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Outline

• Classical Cook-Levin Theorem 

•  k-Local Hamiltonians & Examples  

• Local Hamiltonians are in QMA 

• Quantum Cook-Levin Theorem
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Classical Cook-Levin Theorem

Theorem. SAT is NP-Complete.

“Efficient verification”  “checking satisfying assignment” ↔

For any , NP language , we can encode it into a 
Boolean formula  such that  

 is satisfiable

x ∈ L L
ϕ

x ∈ L ↔ ϕ

Proof Sketch. Consider a deterministic TM M that runs in T(n). 
Encode computation as a tableau. 
Check: 

• Initialization 

• Correct propagation (local) 

• Correct output 
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Key ideas in Cook-Levin

• Each local clause checks a small neighborhood of the tableau 

• Global correctness = all local checks are satisfied

Quantum Analog: 

• Boolean variables  qubits 

• Clauses  local Hamiltonian terms 

• Satisfiability  ground-state energy = 0 

• Nature is “local”

→
→

→
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Local Hamiltonians

• Hamiltonians: energy operator that describes interactions of 
quantum systems 

• Local Hamiltonians: each term only acts on constant number 
of qubits

Physics: “What is the ground state of a local Hamiltonian?” 
Computer Science: “Can we efficiently verify such a state?”

• Embed k-SAT into local Hamiltonians

c = (x1 ∨ ¬x2)

 is an unsatisfying assignment |01⟩
H =

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

|00⟩
|01⟩
|10⟩
|11⟩
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Examples

• MAX CUT: partition edges of an undirected graph 
 into two disjoint sets  such that the 

maximum number of edges possible crosses between  
and 

G = (V, E) E1, E2
E1

E2 .
Hij = I − Zi ⊗ Zj ∀(i, j) ∈ E

• ϕ = c1 ∧ c2 ∧ c3, c1 = (x1 ∨ x2), c2 = (¬x2 ∨ x3), c3 = (x3 ∨ x4)

H = Hc1
⊗ I3,4 + I1 ⊗ Hc2

⊗ I4 + I1,2 ⊗ Hc3

⟨x |H |x⟩ = 0 ⟺ ϕ(x) = 1
 counts the number of unsatisfied clauses⟨x |H |x⟩
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 H =
m

∑
i=1

Hi, supp(Hi) ≤ k

k-Local Hamiltonian Problem

Promise: efficiently computable  satisfying α(n), β(n) ∈ ℝ
α(n) − β(n) ≥ 1/p(n)

Output: 

• If  or , accept 

• Accept/reject arbitrarily otherwise
λmin(H) ≤ α(n) λmin(H) ≥ β(n)

Note: 

• H does not need to be diagonal, no geometric restrictions 

• inverse polynomial gap is important 

• Number of samples needed to tell apart the states ∼
1
Δ
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Quantum Cook-Levin Theorem

k-local Hamiltonian problems are QMA-complete.

Proof Sketch of k-LH is in QMA

Tr(H |ψ⟩⟨ψ | ) = ⟨ψ |H |ψ⟩ = ∑
i

⟨ψ |Hi |ψ⟩

Verifier (given T copies of ):  

• Repeat T times: 

• Randomly pick a term , measure it on , record its value 

• Average the recorded scores

|ψ⟩

Hi |ψ⟩
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Main Obstacles

• Locally check quantum states 

• product states

 |ϕ⟩ = |ϕ1⟩ ⊗ ⋯ ⊗ |ϕn⟩,
 |ϕ′￼⟩ = |ϕ′￼1⟩ ⊗ ⋯ ⊗ |ϕ′￼n⟩

• entangled states

|Cat+⟩ =
|0n⟩ + |1n⟩

2
, |Cat−⟩ =

|0n⟩ − |1n⟩

2

Trreg1 |Cat+⟩⟨Cat+ | =
1
2

|0n−1⟩⟨0n−1 | +
1
2

|1n−1⟩⟨1n−1 | = Trreg1 |Cat−⟩⟨Cat− |
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Proof Sketch of Quantum Cook-Levin.  

•  such that if  such that  
accepts  w.p. at least 2/3.. 

• Circuit  can be broken down into unitaries 

L ∈ QMA : ∃{Vn} x ∈ Lyes, ∃ |ψ⟩ Vn

|x⟩ ⊗ |ψ⟩
Vn U1, U2, ⋯, UT

Natural attempt..

|ϕ0⟩ = |x⟩ ⊗ |ψ⟩

|ϕ1⟩ = U1( |x⟩ ⊗ |ψ⟩)

..
.

|ϕT⟩ = UT⋯U1( |x⟩ ⊗ |ψ⟩)

use local checks to verify .. hopeless even 
for !

|ϕi+1⟩ = Ui+1 |ϕi⟩
U = I
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Culprit & Solution: Entanglement

|η⟩ =
1

2
( |ψ⟩ ⊗ |0⟩ + |ψ′￼⟩ ⊗ |1⟩)

If the two states are equal, then |η⟩ = |ψ⟩ ⊗ | + ⟩

 is the ground state of  iff |η⟩ H = I ⊗ | − ⟩⟨ − | |ψ⟩ = |ψ′￼⟩

Check ?|ψ′￼⟩ = U |ψ⟩

Consider controlled unitary W := I ⊗ |0⟩⟨0 | + U−1 ⊗ |1⟩⟨1 |

W |η⟩ =
1

2
( |ψ⟩ ⊗ |0⟩ + U−1 |ψ′￼⟩ ⊗ |1⟩)

 is the ground state of  iff |η⟩ H = W†(I ⊗ | − ⟩⟨ − | )W
|ψ′￼⟩ = U |ψ⟩
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Proof Sketch Contd.  

• Starts OK.   

• Evolves OK based on unitaries. 

• Ends OK. Measuring the output qubit of the final 
snapshot state  yields  with high probability.  

 satisfies 
all local terms 

 all states violate at least one condition 

|Ω0⟩ = |x⟩ ⊗ |ψ⟩ ⊗ |0⟩

|ΩT⟩ |1⟩

x ∈ Lyes, ∃ |ψ⟩ accepted by Vn, the history state  |Ω⟩

x ∈ Lno,

• Design Feymann-Kitaev Hamiltonians such that its ground state is 

|Ω⟩ =
1

T + 1

T

∑
t=0

| t⟩ ⊗ |Ωt⟩

History state : |Ωt⟩ = UtUt−1⋯U1( |x⟩ ⊗ |ψ⟩ ⊗ |0⟩)
• H = Hstart + Hprop + Hend
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Summary 

• k-local Hamiltonian problems are QMA-complete with 1/poly 

gap promised 

• Generic ground-state estimation problem is at least as hard as 

any QMA problem 

• Find locality structure even when information is stored globally 

• Quantum PCP Conjecture: constant gap instead of 1/poly is 

still QMA-hard!


