- Advanced topics in programming languages

Dependent types

Jeremy Yallop

jeremy.yallop@cl.cam.ac.uk

Michaelmas 2025 -

Basics

Dependent types: basics

Basics

What can depend on what?
o (e.g. what can appear as an argument in an application?)

Simple types Polymorphism Dependent types

No dependencies involving types
(all types are global) Types depend on terms

\ 1 1
N—- (N—-N)—>N VB.(Va.a) — S II(n:N).Vec n — Vec n

Ax: N (N = N).fx AB.Ax: (Va.a).X[f] An:N.Av:Vec n.v
L | L] L |

Terms depend on terms Terms depend on types

[

The Curry-Howard correspondence

UL Correspondence between simply-typed language and propositional logics:

(N J
A— B A D B (functions and implications)

Ax B A A B (products and conjunctions)
A+ B AV B (sums and disjunctions)

Correspondence between dependently-typed languages and predicate logics:

(XZ A) — B ~ V(X: A)B (functions and universal quantification)

E(X: A)B El(X: A)B (dependent pairs and existential quantification)

How should we start to design a dependently-typed language?
Foundation for constructive mathematics (Martin-L6f Type Theory)

Lambda calculus with fancy types (Calculus of Constructions)

Equalities

Basics

With dependent types we can form types from terms.

bt Parameterise B by a term of type A:

II(x: A).B(x)

Key Q: when are two types equal? (essential for type checking!)

Is B(2 4 2) equal to B(4)?

Determining equality typically requires normalization (i.e. computation).

(Separate question: what equalities can we prove?)

Pattern matching

Pattern matching with simple types

Simple branching reveals nothing to the type checker:

append xs ys = if empty xs then ys
Pattern else cons (head x) (append (tail xs) ys)
matching

o Either branch can access the head and tail.

Pattern matching exposes the value structure to the type checker:

append Nil ys ys
append (Cons x XxSs) ys Cons x (append xs ys)

Only the cons branch can access the head and tail.

Inductive families: basics

Inductive families support indexing data types by terms:

data Vect : N — Type — Type where
Nil : Vect Z a
Cons : a — Vect n a — Vect (S n) a

Pattern an inductive family,
matching Vect:

vappend : Vect m a — Vect n a — Vect (m + n) a
vappend Nil ys = ys
vappend (Cons x xs) ys = Cons x (vappend xs ys)

a function vappend
over Vect:

the full type vappend: {a : Type} — {m : N} —{n : N} —
of vappend: Vect m a — Vect n a — Vect (m + n) a

Inductive families and pattern matching

Dependent matching may reveal something about another value:

Patte.rn vappend : Vect m a — Vect n a — Vect (m + n) a
matching vappend Nil ys = ys
OO vappend (Cons x xs) ys = Cons x (vappend xs ys)

Matching the first vector with ni1 tells us that m = z in the first branch
so the return type in the first branch is vect (z + n) a ~> Vect n a

so ys has the appropriate type in the first branch

Inductive families and pattern matching

Dependent matching may reveal something about another value:

Pattern

matching zip : Vect n a — Vect n b — Vect n (a,b)
zi Nil s =7

XY P g

Matching the first vector with ni1 tells us that n = z
so the type of ys is vect z b

and so Nil is the only possible constructor for ys

Recursion

Dependent types and termination

Ideally: all functions terminate.

Non-terminating functions can introduce logical inconsistency, e.g.:

circular : V (A :Type) — A
circular a = circular a

Recursion

data Empty : Type where
L -- (no constructors)

loopy : Empty
loopy = loopy

Approximating termination

Problem: termination is undecidable, so we must approximate syntactically

Question: what to do with functions that are not structurally decreasing?

structurally decreasing: length []
length (x:xs)

length : List — Int
0
1

+ length xs

Recursion quicksort :: List N — List N
not (obviously) quicksort [] = []
o0 structurally decreasing: quicksort (x:xs) = quicksort (filter (< x) xs) ++
x : quicksort (filter (>= x) xs)

Reading

Paper 1: termination

The Size-Change Principle for Program Termination

“[A] program terminates on all inputs if every infinite
oSSR AR, call sequence (following program control flow) would

University of Copenhagen
ngineering Universittsparken 1

The University of Western DK:2100 Copenhagen

ark.

™ s cause an infinite descent in some data values.”

leecs@cs.uwa.edu.au
o “The set of infinite all sequences that follow pro-
gram flow and can be recognized as causing infinite
descent is an w-regular set, representable by a Biichi
11 Voaton automaton”

“There are many reasons to study automatic meth-
ods to prove program termination, including: Pro-
gram verification [..] Interesting analysis: termina-
tion is not just an “abstract interpretation” [..] Use
in partial evaluation”

Reading

Paper 2: Idris

IDRIS — Systems Programming Meets Full Dependent Types

“This paper describes the use of a dependently
typed programming language, IDRIS, for spec-
ifying and verifying properties of low-level sys-
tems programs, taking network packet process-
ing as an extended example.”

Edwin C. Brady

Abstract

“Our motivation is the need for systems soft-
ware verification — programs such as operat-
ing systems, device drivers and network proto-
col implementations which are required for the
correct operation of a computer system. There-
fore it is important to consider not only how to
verify software, but also how to do so without
compromising on efficiency, and how to inter-
operate with concrete data as it is represented

Reading in the machine or on a network wire"

Why Dependent Types Matter

Thorsten Altenkirch Conor McBride
The University of Nottingham
{txa,ctm} @cs.nott.ac.uk

James McKinna
The University of St Andrews
james. mckinna@st-andrews.ac.uk

Abstract

We exhibit the rationale behind the design of Epigram, a dependently typed programming language
interactive program development system, using refinements of a well known program—merge sort—g
running example. We discuss its relationship with other proposals to introduce aspects of dependent type:
functional programming languages and sketch some topics for further work in this area.

1. Introduction

Types matter. That's what theyre for—to classify data with respect to criteria which matter: how they shol
be stored in memory, whether they can be safely passed as inputs to a given operation, even who is allow]
see them. Dependent types are types expressed in terms of data, explicitl relating their inhabitants to that
As such, they enable you to express more of what matters about data. While conventional type systems
us to validate our programs with respect to a fixed set of criteria, dependent types are much more flexible,
realize a continuum of precision from the basic assertions we are used to expect from types up to a com
specification of the program’s behaviour. It is the programmer's choice to what degree he wants to exploit
expressiveness of such a powerful type discipline. While the price for formally certified software may be hi
itis good to know that we can pay it in installments and that we are free to decide how far we want to
Dependent types reduce certification to type checking, hence they provide a means to convince others ths
assertions we make about our programs are correct. Dependently typed programs are, by their nature,
carrying code [NL96, HSTO3]

Functional programmers have started to incorporate many aspects of dependent types into novel type sys

algebraic data we share Sheard's vision [She04] of closing

the semantic gabetween programs and their properties. While Sheard's langtayega approaches this
goal by an evolutionary step from current functional languages like Haskell, we are proposing a more rad|
departure with Epigram, exploiting what we have learnt from proof development tools lie LEGO and COQ.

Epigram is a full dependently typed programming language defined by McBride and McKinna [MM04|
drawing on experience with the LEGO system. McBride has implemented a prototype which is availa
together with basic documentation [McBO4, McBOS] from the Epigram homebae. prototype implements
most of the features discussed in this article, and we are continuing to develop it to close the remai

Paper 3: Epigram

“Dependent types [..] provide a means
to convince others that the assertions we
make about our programs are correct. De-
pendently typed programs are, by their na-
ture, proof carrying code.”

“Epigram can also typecheck and evaluate
incomplete programs with unfinished sec-
tions sitting in sheds, [- - - 1, where the
typechecker is forbidden to tread.”

“Exploiting the expressivity of dependent
types in a practicable way involves a wide
range of challenges in the development of
the theory, the design of language, the en-
gineering of tools and the pragmatics of
programming.”

Reading

Writing suggestions

Termination
Is termination-checking practical for real-world programs?

Efficiency
Are dependent types an impediment or an aid to efficiency?

Re-thinking
How might dependent types change the way we think about programming?

Radicalism
Do dependent types require radically new ways of programming?

Adoption
What might impede adoption of dependently-typed languages?

