- Advanced topics in programming languages Michaelmas 2025 -

Effect handlers

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Evaluation & the stack

Expression evaluation (fine-grain CBV)

The stack

°® Computations
C,D

= return V value
| UV application

= X variable

Ax.C abstraction . .
| do x+ Cin D sequencing

Computation rules Congruence rules

C~ C

(\x.C) A V/x} dox< CinD~dox+ CinD

do x < return Vin C ~ C{V/x}

Continuation-based expression evaluation

The stack

(N J q . .
Values Computations Continuations

uyv := C,D return V E-] == [-]

dox<+ Cin D

| M&xC | UV | E[dox<[-]in (]
|

Computation rules

E[(Ax.C) V]
E[do x < return Vin (]

E[C{V/x]]
E[{V/x]

~
RAT;

Stack-based expression evaluation

The stack

[(Azreturn 3) 4

do x < [—] in return x

J
[do y « [] in returny}
E J

do x < (do y < (Azreturn 3) 4 in return y) in return x

Stack-based expression evaluation

The stack

return 3

do x < [—] in return x

E J
[do y « [] in returny}
E J

do x < (do y < return 3 in return y) in return x

Stack-based expression evaluation

The stack

s
E J

do x < [—] in return x

do x + return 3 in return x

Stack-based expression evaluation

The stack

return 3

return 3

Effect handlers

Basics

Values Computations
uv == C,D
|

= return V

| uv

| dox+ CinD
|

\

op(V; y.C)
handle C with {return x — C,, op;(x; ki) — C;}

Continuations
[-]
Eldo x <+ [-]in (]
Efhandle [- | with A

Basics (continued)

Computation rules

E[(Mx.C) V]

~ E[C{V/x}]

E[do x < return Vin (]

~ E[C{V/x}]

E[do x < op(V; y.C) in D]

~+ Elop(V; y.do x + Cin D)] (continuation capture)
E[handle return V with {return x — C, op;(x;; k;)) — C}]
~ E[C{V/x}] (return a value from a handler)

E[handle op;(V; y.C) with {return x — C, op,;(x;; ki) — G;}]
~ E[C{V/x, (\y.handle C with...)/k}] (handle an effect)
Efhandle op;(V; y.C) with {return x — C, op;(x;; ki) — Ci}]
~> E[op;(V; y.handle C with...)] (forward an effect)

Example

op(true; x.return x)

continuation

do y <[] inreturn y + 3

handle — with A

handle do y < op(true; x.return x) in return y + 3 with h

h = {return v — v+ 1,0p(v; k) — if v then k 10 else return 0}

Example

handle — with A]

handle op(true; x.do y <— return x in return y + 3) with h

h = {return v — v+ 1,0p(v; k) — if v then k 10 else return 0}

Example

if true then (Ax....) 10 else return 0

if true then (Ax.handle do y < return x in return y + 3 with h) 10
else return 0

h = {return v — v+ 1,0p(v; k) — if v then k 10 else return 0}

Example

[()\x.handle do y < return x in return y + 3 with h) 10}

(Ax.handle do y < return x in return y + 3 with h) 10

h = {return v — v+ 1,0p(v; k) — if v then k 10 else return 0}

Example

return 10

do y <[] inreturn y + 3

handle — with A

handle do y < return 10 in return y + 3 with h

h = {return v — v+ 1,0p(v; k) — if v then k 10 else return 0}

Example

return 10 + 3

handle — with A

handle return 10 + 3 with A

h = {return v — v+ 1,0p(v; k) — if v then k 10 else return 0}

Example

return (10 +3) + 1

return (10 +3) + 1

Applications

Applications

Applications

Reading

Reading

Paper 1: Retrofitting Effect Handlers onto OCaml

Retrofitting Effect Handlers onto OCaml
KC Sivaramakrishian Stephen Dolan Leo White

Anil Madhavapeddy
University o il Labs

Abstract 1 Introduction
Effect handlers g momentum s mech et handiers [4] provide a modslar foundation for user
r-defined effects. defined effects. The key

and

h multi-paradi

o

€O Comptc- St and o cnner

Conearsent programmng ot

Keywords: Efect handle
Continu

ol
Cotions win theseTrarics end T monadi o

“Effect handlers allow for non-local control flow
mechanisms such as generators, async/await,
lightweight threads and coroutines to be compos-
ably expressed. We present a design and evalu-
ate a full-fledged efficient implementation of effect
handlers for OCaml, an industrial-strength multi-
paradigm programming language.

[]

Our implementation of effect handlers for OCaml:
(i) imposes a mean 1% overhead on a comprehen-
sive macro benchmark suite that does not use effect
handlers; (ii) remains compatible with program anal-
ysis tools that inspect the stack; and (iii) is efficient
for new code that makes use of effect handlers.”

Paper 2: Generalized Evidence Passing for Effect Handlers

Generalized Evidence Passing for Effect Handlers “This paper studies Compi/ation techniques
Efficient Compilation of Effect Handlers to C . .
for algebraic effect handlers. In partic-
NINGNING XIE, University of Hong Kong, China .
DAAN LEIEN, icrosot Reserch, USA ular, we present a sequence of refine-

This paper studies compilation techniques for algebraic effect handlers. In particular, we present a sequence

of refinements of algebraic effects, going via mult-prompt delimited control, generalized evidence passing ments of algebraic effects, going via multi-
yield bubbling, and finally a monadic translation into plain lambda calculus which can be compiled efficiently
to many target platforms. Along the way we explore various interesting points in the design space. We H H H H

e e e e prompt delimited control, generalized evi-
the Koka programming language. We show that our techniq fect 'y comparing against three

other best-in-class implementations of effect handlers: multi-core OCaml, the Ev.Eff Haskell library, and dence pass[’ng' y[e/d bubbllng, and flna/ly a
the libhandler C library. We hope this work can serve as a basis for future designs and implementations of

lgerac efects monadic translation into plain lambda cal-
Additional Key Words and Phrases: Algebraic Effects, Handlers, Evidence Passing culus which can be comp iled efflCIent/y to
ACM Reference Format: many target p/atforms.

Ningning Xie and Daan Leijen. 2021. Generalized Evidence Passing for Effect Handlers: Efficient Compilation
of Effect Handlers to C. Proc. ACM Program. Lang. 5, ICEP, Article 71 (August 2021), 30 pages. https://doi.org
10.1145/3473576

CCS Concepts: + Software and its engineering — Control structures; Polymorphism; + Theory of
computation — Type theory.

1 INTRODUCTION []
Algebraic effects and handlers [Plotkin and Power 2003; Plotkin and Pretnar 2013] provide a =08
powerful and flexible way to add structured control-flow abstraction to programming languages.

ety o et oot 1 e e oo s e ot eeponten We show that our techniques are effective,
tions are generally able to capture- and resume a delimited continuation, which usually requires

special runtime support to do efficiently. For example, the effect handler implementation in multi- by compar in g aga inst three other best-in-

core OCaml [Dolan et al. 2017; Sivaramakrishnan et al. 2021] relies on a runtime system that) .

uses segmented stacks which can be captured efficiently [Farvardin and Reppy 2020]. Then, a class lmp/em entations of effect handlers:

natural question that arises is whether it is possible to compile effect handlers efficiently where the

target platform does not directly support delimited continuations, for example, when compiling to g 2

C/LLVM, WASM [Haas et al. 2017], JavaScript, Java VM, .NET, etc. mu/t/—core Ocam/r the EV- Eff HaSke” /"
In this paper we give a formalized translation and evaluation semantics from a typed effect o 5 ”

handler calculus into a plain typed lambda calculus as a sequence of refinements: brary, and the libhandler C //brary.

(1) First we show how effect handler semantics can be expressed using standard multi-prompt.

Reading

Do Be Do Be Do

IeBride
u

Paper 3: Do Be Do Be Do

“A novel approach to effect polymorphism
which avoids all mention of effect variables

[]

Multi-handlers as both an abstraction for han-
dling multiple computations over different ef-
fect sets simultaneously and a characterisation
of effect-handlers as generalised functions.

Writing suggestions

Expressiveness
Are some programs easier to express with effect handlers?
Do effect handlers add extra power that makes reasoning more difficult?

Efficiency
Can effect handlers be implemented efficiently?
Can existing languages be extended with efficient handler implementations?

Types
How are effect handlers typed?
Are types used in compilation?

Variants

Reading . . .
Shallow vs deep, single- vs multi-shot, multi-handlers, ..

