
The hidden subgroup problem
Isaac Holt

Motivation

Goals in quantum algorithms:
• Find classical problems that can be solved exponentially faster with a quantum computer.
• Understand what makes these problems amenable to such a speedup.
• Understand the key ingredient unique to quantum computing that gives such a speedup.

1

Motivation

Goals in quantum algorithms:
• Find classical problems that can be solved exponentially faster with a quantum computer.
• Understand what makes these problems amenable to such a speedup.
• Understand the key ingredient unique to quantum computing that gives such a speedup.

The abelian hidden subgroup problem unifies almost all “useful” problems which have a (possible)
quantum exponential speedup.

1

Two simple problems

2

Two simple problems

Bernstein-Vazirani problem: given (an oracle for) a function 𝐹 : 𝔽𝑛
2 → 𝔽2, 𝐹(𝒙) = 𝒙.𝒔 for some

unknown 𝒔 ∈ 𝔽𝑛
2 , find 𝒔.

2

Two simple problems

Bernstein-Vazirani problem: given (an oracle for) a function 𝐹 : 𝔽𝑛
2 → 𝔽2, 𝐹(𝒙) = 𝒙.𝒔 for some

unknown 𝒔 ∈ 𝔽𝑛
2 , find 𝒔.

Simon’s problem: given (an oracle for) a function 𝑓 : 𝔽𝑛
2 → 𝔽𝑛

2 , 𝑓(𝒙) = 𝑓(𝒚) ⟺ 𝒚 = 𝒙 + 𝒂
for some unknown 𝒂 ∈ 𝔽𝑛

2 , find 𝒂.

2

Two simple problems

Bernstein-Vazirani problem: given (an oracle for) a function 𝐹 : 𝔽𝑛
2 → 𝔽2, 𝐹(𝒙) = 𝒙.𝒔 for some

unknown 𝒔 ∈ 𝔽𝑛
2 , find 𝒔.

Simon’s problem: given (an oracle for) a function 𝑓 : 𝔽𝑛
2 → 𝔽𝑛

2 , 𝑓(𝒙) = 𝑓(𝒚) ⟺ 𝒚 = 𝒙 + 𝒂
for some unknown 𝒂 ∈ 𝔽𝑛

2 , find 𝒂.

Bernstein-Vazirani algorithm (1992) gives quantum speedup from 𝑛 queries of 𝑓 to 1.

2

Two simple problems

Bernstein-Vazirani problem: given (an oracle for) a function 𝐹 : 𝔽𝑛
2 → 𝔽2, 𝐹(𝒙) = 𝒙.𝒔 for some

unknown 𝒔 ∈ 𝔽𝑛
2 , find 𝒔.

Simon’s problem: given (an oracle for) a function 𝑓 : 𝔽𝑛
2 → 𝔽𝑛

2 , 𝑓(𝒙) = 𝑓(𝒚) ⟺ 𝒚 = 𝒙 + 𝒂
for some unknown 𝒂 ∈ 𝔽𝑛

2 , find 𝒂.

Bernstein-Vazirani algorithm (1992) gives quantum speedup from 𝑛 queries of 𝑓 to 1.

Simon’s algorithm (1993) gives quantum speedup from 2Θ(𝑛/2) to Θ(𝑛) (note this doesn’t
separate BQP and BPP since the input is an oracle so can’t be encoded as a bit string).

2

Two more problems

Period finding problem: given (an oracle for) a function 𝑓 : ℤ𝑁 → 𝑋, with 𝑓(𝑦) = 𝑓(𝑥) ⟺
𝑦 = 𝑥 + 𝑎 for some fixed 𝑎 ∈ ℤ𝑁 , find 𝑎.

3

Two more problems

Period finding problem: given (an oracle for) a function 𝑓 : ℤ𝑁 → 𝑋, with 𝑓(𝑦) = 𝑓(𝑥) ⟺
𝑦 = 𝑥 + 𝑎 for some fixed 𝑎 ∈ ℤ𝑁 , find 𝑎.

Discrete logarithm problem: given finite cyclic group 𝐺′ of size 𝑀 , a generator 𝑔 of 𝐺′, and an
element 𝑥 ∈ 𝐺′, find ℓ ∈ ℤ𝑀 such that 𝑔ℓ = 𝑥. Equivalently, find invertible 𝑎, 𝑏 ∈ ℤ𝑀 such that
𝑔𝑎𝑥−𝑏 = 𝑒𝐺′ (then ℓ = 𝑎𝑏−1).

3

Two more problems

Period finding problem: given (an oracle for) a function 𝑓 : ℤ𝑁 → 𝑋, with 𝑓(𝑦) = 𝑓(𝑥) ⟺
𝑦 = 𝑥 + 𝑎 for some fixed 𝑎 ∈ ℤ𝑁 , find 𝑎.

Discrete logarithm problem: given finite cyclic group 𝐺′ of size 𝑀 , a generator 𝑔 of 𝐺′, and an
element 𝑥 ∈ 𝐺′, find ℓ ∈ ℤ𝑀 such that 𝑔ℓ = 𝑥. Equivalently, find invertible 𝑎, 𝑏 ∈ ℤ𝑀 such that
𝑔𝑎𝑥−𝑏 = 𝑒𝐺′ (then ℓ = 𝑎𝑏−1).

Both problems are in BQP (Shor 1994), and no known polynomial time classical algorithm exists
for them.

(Side note: Shor’s algorithm reduces to period finding (although over ℤ rather than ℤ𝑁).)

3

Unifying the problems

The four problems above all involve some global structure, so natural to consider groups.
Additionally, the input function is fixed on a subset of inputs, so natural to consider subgroups.

In Simon’s problem and period finding, there is (strict) periodicity: the function agrees on inputs
if and only if the inputs lie in the same period.

We can generally periodicity in 𝔽𝑛
2 and in ℤ𝑁 to general subgroup periodicity.

4

Subgroup periodicity

Let 𝐺 be a group, 𝐻 be a subgroup of 𝐺, 𝑋 be a finite set, 𝑓 : 𝐺 → 𝑋 be a function. If any of
the following holds, 𝑓 is 𝐻-periodic:
• 𝑓 is constant on (left) cosets of 𝐻 : 𝑓(𝑔ℎ) = 𝑓(𝑔) for all 𝑔 ∈ 𝐺, ℎ ∈ 𝐻 .
• The function 𝑓 : 𝐺/𝐻 → 𝑋, 𝑓(𝑔𝐻) = 𝑓(𝑔), is well-defined.

5

Subgroup periodicity

Let 𝐺 be a group, 𝐻 be a subgroup of 𝐺, 𝑋 be a finite set, 𝑓 : 𝐺 → 𝑋 be a function. If any of
the following holds, 𝑓 is 𝐻-periodic:
• 𝑓 is constant on (left) cosets of 𝐻 : 𝑓(𝑔ℎ) = 𝑓(𝑔) for all 𝑔 ∈ 𝐺, ℎ ∈ 𝐻 .
• The function 𝑓 : 𝐺/𝐻 → 𝑋, 𝑓(𝑔𝐻) = 𝑓(𝑔), is well-defined.

Additionally, 𝑓 is strictly 𝐻-periodic if any of the following holds:
• 𝑓 takes distinct values on distinct (left) cosets of 𝐻 .
• 𝑓 is injective.
• 𝐻 is the largest (unique) subgroup 𝐾 such that 𝑓 is 𝐾-periodic.

Easy exercise: check the equivalences.

5

The hidden subgroup problem (HSP)

Input 𝑓 : 𝐺 → 𝑋, 𝐺 a group, 𝑋 a finite set.
Promise 𝑓 is strictly 𝐻-periodic for some unknown subgroup 𝐻 of 𝐺.
Output (a set of generators of) 𝐻 .

6

Examples

Our first four problems are all abelian HSPs:

7

Examples

Our first four problems are all abelian HSPs:

Simon’s problem: 𝐺 = 𝔽𝑛
2 , 𝐻 = ⟨𝒂⟩ = {𝟎, 𝒂}.

7

Examples

Our first four problems are all abelian HSPs:

Simon’s problem: 𝐺 = 𝔽𝑛
2 , 𝐻 = ⟨𝒂⟩ = {𝟎, 𝒂}.

Bernstein-Vazirani problem: 𝐺 = 𝔽𝑛
2 , 𝐻 = ⟨𝑠⟩⟂ = {𝒙 ∈ 𝔽𝑛

2 : 𝒙.𝒔 = 0}.

7

Examples

Our first four problems are all abelian HSPs:

Simon’s problem: 𝐺 = 𝔽𝑛
2 , 𝐻 = ⟨𝒂⟩ = {𝟎, 𝒂}.

Bernstein-Vazirani problem: 𝐺 = 𝔽𝑛
2 , 𝐻 = ⟨𝑠⟩⟂ = {𝒙 ∈ 𝔽𝑛

2 : 𝒙.𝒔 = 0}.

Period finding problem: 𝐺 = ℤ𝑁 , 𝐻 = ⟨𝑎⟩ = {0, 𝑎, 2𝑎,…, (𝐾 − 1)𝑎} where 𝐾 = 𝑁/𝑎.

7

Examples

Our first four problems are all abelian HSPs:

Simon’s problem: 𝐺 = 𝔽𝑛
2 , 𝐻 = ⟨𝒂⟩ = {𝟎, 𝒂}.

Bernstein-Vazirani problem: 𝐺 = 𝔽𝑛
2 , 𝐻 = ⟨𝑠⟩⟂ = {𝒙 ∈ 𝔽𝑛

2 : 𝒙.𝒔 = 0}.

Period finding problem: 𝐺 = ℤ𝑁 , 𝐻 = ⟨𝑎⟩ = {0, 𝑎, 2𝑎,…, (𝐾 − 1)𝑎} where 𝐾 = 𝑁/𝑎.

Discrete log problem: 𝐺 = ℤ𝑛, 𝐻 = {(𝑎, ℓ𝑎) : 𝑎 ∈ ℤ𝑛}.

7

Finding a BQP algorithm for abelian HSP

Before the HSP was defined, Simon’s problem already had a poly time algorithm: (quantumly)
obtain Θ(𝑛) vectors 𝒙 such that 𝒙.𝒂 = 0 ∈ ℤ2 i.e. 𝑎1𝑥1

2 + ⋯ + 𝑎𝑛𝑥𝑛
2 ∈ ℤ, then find 𝒂 w.h.p. by

Gaussian elimination.

8

Finding a BQP algorithm for abelian HSP

Before the HSP was defined, Simon’s problem already had a poly time algorithm: (quantumly)
obtain Θ(𝑛) vectors 𝒙 such that 𝒙.𝒂 = 0 ∈ ℤ2 i.e. 𝑎1𝑥1

2 + ⋯ + 𝑎𝑛𝑥𝑛
2 ∈ ℤ, then find 𝒂 w.h.p. by

Gaussian elimination.

Classification of finite abelian groups tells us that 𝐺 ≅ ℤ𝑁1
× ⋅ ⋅ ⋅ × ℤ𝑁𝑘

 for some
𝑘,𝑁1,…,𝑁𝑘 ∈ ℕ.

Natural generalisation to finite abelian groups: find vectors 𝒙 such that ℎ1𝑥1
𝑁1

+ ⋯ + ℎ𝑘𝑥𝑘
𝑁𝑘

∈ ℤ
for all ℎ ∈ 𝐻 , i.e.

ℎ1𝑥1𝑁(1) + ⋯ + ℎ𝑘𝑥𝑘𝑁(𝑘) = 0 ∈ ℤ𝑁1⋅⋅⋅𝑁𝑘
,

where 𝑁(𝑖) = ∏𝑗≠𝑖 𝑁𝑗. Then again can solve by Gaussian elimination.

8

Coset sampling

If we had |𝐻⟩, then could just make measurements to obtain elements of 𝐻 . Recall Graph(𝑓) =
{(𝑔, 𝑓(𝑔)) : 𝑔 ∈ 𝐺}. We can prepare

|Graph(𝑓)⟩ = 1
√|𝐺|

∑
𝑔∈𝐺

|𝑔⟩|𝑓(𝑔)⟩ ∈ ℂ|𝐺| ⊗ ℂ|𝑋|

efficiently (by preparing |𝐺⟩|0⟩ = 1
√|𝐺|

∑𝑔∈𝐺|𝑔⟩|0⟩, then applying the quantum oracle 𝑈𝑓 :
|𝑥⟩|𝑦⟩ ↦ |𝑥⟩|𝑦 + 𝑓(𝑥)⟩).

9

Coset sampling

If we had |𝐻⟩, then could just make measurements to obtain elements of 𝐻 . Recall Graph(𝑓) =
{(𝑔, 𝑓(𝑔)) : 𝑔 ∈ 𝐺}. We can prepare

|Graph(𝑓)⟩ = 1
√|𝐺|

∑
𝑔∈𝐺

|𝑔⟩|𝑓(𝑔)⟩ ∈ ℂ|𝐺| ⊗ ℂ|𝑋|

efficiently (by preparing |𝐺⟩|0⟩ = 1
√|𝐺|

∑𝑔∈𝐺|𝑔⟩|0⟩, then applying the quantum oracle 𝑈𝑓 :
|𝑥⟩|𝑦⟩ ↦ |𝑥⟩|𝑦 + 𝑓(𝑥)⟩).

Strict 𝐻-periodicity of 𝑓 means that measuring then discarding the second register produces a
coset state |𝑐 + 𝐻⟩ = 1

√|𝐻|
∑ℎ∈𝐻 |𝑐 + ℎ⟩, for a uniformly random and unknown shift 𝑐 ∈ 𝐺.

9

Shift-invariant basis

We would like |𝐻⟩, but shift 𝑐 is unknown so can’t obtain from |𝑐 + 𝐻⟩.

Idea: |𝑐 + 𝐻⟩ = 𝑈𝑐|𝐻⟩, where 𝑈𝑐 is the unitary mapping |𝑔⟩ ↦ |𝑐 + 𝑔⟩.

Want to find a basis {|𝜒𝑔⟩} that is invariant under the action of 𝑈𝑐 for all 𝑐 (up to a global
phase), i.e. 𝑈𝑐|𝜒𝑔⟩ = 𝑒𝑖𝜃𝑔 |𝜒𝑔⟩ for some 𝜃𝑔.

Then performing basis change from this “shift-invariant” {|𝜒𝑔⟩} basis to the computational basis
{|𝑔⟩} will map |𝑐 + 𝐻⟩ and |𝐻⟩ to states with the amplitudes (up to phases), which means
measuring in the computational basis yields the same output probability distribution.

10

Shift-invariant basis

We would like |𝐻⟩, but shift 𝑐 is unknown so can’t obtain from |𝑐 + 𝐻⟩.

Idea: |𝑐 + 𝐻⟩ = 𝑈𝑐|𝐻⟩, where 𝑈𝑐 is the unitary mapping |𝑔⟩ ↦ |𝑐 + 𝑔⟩.

Want to find a basis {|𝜒𝑔⟩} that is invariant under the action of 𝑈𝑐 for all 𝑐 (up to a global
phase), i.e. 𝑈𝑐|𝜒𝑔⟩ = 𝑒𝑖𝜃𝑔 |𝜒𝑔⟩ for some 𝜃𝑔.

Then performing basis change from this “shift-invariant” {|𝜒𝑔⟩} basis to the computational basis
{|𝑔⟩} will map |𝑐 + 𝐻⟩ and |𝐻⟩ to states with the amplitudes (up to phases), which means
measuring in the computational basis yields the same output probability distribution.

Exercise: show that |𝜒𝑔⟩ = 1
√|𝐺|

∑𝑥∈𝐺 𝜒𝑔(𝑥)|𝑥⟩, 𝑔 ∈ 𝐺, form a shift-invariant orthonormal

basis (here, 𝜒𝑔(𝑥) = 𝑒2𝜋𝑖(𝑔1𝑥1
𝑁1

+⋯+𝑔𝑘𝑥𝑘
𝑁𝑘

)).

10

The quantum Fourier transform (QFT)

The QFT is the unitary which maps the shift-invariant basis {|𝜒𝑔⟩ : 𝑔 ∈ 𝐺} to the computational
basis {|𝑔⟩ : 𝑔 ∈ 𝐺}.

Exercise: show that QFT|𝑥⟩ = 1
√|𝐺|

∑𝑔∈𝐺 𝜒𝑔(𝑥)|𝑔⟩.

11

The quantum Fourier transform (QFT)

The QFT is the unitary which maps the shift-invariant basis {|𝜒𝑔⟩ : 𝑔 ∈ 𝐺} to the computational
basis {|𝑔⟩ : 𝑔 ∈ 𝐺}.

Exercise: show that QFT|𝑥⟩ = 1
√|𝐺|

∑𝑔∈𝐺 𝜒𝑔(𝑥)|𝑔⟩.

Can implement QFT over ℤ𝑁 exactly, with 𝑁 a power of two, using 𝑂(log2 𝑁) gates. Harder
exercise: write out a quantum circuit for this (hint: use controlled phase gates of the form
[1
0

0
𝑒2𝜋𝑖/2ℓ]).

11

The quantum Fourier transform (QFT)

The QFT is the unitary which maps the shift-invariant basis {|𝜒𝑔⟩ : 𝑔 ∈ 𝐺} to the computational
basis {|𝑔⟩ : 𝑔 ∈ 𝐺}.

Exercise: show that QFT|𝑥⟩ = 1
√|𝐺|

∑𝑔∈𝐺 𝜒𝑔(𝑥)|𝑔⟩.

Can implement QFT over ℤ𝑁 exactly, with 𝑁 a power of two, using 𝑂(log2 𝑁) gates. Harder
exercise: write out a quantum circuit for this (hint: use controlled phase gates of the form
[1
0

0
𝑒2𝜋𝑖/2ℓ]).

Can also implement QFT over ℤ𝑁 exactly using 𝑂(log2 𝑁) gates.

11

The quantum Fourier transform (QFT)

The QFT is the unitary which maps the shift-invariant basis {|𝜒𝑔⟩ : 𝑔 ∈ 𝐺} to the computational
basis {|𝑔⟩ : 𝑔 ∈ 𝐺}.

Exercise: show that QFT|𝑥⟩ = 1
√|𝐺|

∑𝑔∈𝐺 𝜒𝑔(𝑥)|𝑔⟩.

Can implement QFT over ℤ𝑁 exactly, with 𝑁 a power of two, using 𝑂(log2 𝑁) gates. Harder
exercise: write out a quantum circuit for this (hint: use controlled phase gates of the form
[1
0

0
𝑒2𝜋𝑖/2ℓ]).

Can also implement QFT over ℤ𝑁 exactly using 𝑂(log2 𝑁) gates.

Exercise: show the QFT over 𝐺 × 𝐺′ is QFT𝐺 ⊗ QFT𝐺′ .

11

The quantum Fourier transform (QFT)

The QFT is the unitary which maps the shift-invariant basis {|𝜒𝑔⟩ : 𝑔 ∈ 𝐺} to the computational
basis {|𝑔⟩ : 𝑔 ∈ 𝐺}.

Exercise: show that QFT|𝑥⟩ = 1
√|𝐺|

∑𝑔∈𝐺 𝜒𝑔(𝑥)|𝑔⟩.

Can implement QFT over ℤ𝑁 exactly, with 𝑁 a power of two, using 𝑂(log2 𝑁) gates. Harder
exercise: write out a quantum circuit for this (hint: use controlled phase gates of the form
[1
0

0
𝑒2𝜋𝑖/2ℓ]).

Can also implement QFT over ℤ𝑁 exactly using 𝑂(log2 𝑁) gates.

Exercise: show the QFT over 𝐺 × 𝐺′ is QFT𝐺 ⊗ QFT𝐺′ .

So QFT over all abelian groups implementable exactly and efficiently.

11

Abelian HSP algorithm

1. Prepare a random coset state |𝑐 + 𝐻⟩ via coset sampling.
2. Apply the quantum Fourier transform to |𝑐 + 𝐻⟩.
3. Measure in the computational basis (this is Fourier sampling).

12

Abelian HSP algorithm

1. Prepare a random coset state |𝑐 + 𝐻⟩ via coset sampling.
2. Apply the quantum Fourier transform to |𝑐 + 𝐻⟩.
3. Measure in the computational basis (this is Fourier sampling).

Output distribution is same for |𝑐 + 𝐻⟩ as it is for |𝐻⟩, so now can assume WLOG that 𝑐 = 0.

Exercise: check that the measurement yields (𝑥1,…, 𝑥𝑘) such that ℎ1𝑥1
𝑁1

+ ⋯ + ℎ𝑘𝑥𝑘
𝑁𝑘

∈ ℤ for all
ℎ ∈ 𝐻 .

As for Simon’s algorithm, obtaining Θ(log|𝐺|) such samples 𝒙 is sufficient to determine 𝐻 .

12

Non-abelian HSP

What about non-abelian groups? Where does our algorithm for the abelian HSP break down
for non-abelian groups?

13

Non-abelian HSP

What about non-abelian groups? Where does our algorithm for the abelian HSP break down
for non-abelian groups?

Can still perform coset sampling to obtain random |𝑐𝐻⟩.

13

Non-abelian HSP

What about non-abelian groups? Where does our algorithm for the abelian HSP break down
for non-abelian groups?

Can still perform coset sampling to obtain random |𝑐𝐻⟩.

There is notion of Fourier transform for non-abelian groups, but there is no shift-invariant basis
(due to non-commutativity).

13

Non-abelian HSP

What about non-abelian groups? Where does our algorithm for the abelian HSP break down
for non-abelian groups?

Can still perform coset sampling to obtain random |𝑐𝐻⟩.

There is notion of Fourier transform for non-abelian groups, but there is no shift-invariant basis
(due to non-commutativity).

It suspected that the HSP for non-abelian groups is hard, even on quantum computers.

Closely connected to group representation theory. Representations of non-abelian groups are
often much more complicated (e.g. hard to write down irreducible representations of the
symmetric group explicitly).

13

Quantum query complexity

Although the non-abelian HSP is thought to be hard, it can be solved using polynomially many
queries to the input function 𝑓 .

14

Quantum query complexity

Although the non-abelian HSP is thought to be hard, it can be solved using polynomially many
queries to the input function 𝑓 .

Idea: prepare 𝑀 copies of the state |Graph(𝑓)⟩, along with a counter register and an indicator
register. The indicator register is measured at the end, this reveals what the hidden subgroup
𝐻 is.

14

Quantum query complexity

Although the non-abelian HSP is thought to be hard, it can be solved using polynomially many
queries to the input function 𝑓 .

Idea: prepare 𝑀 copies of the state |Graph(𝑓)⟩, along with a counter register and an indicator
register. The indicator register is measured at the end, this reveals what the hidden subgroup
𝐻 is.

For each subgroup, apply a “check” unitary to the full state, which updates the indicator register
if that subgroup is the hidden subgroup. If not, then the state only changes very slightly (𝐿2

distance to the previous state is exponentially small in 𝑀).

Since number of subgroups is at most 2log2|𝐺|, 𝑀 can be 𝑂(log2|𝐺|).

14

Dihedral case

𝐷𝑁 = ⟨𝑟, 𝑠 | 𝑟𝑁 = 𝑠2 = 𝑒, 𝑟𝑠 = 𝑠𝑟−1⟩.

Dihedral groups are some of the simplest non-abelian groups.

Exercise: DHSP reduces polynomially to the case that the hidden subgroup is a reflection (order
two).

15

Dihedral case

𝐷𝑁 = ⟨𝑟, 𝑠 | 𝑟𝑁 = 𝑠2 = 𝑒, 𝑟𝑠 = 𝑠𝑟−1⟩.

Dihedral groups are some of the simplest non-abelian groups.

Exercise: DHSP reduces polynomially to the case that the hidden subgroup is a reflection (order
two).

Best known result: Kuperberg’s sub-exponential time algorithm runs in time 2𝑂(
√

log𝑁).

15

Dihedral case

𝐷𝑁 = ⟨𝑟, 𝑠 | 𝑟𝑁 = 𝑠2 = 𝑒, 𝑟𝑠 = 𝑠𝑟−1⟩.

Dihedral groups are some of the simplest non-abelian groups.

Exercise: DHSP reduces polynomially to the case that the hidden subgroup is a reflection (order
two).

Best known result: Kuperberg’s sub-exponential time algorithm runs in time 2𝑂(
√

log𝑁).

Still believed to be hard for quantum computers: closely connected to problems on lattices
(e.g. shortest vector problem). So also connected to cryptography (lattice-based cryptography
is main candidate for post-quantum cryptography).

15

Other cases

If hidden subgroup is known to be normal, then there is a poly time quantum algorithm (similar
to the abelian HSP algorithm, but involves group representation theory, more difficult to prove
correctness).

16

Other cases

If hidden subgroup is known to be normal, then there is a poly time quantum algorithm (similar
to the abelian HSP algorithm, but involves group representation theory, more difficult to prove
correctness).

Graph isomorphism reduces polynomially to the hidden subgroup problem on the symmetric
group, where the subgroup is either of size 2 or is trivial. The symmetric group is much more
complicated than dihedral group, and its representations are much less simple to describe.

Even distinguishing a size 2 hidden subgroup from the trivial subgroup of 𝑆𝑛 is thought to
be hard.

16

	Motivation
	Two simple problems
	Two more problems
	Unifying the problems
	Subgroup periodicity
	The hidden subgroup problem (HSP)
	Examples
	Finding a BQP algorithm for abelian HSP
	Coset sampling
	Shift-invariant basis
	The quantum Fourier transform (QFT)
	Abelian HSP algorithm
	Non-abelian HSP
	Quantum query complexity
	Dihedral case
	Symmetric case
	Other cases

