
Thunderclap: Exploring
Vulnerabilities in Operating System
IOMMU Protection via DMA from

Untrustworthy Peripherals
Robert N. M. Watson

R209 - 9 October 2025

A bit of metadata
● This paper was originally published at the Network and Distributed Systems Security

(NDSS) Symposium 2019.
● The work took place over several years, including multi-year interactions with

vendors to update threat models and remediate multiple vulnerabilities.

● Ultimately the results of this work not only included several important security
updates and product design changes, but also changes to the USB 4 specification.

● There has been considerable work building on this, both around I/O security and
also for device-driver validation through fuzzing.

● I started with the conference slide deck “as presented” but
trimmed/rearranged/edited some slides to give a more focused presentation.

● “Do as we say and not as we do.” (Sorry)

Thunderclap: The Perils of Peripherals

The Perils of Peripherals
A. Theodore Markettos†, Colin Rothwell†, Brett F. Gutstein†*,

Allison Pearce†, Peter G. Neumann‡, Simon W. Moore†, Robert N. M. Watson†

RISE Annual Conference, London, 14 November 2018†University of Cambridge
Dept. Computer Science and Technology

‡SRI International *Rice University

Thunderclap: The Perils of Peripherals

Smaller laptops, more external peripherals
• Laptops getting smaller, more devices are going external

• Chargers, dongles, docking stations
• Common to borrow external peripherals (power, dongles, displays) from others

• Performance is increasingly more of a constraint
• Security?

W
ik

im
ed

ia
/A

m
in

 C
C

-B
Y-

SA
-4

.0

Thunderclap: The Perils of Peripherals

USB-C convergence: fewer plugs is great, but now we
can’t tell protocol from the connector

USB Type A

Video

PCI Express

USB Type C

DC Power

Thunderbolt 3

fl
ic

kr
:c

h
ri

st
ia

an
co

le
n

 C
C

-B
Y-

SA
-2

.0

Mode
selected
by cable

Thunderbolt
mux

Audi
o

In particular, the paper illustrates how the
malicious Ethernet device can read the

contents of packets after IPsec is decrypted

Thunderclap: The Perils of Peripherals

Security?
• USB is a packet-based protocol

• like the internet, only little scrutiny
• attackers craft bad messages
• reprogram devices to send bad messages
• trip up and exploit device drivers
• defences: firewalls, filtering, fuzzing etc

• Thunderbolt carries PCI Express,
which is a memory-based protocol

• DMA: direct memory access
• access the full state of your machine
• read your files, your passwords
• inject arbitrary code...

6

• USB Type C carries both, and power and video, on the same cable

In
te

l

Thunderclap: The Perils of Peripherals

Memory Management Unit (MMU): process isolation

7

MMU Physical
addresses

Virtual address space A

Virtual address space B

Virtual address space C

CPU

System
Memory

Translation and
protection

PCI Express
peripheral

Physical addresses

Thunderbolt
peripheral

The processor’s MMU
enforces policy provided by

the operating system.

Thunderclap: The Perils of Peripherals

I/O Memory Management Unit (IOMMU): device isolation

8

MMU Physical
addresses

Virtual address space A

Virtual address space B

Virtual address space C

CPU

System
Memory

Translation and
protection

PCI Express
peripheral

Thunderbol
t peripheral

IOMMU Physical
addresses

Translation and
protection

I/O virtual address space α

I/O virtual address space β

Thunderclap: The Perils of Peripherals

IOMMU protection against malicious devices

Windows 7 / 8 : don't use the IOMMU, all memory exposed
Windows 10 Home/Pro : didn't use the IOMMU
MacOS ≥10.8.2 : IOMMU enabled by default
Linux : supported, but IOMMU rarely enabled by default
FreeBSD : supported, but not enabled by default
IOMMU often disabled in default firmware settings (BIOS, UEFI)
Current state of the world is not good

Our work assumes that the OS vendor is at least vaguely trying...
What is the attack surface if they turned on IOMMU protection?

✔

✗

✗

✗
✗

✗

Thunderclap: The Perils of Peripherals

Attacks from a real device

• general understanding: “when the IOMMU is
enabled, attacks are foiled”

• these are simple memory-probing attacks
• no interactions with driver or kernel

• actually, the attack surface is much more
nuanced

• what attack surface does a real I/O device have?
• what accesses can it make?
• how does it interact with the device driver stack?
• as the OS increasingly trusts it, what extra

vulnerabilities does it open up?
snare and rzn, Thunderbolts and Lightning – Very Very

Frightening (2014)

This isn’t so much about attacking the IOMMU
itself, but how OS uses the IOMMU

Thunderclap: The Perils of Peripherals

Thunderclap: a research platform for I/O security
• We built a fake network card (NIC):

• software device model of an Intel E1000 PCIe ethernet card from QEMU
• software = easy to change, add malicious behavior

• run it on a CPU on an FPGA (Arm Cortex A9 on Intel Arria 10, running Ubuntu)
• FPGA logic can send and receive arbitrary PCIe packets
• QEMU model responds to PCIe packets and generates ‘DMA’ like a real NIC

• runs on FPGA dev boards, attached via PCIe or Thunderbolt dock
• hardware/software open sourced
• designed physical embodiments

• Thunderbolt dock implant
• malicious projector, charger
• not fully engineered/productized
• not released at this time

These are all in (important) “narrative
elements”: Once we have the structure of

the attack, how might it be deployed?

Thunderclap: The Perils of Peripherals

Attack: MacOS data leakage and root shell
• MacOS architecture

• all devices share one page map
• network card can’t read/write kernel or apps memory, but can

access USB buffers, framebuffer
• mbufs are allocated in a single block and exposed to all

devices at boot time
• access all of the network data all of the time – traffic for other

network cards/wifi, VPN plaintext, etc

• Breaking existing protections
• Kernel-Address Space Layout Randomization (KASLR)

can be broken due to leaked symbol from USB driver
• free() function pointer and 3 parameters from mbuf

allow launching a root shell

struct mbuf {
 ...
 struct m_ext;
 ...
 // internal buffer
 char M_databuf[224];
};

struct m_ext {
 // external buffer pointer
 caddr_t ext_buf;
 // free() function pointer
 void (*ext_free)(caddr_t,

u_int, caddr_t);
 u_int ext_size;
 ...
 struct ext_ref {
 u_int32_t refcnt;
 // buffer is external flag
 u_int32_t flags;
 } *ext_refflags;
};

This is an example of an “exploit chain,” a
concept we will return to over the term

Thunderclap: The Perils of Peripherals

Attack variants: FreeBSD and Linux
• FreeBSD

• one page map per device
• see other network traffic co-located on pages (traffic for other NICs, VPN

plaintext)
• no KASLR: root shell attack works

• Linux
• one page map per device
• data and metadata on different pages – can’t overwrite free() pointer
• general kernel allocator used by driver

• see Unix domain socket traffic (as used by SSH agent)
• kernel NAT jump tables, potentially lots more...

In particular, the paper illustrates how the
malicious Ethernet device can read the

contents of packets after IPsec is decrypted

Thunderclap: The Perils of Peripherals

Attack: Linux IOMMU bypass
• PCIe has a feature called Address Translation Services (ATS)
• Allows PCIe to carry pre-translated addresses

• Performance mitigation to cache translations locally, don't have to go inter-socket on a multi-socket server
• ‘Pre-translated addresses’ means we can generate memory reads/writes to arbitrary physical

addresses with no IOMMU interposing
• Set Thunderclap to advertise PCIe configuration registers saying it supports ATS
• Linux sees this and enables ATS on the PCIe switches
• Set a bit in the PCIe packet header saying an address is pre-translated
• We've completely bypassed IOMMU protection!

Fmt Attr Length

Requester ID Tag Last BE

Address

Data word 0

Type R TC R AT

31 0

1st BE MemoryWrite32
TLP

Thunderclap: The Perils of Peripherals

Mitigations and impact
• Collaborating with vendors since 2016
• Apple mitigated specific exploit in MacOS 10.12.4

• encrypt the kernel pointer, hide the flags

• Microsoft shipped Kernel DMA Protection for Thunderbolt 3 in Windows 10 1803
• IOMMU enabled for Thunderbolt devices (only)
• Requires post-1803 firmware, ie new products only

• Intel enabled IOMMU for Thunderbolt in Linux 4.21 (now 5.0rc), disabled ATS
• Thunderbolt devices are now less trusted than internal ones

• Major laptop vendor: we won't ship Thunderbolt until we understand this attack vector
better

• Eternal vigilance: DMA turning up in numerous new places – PCIe in phones,
SD card 7.0, NVMe over Ethernet...

Thunderclap: The Perils of Peripherals

Coverage in the popular press
• A new attack vector
• Defences aren’t up to scratch
• What can we do about it?
• What lessons can we learn?

Thunderclap: The Perils of Peripherals

The Register: We became boffins .. their highest praise!

“The aforementioned research platform, dubbed
Thunderclap, and the associated paper represent the work
of assorted academic and think tank boffins: …”

Thunderclap: The Perils of Peripherals

Mitigations and impact

• Best practice guidelines
• Engaging with the future

Thunderclap: The Perils of Peripherals

Conclusions
• We present the IOMMU attack surface as a new and rich field for
vulnerabilities

• Open sourced Thunderclap, a research platform that allows
exploration from an FPGA

• Told some stories of attacks across four major OS platforms
• including a complete IOMMU bypass

• Vendors shipped mitigations to our attacks which are already fielded
• Solving the problem in the general case is a lot harder than it
appears... we’re working on it!

• NDSS paper, source code and FAQ: thunderclap.io

20

▪ Gal Beniamini (Google Project Zero) research into WiFi-based attacks

▪ Compromised Android and iOS devices via vulnerable Broadcom Wifi SoC
💥 Malformed 802.11 packets triggers classical buffer overflow in firmware
💥 Escalation: heap corruption→ arbitrary code execution on SoC microcontroller

▪ Escalate via DMA over PCIe to obtain privilege on application processor
💥 IOMMU unused by Android operating system on many phones
💥 IOMMU used in iOS; exploited descriptor-ring race condition w/device driver

▪ Cross-SoC attack exploits vulnerable I/O core to attack application core

Example 1: WiFi microcontroller attacks on mobile devices
(Google Project Zero 2017)

Malformed
TDLS
frames

DMA
stores via

PCIe

Malicious WiFi
Access Point

Broadcom BCM4358 WiFi SoC
running Broadcom firmware

Snapdragon 801 (BB/AP SoC)
running Android

Photos: chipworks

���� ��

Possible discussion questions
● Why is the comparison made by the authors between the system-call

interface and the I/O interface so apt?
● Why was a tangible demonstration of these techniques so important to seeing

these issues addressed?
● What caused Microsoft to take several years to change its stance on whether

DMA attacks were “in scope”?
● Why is the ATS bit a “good idea” in some contexts vs. a “terrible idea” in

others?
● What are the ethical considerations in releasing Thunderclap as open-source

hardware and software?
● Does good use of an IOMMU solve this general class of problems involving

malicious peripherals?

