
Advanced topics in programming languages Michaelmas 2025

Effect handlers
handle (do x← op(v; y.c1) in c2) with h

Jeremy Yallop
jeremy.yallop@cl.cam.ac.uk

Evaluation & the stack

Expression evaluation (fine-grain CBV)

The stack

Handlers

Applications

Reading

Values
U,V ::= x variable

| λx.C abstraction

Computations
C,D ::= return V value

| U V application
| do x← C in D sequencing

Computation rules

(λx.C) V⇝ C{V/x}

do x← return V in C⇝ C{V/x}

Congruence rules

C⇝ C′

do x← C in D⇝ do x← C′ in D

Continuation-based expression evaluation

The stack

Handlers

Applications

Reading

Values
U,V ::= x

| λx.C

Computations
C,D ::= return V

| U V
| do x← C in D

Continuations
E[·] ::= [·]

| E[do x← [·] in C]

Computation rules
E[(λx.C) V] ⇝ E[C{V/x}]

E[do x← return V in C] ⇝ E[C{V/x}]

Stack-based expression evaluation

The stack

Handlers

Applications

Reading

do x← [−] in return x

do y← [−] in return y

(λz.return 3) 4

do x← (do y← (λz.return 3) 4 in return y) in return x

Stack-based expression evaluation

The stack

Handlers

Applications

Reading

do x← [−] in return x

do y← [−] in return y

return 3

do x← (do y← return 3 in return y) in return x

Stack-based expression evaluation

The stack

Handlers

Applications

Reading

do x← [−] in return x

return 3

do x← return 3 in return x

Stack-based expression evaluation

The stack

Handlers

Applications

Reading

return 3

return 3

Effect handlers

Basics

The stack

Handlers

Applications

Reading

Values
U,V ::= x

| λx.C

Computations
C,D ::= return V

| U V
| do x← C in D
| op(V; y.C)
| handle C with {return x 7→ Cx, opi(xi; ki) 7→ Ci}

Continuations
E[·] ::= [·]

| E[do x← [·] in C]
| E[handle [·] with h]

Basics (continued)

The stack

Handlers

Applications

Reading

Computation rules

E[(λx.C) V]
⇝ E[C{V/x}]
E[do x← return V in C]
⇝ E[C{V/x}]
E[do x← op(V; y.C) in D]

⇝ E[op(V; y.do x← C in D)] (continuation capture)
E[handle return V with {return x 7→ C, opi(xi; ki) 7→ Ci}]
⇝ E[C{V/x}] (return a value from a handler)
E[handle opi(V; y.C) with {return x 7→ C, opi(xi; ki) 7→ Ci}]
⇝ E[Ci{V/x, (λy.handle C with . . .)/k}] (handle an effect)
E[handle opj(V; y.C) with {return x 7→ C, opi(xi; ki) 7→ Ci}]
⇝ E[opj(V; y.handle C with . . .)] (forward an effect)

Example

The stack

Handlers

Applications

Reading

handle − with h

do y← [−] in return y + 3

op(true; x.return x)
continuation

handle do y← op(true; x.return x) in return y + 3 with h

h = {return v 7→ v + 1, op(v; k) 7→ if v then k 10 else return 0}

Example

The stack

Handlers

Applications

Reading

handle − with h

op(true; x.do y← return x in return y + 3)
continuation

handle op(true; x.do y← return x in return y + 3) with h

h = {return v 7→ v + 1, op(v; k) 7→ if v then k 10 else return 0}

Example

The stack

Handlers

Applications

Reading

if true then (λx. . . .) 10 else return 0

if true then (λx.handle do y← return x in return y + 3 with h) 10
else return 0

h = {return v 7→ v + 1, op(v; k) 7→ if v then k 10 else return 0}

Example

The stack

Handlers

Applications

Reading

(λx.handle do y← return x in return y + 3 with h) 10

(λx.handle do y← return x in return y + 3 with h) 10

h = {return v 7→ v + 1, op(v; k) 7→ if v then k 10 else return 0}

Example

The stack

Handlers

Applications

Reading

handle − with h

do y← [−] in return y + 3

return 10

handle do y← return 10 in return y + 3 with h

h = {return v 7→ v + 1, op(v; k) 7→ if v then k 10 else return 0}

Example

The stack

Handlers

Applications

Reading

handle − with h

return 10 + 3

handle return 10 + 3 with h

h = {return v 7→ v + 1, op(v; k) 7→ if v then k 10 else return 0}

Example

The stack

Handlers

Applications

Reading

return (10 + 3) + 1

return (10 + 3) + 1

Applications

Applications

The stack

Handlers

Applications

Reading

(demo)

Reading

Paper 1: Retrofitting Effect Handlers onto OCaml

The stack

Handlers

Applications

Reading

Retrofitting Effect Handlers onto OCaml
KC Sivaramakrishnan

IIT Madras

Chennai, India

kcsrk@cse.iitm.ac.in

Stephen Dolan

OCaml Labs

Cambridge, UK

stephen.dolan@cl.cam.ac.uk

Leo White

Jane Street

London, UK

leo@lpw25.net

Sadiq Jaffer

Opsian and OCaml Labs

Cambridge, UK

sadiq@toao.com

Tom Kelly

OCaml Labs

Cambridge, UK

tom.kelly@cantab.net

Anil Madhavapeddy

University of Cambridge and OCaml Labs

Cambridge, UK

avsm2@cl.cam.ac.uk

Abstract
Effect handlers have been gathering momentum as a mech-

anism for modular programming with user-defined effects.

Effect handlers allow for non-local control flow mechanisms

such as generators, async/await, lightweight threads and

coroutines to be composably expressed. We present a design

and evaluate a full-fledged efficient implementation of effect

handlers for OCaml, an industrial-strength multi-paradigm

programming language. Our implementation strives to main-

tain the backwards compatibility and performance profile of

existingOCaml code. Retrofitting effect handlers ontoOCaml

is challenging since OCaml does not currently have any non-

local control flow mechanisms other than exceptions. Our

implementation of effect handlers for OCaml: (i) imposes a

mean 1% overhead on a comprehensive macro benchmark

suite that does not use effect handlers; (ii) remains compati-

ble with program analysis tools that inspect the stack; and

(iii) is efficient for new code that makes use of effect handlers.

CCS Concepts: • Software and its engineering → Run-
time environments; Concurrent programming struc-
tures;Control structures; Parallel programming languages;
Concurrent programming languages.

Keywords: Effect handlers, Backwards compatibility, Fibers,

Continuations, Backtraces

ACM Reference Format:
KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom

Kelly, and Anil Madhavapeddy. 2021. Retrofitting Effect Handlers

onto OCaml. In Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation
(PLDI ’21), June 20–25, 2021, Virtual, UK. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3453483.3454039

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’21, June 20–25, 2021, Virtual, UK
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454039

1 Introduction
Effect handlers [46] provide a modular foundation for user-

defined effects. The key idea is to separate the definition of

the effectful operations from their interpretations, which are

given by handlers of the effects. For example,

effect In_line : in_channel -> string

declares an effect In_line, which is parameterised with an

input channel of type in_channel, which when performed re-

turns a string value. A computation can perform the In_line

effect without knowing how the In_line effect is implemented.

This computation may be enclosed by different handlers that

handle In_line differently. For example, In_linemay be imple-

mented by performing a blocking read on the input channel

or performing the read asynchronously by offloading it to an

event loop such as libuv, without changing the computation.

Thanks to the separation of effectful operations from their

implementation, effect handlers enable new approaches to

modular programming. Effect handlers are a generalisation

of exception handlers, where, in addition to the effect being

handled, the handler is provided with the delimited contin-

uation [15] of the perform site. This continuation may be

used to resume the suspended computation later. This en-

ables non-local control-flow mechanisms such as resumable

exceptions, lightweight threads, coroutines, generators and

asynchronous I/O to be composably expressed.

One of the primary motivations to extend OCaml with

effect handlers is to natively support asynchronous I/O in

order to express highly scalable concurrent applications such

as web servers in direct style (as opposed to using callbacks).
Many programming languages, including OCaml, require

non-local changes to source code in order to support asyn-

chronous I/O, often leading to a dichotomy between syn-

chronous and asynchronous code [11]. For asynchronous

I/O, OCaml developers typically use libraries such as Lwt [54]

and Async [41, §18], where asynchronous functions are rep-

resented as monadic computations. In these libraries, while

asynchronous functions can call synchronous functions di-

rectly, the converse is not true. In particular, any function

that calls an asynchronous function will also have to be

marked as asynchronous. As a result, large parts of the appli-

cations using these libraries end up being in monadic form.

“Effect handlers allow for non-local control flow
mechanisms such as generators, async/await,
lightweight threads and coroutines to be compos-
ably expressed. We present a design and evalu-
ate a full-fledged efficient implementation of effect
handlers for OCaml, an industrial-strength multi-
paradigm programming language.

[...]

Our implementation of effect handlers for OCaml:
(i) imposes a mean 1% overhead on a comprehen-
sive macro benchmark suite that does not use effect
handlers; (ii) remains compatible with program anal-
ysis tools that inspect the stack; and (iii) is efficient
for new code that makes use of effect handlers.”

Paper 2: Generalized Evidence Passing for Effect Handlers

The stack

Handlers

Applications

Reading

71

Generalized Evidence Passing for Effect Handlers

Efficient Compilation of Effect Handlers to C

NINGNING XIE, University of Hong Kong, China

DAAN LEIJEN,Microsoft Research, USA

This paper studies compilation techniques for algebraic effect handlers. In particular, we present a sequence

of refinements of algebraic effects, going via multi-prompt delimited control, generalized evidence passing,

yield bubbling, and finally a monadic translation into plain lambda calculus which can be compiled efficiently

to many target platforms. Along the way we explore various interesting points in the design space. We

provide two implementations of our techniques, one as a library in Haskell, and one as a C backend for

the Koka programming language. We show that our techniques are effective, by comparing against three

other best-in-class implementations of effect handlers: multi-core OCaml, the Ev.Eff Haskell library, and

the libhandler C library. We hope this work can serve as a basis for future designs and implementations of

algebraic effects.

CCS Concepts: • Software and its engineering → Control structures; Polymorphism; • Theory of

computation→ Type theory.

Additional Key Words and Phrases: Algebraic Effects, Handlers, Evidence Passing

ACM Reference Format:

Ningning Xie and Daan Leijen. 2021. Generalized Evidence Passing for Effect Handlers: Efficient Compilation

of Effect Handlers to C. Proc. ACM Program. Lang. 5, ICFP, Article 71 (August 2021), 30 pages. https://doi.org/

10.1145/3473576

1 INTRODUCTION

Algebraic effects and handlers [Plotkin and Power 2003; Plotkin and Pretnar 2013] provide a
powerful and flexible way to add structured control-flow abstraction to programming languages.
Unfortunately, it is not straightforward to compile effect handlers into efficient code: effect opera-
tions are generally able to capture- and resume a delimited continuation, which usually requires
special runtime support to do efficiently. For example, the effect handler implementation in multi-
core OCaml [Dolan et al. 2017; Sivaramakrishnan et al. 2021] relies on a runtime system that
uses segmented stacks which can be captured efficiently [Farvardin and Reppy 2020]. Then, a
natural question that arises is whether it is possible to compile effect handlers efficiently where the
target platform does not directly support delimited continuations, for example, when compiling to
C/LLVM, WASM [Haas et al. 2017], JavaScript, Java VM, .NET, etc.
In this paper we give a formalized translation and evaluation semantics from a typed effect

handler calculus into a plain typed lambda calculus as a sequence of refinements:

(1) First we show how effect handler semantics can be expressed using standard multi-prompt

delimited control semantics [Forster et al. 2019; Gunter et al. 1995] (Section 2.4).

Authors’ addresses: Ningning Xie, University of Hong Kong, China, xnning@hku.hk; Daan Leijen, Microsoft Research, USA,

daan@microsoft.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/8-ART71

https://doi.org/10.1145/3473576

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 71. Publication date: August 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

“This paper studies compilation techniques
for algebraic effect handlers. In partic-
ular, we present a sequence of refine-
ments of algebraic effects, going via multi-
prompt delimited control, generalized evi-
dence passing, yield bubbling, and finally a
monadic translation into plain lambda cal-
culus which can be compiled efficiently to
many target platforms.

[...]
We show that our techniques are effective,
by comparing against three other best-in-
class implementations of effect handlers:
multi-core OCaml, the Ev.Eff Haskell li-
brary, and the libhandler C library.”

Paper 3: Do Be Do Be Do

The stack

Handlers

Applications

Reading

Do Be Do Be Do

Sam Lindley
The University of Edinburgh, UK

sam.lindley@ed.ac.uk

Conor McBride
University of Strathclyde, UK
conor.mcbride@strath.ac.uk

Craig McLaughlin
The University of Edinburgh, UK

craig.mclaughlin@ed.ac.uk

Abstract
We explore the design and implementation of Frank, a strict func-
tional programming language with a bidirectional effect type sys-
tem designed from the ground up around a novel variant of Plotkin
and Pretnar’s effect handler abstraction.

Effect handlers provide an abstraction for modular effectful pro-
gramming: a handler acts as an interpreter for a collection of com-
mands whose interfaces are statically tracked by the type system.
However, Frank eliminates the need for an additional effect han-
dling construct by generalising the basic mechanism of functional
abstraction itself. A function is simply the special case of a Frank
operator that interprets no commands. Moreover, Frank’s operators
can be multihandlers which simultaneously interpret commands
from several sources at once, without disturbing the direct style of
functional programming with values.

Effect typing in Frank employs a novel form of effect polymor-
phism which avoids mentioning effect variables in source code.
This is achieved by propagating an ambient ability inwards, rather
than accumulating unions of potential effects outwards.

We introduce Frank by example, and then give a formal ac-
count of the Frank type system and its semantics. We introduce
Core Frank by elaborating Frank operators into functions, case ex-
pressions, and unary handlers, and then give a sound small-step
operational semantics for Core Frank.

Programming with effects and handlers is in its infancy. We con-
tribute an exploration of future possibilities, particularly in combi-
nation with other forms of rich type system.

Categories and Subject Descriptors D.3.2 [Language Classifica-
tions]: Applicative (functional) languages

Keywords algebraic effects, effect handlers, effect polymor-
phism, call-by-push-value, pattern matching, continuations, bidi-
rectional typing

1. Introduction
Shall I be pure or impure?

—Philip Wadler [60]

We say ‘Yes.’: purity is a choice to make locally. We introduce
Frank, an applicative language where the meaning of ‘impure’
computations is open to negotiation, based on Plotkin and Power’s

algebraic effects [45–48] in conjunction with Plotkin and Pretnar’s
handlers for algebraic effects [49]—a rich foundation for effectful
programming. By separating effect interfaces from their implemen-
tation, algebraic effects offer a high degree of modularity. Program-
mers can express effectful programs independently of the concrete
interpretation of their effects. A handler gives one interpretation
of the effects of a computation. In Frank, effect types (sometimes
called simply effects in the literature) are known as abilities. An
ability denotes the permission to invoke a particular set of com-
mands.

Frank programs are written in direct style in the spirit of effect
type systems [34, 57]. Frank operators generalise call-by-value
functions in two dimensions. First, operators handle effects. A
unary operator is an effect handler, acting as an interpreter for a
specified set of commands whose types are statically tracked by the
type system. A unary function is simply the special case of a unary
operator whose handled command set is empty. Second, operators
are n-ary, handling multiple computations over distinct command
sets simultaneously. An n-ary function is simply the special case of
an n-ary operator whose handled command sets are all empty.

The contributions of this paper are:

• the definition of Frank, a strict functional programming lan-
guage featuring a bidirectional effect type system, effect poly-
morphism, and effect handlers;

• operators as both multihandlers for handling multiple compu-
tations over distinct effect sets simultaneously and as functions
acting on values;

• a novel approach to effect polymorphism which avoids men-
tioning effect variables in source code, crucially relying on the
observation that one must always instantiate the effects of an
operator being applied with the ambient ability, that is, pre-
cisely those algebraic effects permitted by the current typing
context;

• a description of pattern matching compilation from Frank into
a fairly standard call-by-value language with unary effect han-
dlers, Core Frank;

• a straightforward small-step operational semantics for Core
Frank and a proof of type soundness;

• an exploration of directions for future research, combining
effect-and-handlers programming with features including sub-
structural typing, dependent types, and totality.

A number of other languages and libraries are built around
effect handlers and algebraic effects. Bauer and Pretnar’s Eff [7]
language is an ML-like language extended with effect handlers.
A significant difference between Frank and the original version of
Eff is that the latter provides no support for effect typing. Recently
Bauer and Pretnar have designed an effect type system for Eff [6].
Their implementation [50] supports Hindley-Milner type inference
and the type system incorporates effect subtyping.

“A novel approach to effect polymorphism
which avoids all mention of effect variables

[...]
Multi-handlers as both an abstraction for han-
dling multiple computations over different ef-
fect sets simultaneously and a characterisation
of effect-handlers as generalised functions.

”

Writing suggestions

The stack

Handlers

Applications

Reading

Expressiveness
Are some programs easier to express with effect handlers?
Do effect handlers add extra power that makes reasoning more difficult?

Efficiency
Can effect handlers be implemented efficiently?
Can existing languages be extended with efficient handler implementations?

Types
How are effect handlers typed?
Are types used in compilation?

Variants
Shallow vs deep, single- vs multi-shot, multi-handlers, …

