrices placerat suspendisse scelerisque arcu felis eu
suscipit arcu dapibus vitae quisque ornare sem vitae libero dapibus
sollicitudin suspendisse potenti proin vitae molex + y2 = f (z) stie enim
proin id rhoncus risus nunc varius lacus a dictum placerat donec sit amet
velit massa praesent a posuere elit aliquam eu facilisis ex donec a neque
ac ex rhoncus posuere aenean posuere x + y2 = f (z) interdum nisi
elementum varius nunc eu ipsum suspendisse x + y2 = f (z) potenti proin
vitae molestie enim proin id rhoncus risus nunc varius lacus a dictum
placerat donec sit amet velit massa praesent a posuere elit aliquam eu
facilisis ex donec a neque ac ex rhoncus posuere aenean posuere interdum
nisi elementum varius nunc eu ipsum

Sascha Frank Beamer Class a little nicer 2

3. stuff your slides

2. overrun
lorem ipsum dolor sit amet consectetur adipiscing elit
donec convallis ultrices placerat suspendisse scelerisque
arcu felis eu suscipit arcu dapibus vitae quisque ornare
sem vitae libero dapibus sollicitudin suspendisse potenti
proin vitae molestie enim proin id rhoncus risus nunc
varius lacus a dictum placerat donec sit amet velit
massa praesent a posuere elit aliquam eu facilisis ex
donec a neque ac ex rhoncus posuere aenean posuere
interdum nisi elementum varius nunc eu ipsum

4. disregard structure

Programming languages: themes

Views of programs

Structure

High marks

Low marks

PL

Languages

Processing

Q: what is a program?

Undecidable questions

Structure

High marks

Low marks

PL

Languages

Processing

Q: what undecidable question
are we approximating?

Overview

Structure

High marks

Low marks

PL

Languages

Processing

processing
programs

language
features

processing
programs

Taming functions

Effect handlers

Dependent types

Module systems

Verified compilation

Partial evaluation

Program synthesis

Oct 10

Oct 20

Oct 27

Nov 3

Nov 10

Nov 17

Nov 24

Dec 1

Programming language features

Taming functions

Structure

High marks

Low marks

PL

Languages

Processing

How can we effectively deal with
higher-order functions?

Question:

a computation that may treat
functions as data

A program is

λx.e
all computation unnested

all calls tail calls

all functions closed

all functions enumerated
all functions top-level

ANF

CPS conversion

closure conversion

defunctionalization
lambda lifting

Effect handlers

Structure

High marks

Low marks

PL

Languages

Processing

How can we extend
programming languages with
operators that allow powerful
manipulation of control flow?

Question:

a computation tree with
uninterpreted labels

A program is

print A

get ()

. . . print B print B 1 2 3 . . .

−4 −1

More questions:
Should the effects a program performs be reflected in its types?
What new types of programs can be expressed using effect handlers?
What is the connection with delimited continuations?

Dependent types

Structure

High marks

Low marks

PL

Languages

Processing

How can we build a powerful,
usable, and efficient
programming language out of
type theory?

Question:

a blend of logic and
computation.

A program is

Type equivalence is undecidable
in general

What’s undecidable?

m<n⇒n ̸=0 : m < n → n ̸= 0
m<n⇒n ̸=0 (s≤s m≤n) ()

IDRIS — Systems Programming Meets Full Dependent Types

Edwin C. Brady
School of Computer Science, University of St Andrews, St Andrews, Scotland.

Email: eb@cs.st-andrews.ac.uk

Abstract
Dependent types have emerged in recent years as a promising ap-
proach to ensuring program correctness. However, existing depen-
dently typed languages such as Agda and Coq work at a very high
level of abstraction, making it difficult to map verified programs to
suitably efficient executable code. This is particularly problematic
for programs which work with bit level data, e.g. network packet
processing, binary file formats or operating system services. Such
programs, being fundamental to the operation of computers in gen-
eral, may stand to benefit significantly from program verification
techniques. This paper describes the use of a dependently typed
programming language, IDRIS, for specifying and verifying prop-
erties of low-level systems programs, taking network packet pro-
cessing as an extended example. We give an overview of the dis-
tinctive features of IDRIS which allow it to interact with external
systems code, with precise types. Furthermore, we show how to in-
tegrate tactic scripts and plugin decision procedures to reduce the
burden of proof on application developers. The ideas we present
are readily adaptable to languages with related type systems.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (functional) Lan-
guages; C.2.2 [Computer-Communication Networks]: Network
Protocols—Protocol Verification

General Terms Languages, Verification

Keywords Dependent Types, Data Description

1. Introduction
Systems software, such as an operating system or a network stack,
underlies everything we do on a computer, whether that computer
is a desktop machine, a server, a mobile phone, or any embedded
device. It is therefore vital that such software operates correctly
in all situations. Dependent types have emerged in recent years
as a promising approach to ensuring the correctness of software,
with high level verification tools such as Coq [8] and Agda [25]
being used to model and verify a variety of programs including
domain-specific languages (DSLs) [26], parsers [9], compilers [16]
and algorithms [34]. However, since these tools operate at a high
level of abstraction, it can be difficult to map verified programs to
efficient low level code. For example, Oury and Swierstra’s data
description language [26] works with a list of bits to describe file

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLPV’11, January 29, 2011, Austin, Texas, USA.
Copyright c© 2011 ACM 978-1-4503-0487-0/11/01. . . $5.00.

formats precisely, but it does not attempt to store concrete data
compactly or efficiently.

This paper explores dependent type based program verifica-
tion techniques for systems programming, using the IDRIS pro-
gramming language. We give an overview of IDRIS, describing in
particular the key features which distinguish it from other related
languages and give an extended example of the kind of program
which stands to benefit from type-based program verification tech-
niques. Our example is a data description language influenced by
PADS [19] and PACKETTYPES [22]. This language is an embedded
domain-specific language (EDSL) [14] — that is, it is implemented
by embedding in a host language, exploiting the host’s parser, type
system and code generator. In this EDSL, we can describe data for-
mats at the bit level, as well as express constraints on the data.
We implement operations for converting data between high level
IDRIS data types and bit level data, using a foreign function inter-
face which gives IDRIS types to C functions. This language has a
serious motivation: we would like to implement verified, efficient
network protocols [1]. Therefore we show two packet formats as
examples: Internet Control Message Protocol (ICMP) packets, and
Internet Protocol (IP) headers.

1.1 Contributions
The main contribution of this paper is to demonstrate that a high
level dependently typed language is capable of implementing and
verifying code at a low level. We achieve this in the following
specific ways:

• We describe the distinctive features of IDRIS which allow in-
tegration of low level systems programming constructs with
higher level programs verified by type checking (Section 2).

• We show how an effective Foreign Function Interface can be
embedded in a dependently typed language (Section 2.6).

• We introduce a serious systems application where a program-
ming language meets program verification, and implement it
fully: a binary data description language, which we use to de-
scribe ICMP and IP headers precisely, expressing the data lay-
out and constraints on that data (Section 3).

We show how to tackle some of the awkward problems which can
arise in practice when implementing a dependently typed applica-
tion. These problems include:

• Dealing with foreign functions which may have more specific
inputs and outputs than their C types might suggest — e.g. we
might know that an integer may lie within a specific range.

• Satisfying proof obligations which arise due to giving data and
functions precise types. As far as possible, we would like proof
obligations to be solved automatically, and proof requirements
should not interfere with a program’s readability.

More questions:
How should we handle equality?
How might we write programs in a dependently-typed language?
How might we compile programs effectively?

Module systems

Structure

High marks

Low marks

PL

Languages

Processing

How might language design
support assembling systems
from well-specified
components?

Question:

a large modular system
assembled from
separately-defined components.

A program is

module type SET =
s i g

type t
type elem
va l empty : t
va l add : elem → t → t
va l mem : elem → t → bool

end

module MakeSet (Elem: ORDERED) :
SET with type elem = Elem.t

More questions:
How can we support abstraction and flexible composition?
What might a core language of modules look like?
How might we add support for recursion, higher-order modules, and first-class modules?
What problems might arise in sophisticated module systems?

Processing programs

Verified compilation

Structure

High marks

Low marks

PL

Languages

Processing

How can we preserve semantics when translating a program?Question:

an object with a rich meaning that compilation preservesA program is

Whether two programs have the same meaningWhat’s undecidable?

Partial evaluation

Structure

High marks

Low marks

PL

Languages

Processing

How might we perform as
much computation as possible
in advance?

Question:

an open term that can be
simplified using reductions.

A program is

Whether a program is optimally
partially evaluated is
undecidable.

What’s undecidable?

static input
in1

partial
evaluator

“mix”

general
program p

specialized
program pin1

outputdynamic
input in2

More questions:
How can we transform a program to improve its partial evaluation?
Is partial evaluation useful in practice?
How can we incorporate equations other than β?

Program synthesis

Structure

High marks

Low marks

PL

Languages

Processing

How can we generate programs
from specifications?

Question:

an object in a very large search
space.

A program is

Whether a program meets a
specification is undecidable in
general.

What’s undecidable?

Specification

Guess

Check

Final
program

Success

Feedback
Failure

Candidate
Program

