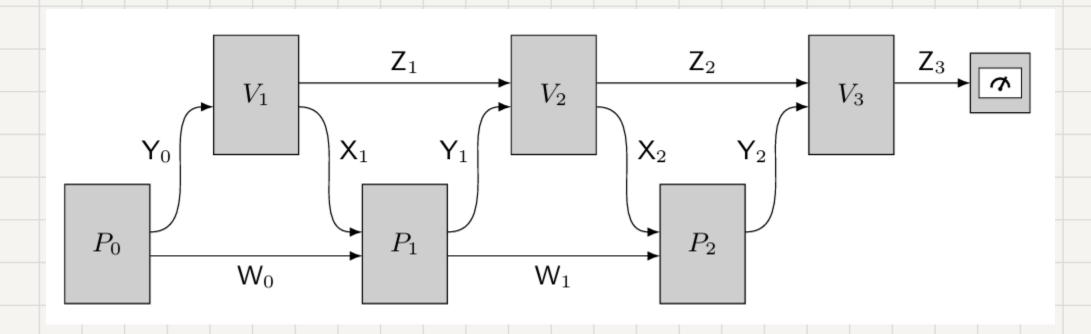
Quantum Complexity Theory

Quantum Interactive Proofs



Anant Gupta & Kevin Xie

Recap

QMA: Set of all problems for which there exists a BQP verifier V such that:

- If x is in L, there exists a 'proof object' $|\psi\rangle$ which V accepts with probability $\geq 2/3$
- If x is not in L, for all 'proof objects' $|\psi\rangle$, V accepts with probability $\leq 1/3$

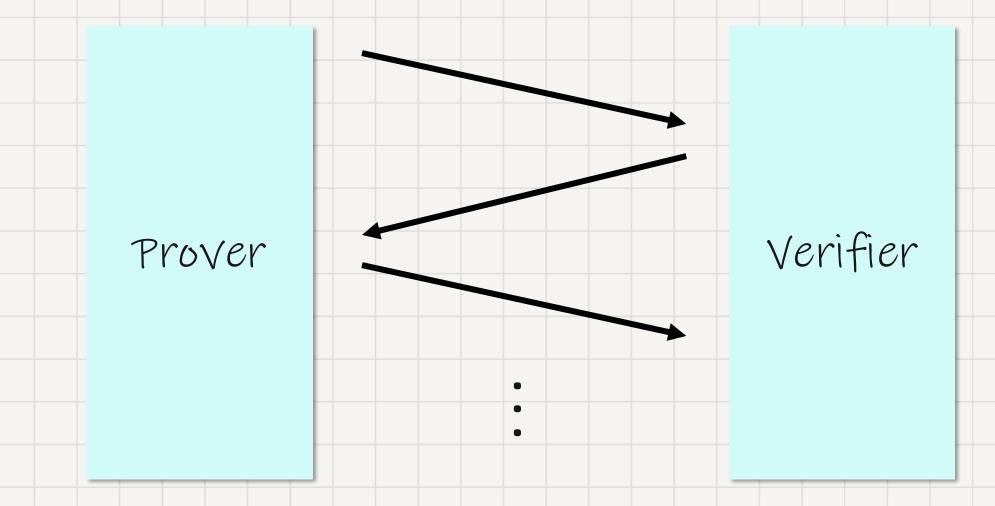
"quantum analogue of NP"

The classical complexity situation PCP NP

The quantum complexity situation QMA (this lecture!)

Interactive proof systems

2 parties:



Computationally unbounded (but untrustworthy)

Computationally bounded (but trustworthy)

Interactive proof systems

Key idea:

Reformulate complexity classes in the interactive proof system framework

- · P: polytime, deterministic, O-turn verifier
- · NP: polytime, deterministic, 1-turn verifier
- · IP: polytime, probabilistic, poly-turn verifier

Example: Graph Isomorphism

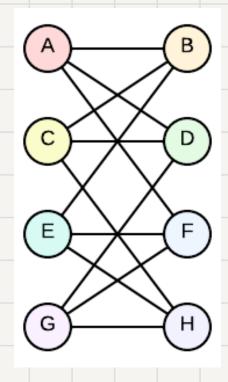
ISO: Given two graphs G and H, decide whether G and H are not isomorphic

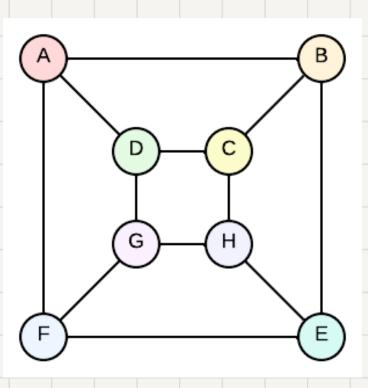
Key idea:

Verifier selects G or H randomly,
permutes the vertices, and asks prover
which graph the result came from

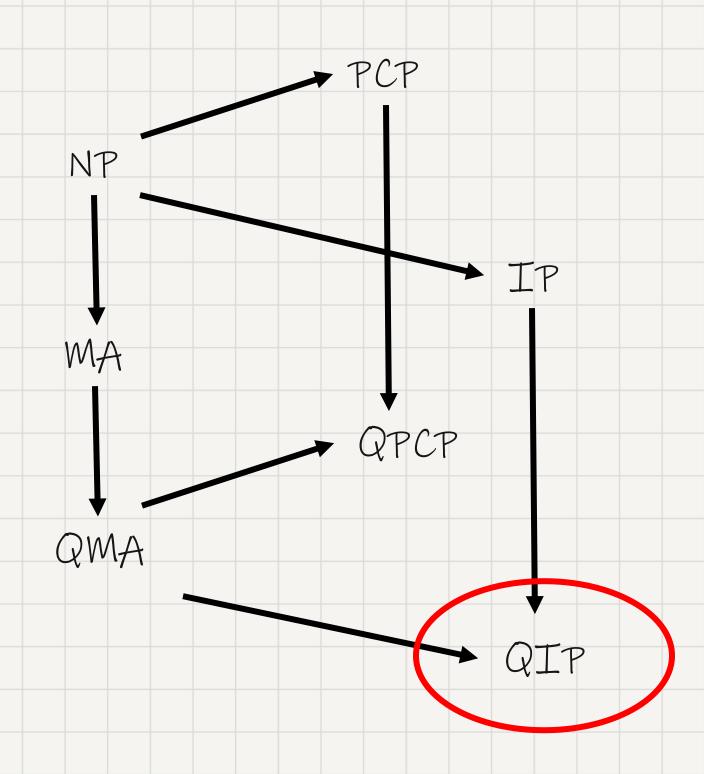
Multiple interactions

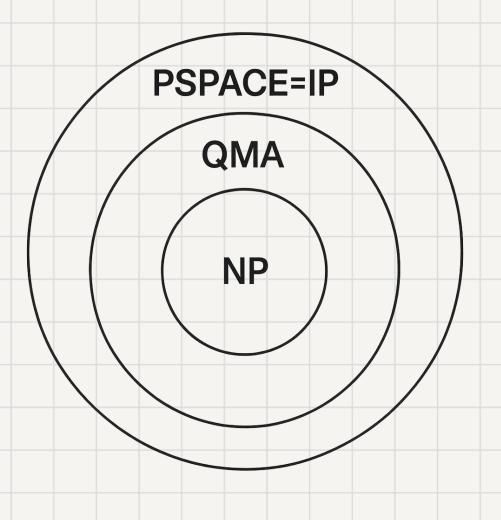
Isomorphic: Prover can do no better than guessing Non-isomorphic: Prover always give the right answer





The big picture (so far)



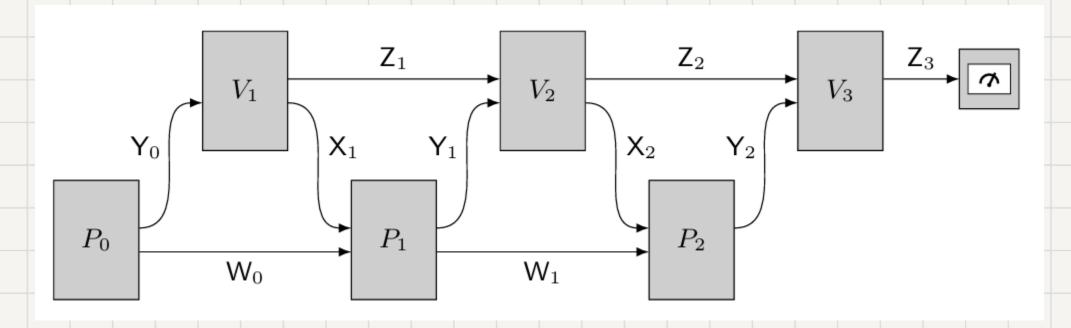


Where does QIP go?

Quantum Interactive Proofs (QIP)

- · Instead of sending bits, we sent qubits
- · Sounds easy enough but...
- · We cannot "read" the superposition without measuring
- · How do we process between interactions?
 - Apply unitary to received state?
 - Generate a new state?
 - Generate a random state?
- Robustness of definition! All (reasonable) definitions are included in QIP

Quantum Interactive Proofs (QIP)... More formally



We can think of each turn as applying a function

$$P_i: \mathcal{W}_{i-1} \otimes \mathcal{X}_i \longrightarrow \mathcal{W}_i \otimes \mathcal{Y}_i V_i: \mathcal{Z}_{i-1} \otimes \mathcal{Y}_{i-1} \to \mathcal{Z}_i \otimes \mathcal{X}_i$$

No requirements on the dimensions! Only need to be physically valid

$QIP_{a,b}[m]$:

- 1. There is a m-turn verifier that
- 2. If $x \in Accept$, there exist P that $\omega(V) \ge a$
 - 3. If $x \notin Accept$, for all P we have $\omega(V) \leq b$

Quote of the Day

I cannot define the real problem, therefore I suspect there's no real problem, but I'm not sure there's no real problem.

- Richard Feynman

Good and bad news

• Bad news: QIP = IP

No quantum computational advantage :(

• Good news: QIP = QIP[3]

Quantum practical advantage!

QIP = IP: Proof sketch

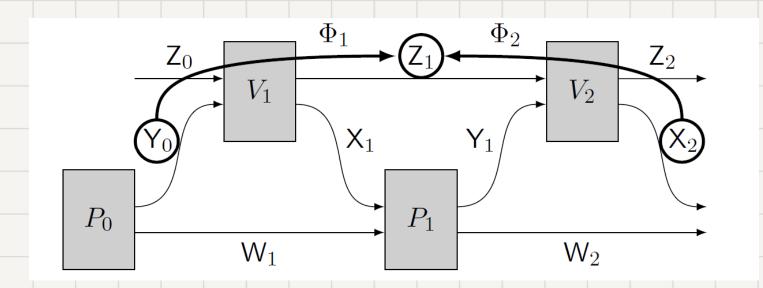
- IP ⊆ QIP: straightforward
- QIP ⊆ IP: less so; occurs by QIP ⊆ PSPACE

Key steps:

- 1. Restrict attention to 3-turn quantum verifiers
- 2. Convert to min-max semi-definite programming problem
- 3. Approximate with matrix multiplicative weights update
- 4. (Show that all steps are implementable in PSPACE)

QIP = IP: Proof sketch (cont'd)

2. Convert to min-max semi-definite programming problem



$$\Psi_{1}, \Psi_{2} \in C(\mathcal{Y}_{0}, \mathcal{X}_{2})$$

$$\Psi_{1} = \Phi_{1} \otimes Tr$$

$$\Psi_{2} = Tr \otimes \Phi_{2}$$

$$\Xi = \Psi_{2} - \Psi_{1}$$

$$\eta = \min_{\rho \in D(\mathcal{Y}_0, \mathcal{X}_2)} \max_{\Pi \in Proj(\mathcal{Z}_1)} \langle \Pi, \Xi \rangle$$

3. Approximate with matrix multiplicative weights update

Accept if
$$\eta = 0$$

Reject if
$$\eta \ge 1/2$$

QIP = QIP[3]: proof sketch

Key Steps:

- 1. Prove QIP_{a,b}[m] \subseteq QIP_{1,c}[m+2] (Perfect completeness)
- 2. Prove QIP_{1,c}[m] \subseteq QIP_{1,d}[3] (Parallelization)
- 3. Prove QIP_{1,d}[3] ⊆ QIP_{1,d^k}[3] (Parallel repetition)
- 1. Perfect completeness: The three-step gadget

First m rounds: Behave the same, but don't measure After round m: Pseudo-copy with isometry $|00\rangle\langle 0| + |11\rangle\langle 1|$ Send all qubits except one from pseudo-copy to P After round m+1: V receives one qubit, combine with one it has Measure against $\sqrt{1-\alpha}|00\rangle + \sqrt{\alpha}|11\rangle$

QIP = QIP[3]: proof sketch (cont'd)

2. Parallelization of interactions

Assuming the interaction is purified and we have perfect completeness...

$$U_{PV} = V_m P_m V_{m-1} P_{m-1} \cdots V_1 P_1$$

$$p_{acc} = Tr \left(\Pi_{acc} U_{PV} \rho_0 U_{PV}^{\dagger} \right).$$

Splitting into "forward" and "backward"

$$V_{fwd} = V_m V_{m-1} \cdots V_1, \qquad V_{bwd} = V_1^{\dagger} V_2^{\dagger} \cdots V_m^{\dagger}$$

"Verifier steps are reversible", therefore

$$\max_{\mathbf{U}_{P}} Tr(\Pi_{acc}V_{bwd}U_{P}V_{fwd}\rho_{0}V_{fwd}^{\dagger}U_{P}^{\dagger}V_{bwd}^{\dagger}) = p_{acc}$$

QIP = QIP[3]: proof sketch (cont'd)

3. Parallel Repetition

Classically... Run multiple interactions/experiments

How do we repeat runs in quantum? Run k copies in parallel!

$$p_{acc}^{(k)} = \max_{U_P} Tr(\Pi_{acc}^{\otimes k} U_{PV}^{\otimes k} \rho_0^{\otimes k} U_{PV}^{\otimes k\dagger})$$

Claim: this satisfies $\omega(V^{\otimes k}) = \omega(V)^k$

Therefore: $QIP_{a,b}[m] \subseteq QIP_{a^{\wedge}k,b^{\wedge}k}[m]$

Summary

- · Interactive Proof System
- · Quantum Interactive Proof System
- QIP = PSPACE = IP
- QIP = QIP[3]

What's next

- MIP*
- · QZK

The end

Any questions?

(we are not limited to 3 rounds of interactions)