° The hidden subgroup problem

Isaac Holt

Goals in quantum algorithms:

* Find classical problems that can be solved exponentially faster with a quantum computer.
* Understand what makes these problems amenable to such a speedup.

* Understand the key ingredient unique to quantum computing that gives such a speedup.

Goals in quantum algorithms:

* Find classical problems that can be solved exponentially faster with a quantum computer.
* Understand what makes these problems amenable to such a speedup.

* Understand the key ingredient unique to quantum computing that gives such a speedup.

I“

The abelian hidden subgroup problem unifies almost all “useful” problems which have a (possible)

quantum exponential speedup.

Bernstein-Vazirani problem:given (an oracle for) a function F' : F} — ., F'(x) = x.s for some
unknown s € [F5, find s.

Bernstein-Vazirani problem:given (an oracle for) a function F' : F} — ., F'(x) = x.s for some

unknown s € 7, find s.

Simon’s problem: given (an oracle for) a function f: F} — F2, f(x) = f(y) <= y=x+a
for some unknown a € F3, find a.

Bernstein-Vazirani problem:given (an oracle for) a function F' : F} — ., F'(x) = x.s for some
unknown s € [F5, find s.

Simon’s problem: given (an oracle for) a function f: F} — F2, f(x) = f(y) <= y=x+a
for some unknown a € 3, find a.

Bernstein-Vazirani algorithm (1992) gives quantum speedup from n queries of f to 1.

Bernstein-Vazirani problem:given (an oracle for) a function F' : F} — ., F'(x) = x.s for some
unknown s € [F5, find s.

Simon’s problem: given (an oracle for) a function f: F} — F2, f(x) = f(y) <= y=x+a
for some unknown a € F3, find a.

Bernstein-Vazirani algorithm (1992) gives quantum speedup from n queries of f to 1.

Simon’s algorithm (1993) gives quantum speedup from 29("/2) to ©(n) (note this doesn’t
separate BQP and BPP since the input is an oracle so can’t be encoded as a bit string).

Period finding problem: given (an oracle for) a function f : Z, — X, with f(y) = f(z) <
y = x + a for some fixed a € Z,, find a.

Period finding problem: given (an oracle for) a function f : Z, — X, with f(y) = f(z) <
y = x + a for some fixed a € Z,, find a.

Discrete logarithm problem: given finite cyclic group G’ of size M, a generator g of G’,and an
element z € G’,find £ € Z,, such that g* = z.Equivalently, find invertible a, b € Z,, such that

g%z % = ey (then £ = ab™1).

Period finding problem: given (an oracle for) a function f : Z, — X, with f(y) = f(z) <
y = x + a for some fixed a € Z,, find a.

Discrete logarithm problem: given finite cyclic group G’ of size M, a generator g of G’,and an
element z € G’,find £ € Z,, such that g* = z.Equivalently, find invertible a, b € Z,, such that
g%z % = ey (then £ = ab™1).

Both problems are in BQP (Shor 1994),and no known polynomial time classical algorithm exists

for them.

(Side note: Shor’s algorithm reduces to period finding (although over Z rather than Z).)

The four problems above all involve some global structure, so natural to consider groups.
Additionally, the input function is fixed on a subset of inputs, so natural to consider subgroups.

In Simon’s problem and period finding, there is (strict) periodicity: the function agrees on inputs
if and only if the inputs lie in the same period.

We can generally periodicity in Fy and in Zj; to general subgroup periodicity.

Let G be a group, H be a subgroup of GG, X be a finite set, f : G — X be a function. If any of
the following holds, f is H -periodic:

 fis constant on (left) cosets of H: f(gh) = f(g) forallg € G, h € H.

* The function f : G/H — X, f(gH) = f(g),is well-defined.

Let G be a group, H be a subgroup of GG, X be a finite set, f : G — X be a function. If any of
the following holds, f is H -periodic:

 fis constant on (left) cosets of H: f(gh) = f(g) forallg € G, h € H.

* The function f : G/H — X, f(gH) = f(g),is well-defined.

Additionally, f is strictly H -periodic if any of the following holds:
* f takes distinct values on distinct (left) cosets of H.

« fis injective.

* H is the largest (unique) subgroup K such that f is K-periodic.

Easy exercise: check the equivalences.

The hidden subgroup prgblem (HSP)

Input f:G — X,G agroup, X a finite set.
Promise f is strictly H-periodic for some unknown subgroup H of G.
Output (a set of generators of) H.

Our first four problems are all abelian HSPs:

Our first four problems are all abelian HSPs:

Simon’s problem: G = F2, H = (a) = {0, a}.

Our first four problems are all abelian HSPs:
Simon’s problem: G = F2, H = (a) = {0, a}.

Bernstein-Vazirani problem: G = F3, H = (s)t = {x € F} : z.s = 0}.

Our first four problems are all abelian HSPs:
Simon’s problem: G = F2, H = (a) = {0, a}.
Bernstein-Vazirani problem: G = F3, H = (s)t = {x € F} : z.s = 0}.

Period finding problem: G = Z,, H = (a) = {0, a, 2a, ..., (K — 1)a} where K = N /a.

Our first four problems are all abelian HSPs:

Simon’s problem: G = F2, H = (a) = {0, a}.

Bernstein-Vazirani problem: G = F3, H = (s)t = {x € F} : z.s = 0}.

Period finding problem: G = Z,, H = (a) = {0, a, 2a, ..., (K — 1)a} where K = N /a.
Discrete log problem: G = Z,,, H = {(a,%a) : a € Z, }.

Finding a BQP algorithmgfor abelian HSP

Before the HSP was defined, Simon’s problem already had a poly time algorithm: (quantumly)
a; anTy

obtain ©(n) vectors x such that z.a = 0 € Z, i.e. 2472 + - + 2272 € 7, then find @ w.h.p. by
Gaussian elimination.

Finding a BQP algorithmgfor abelian HSP

Before the HSP was defined, Simon’s problem already had a poly time algorithm: (quantumly)

aq anTy

obtain ©(n) vectors x such that z.a = 0 € Z, i.e. 2472 + - + 2272 € 7, then find @ w.h.p. by
Gaussian elimination.

Classification of finite abelian groups tells us that G=Zy x---XZy for some
k,N{,..,N, €N

Natural generalisation to finite abelian groups: find vectors x such that h}\,—? + -+ h]’;—?‘“ c Z
forallh € H,i.e.

hix 1Ny + -+ hzy Ny =0 € Ly, ., 5

where N;) = H#i N;.Then again can solve by Gaussian elimination.

Coset saplig 4

If we had | H'), then could just make measurements to obtain elements of H.Recall Graph(f) =
{(g, f(g9)) : g € G}.We can prepare

|Graph(f Z|g 1f(g)) € Cl¢l @ CIXI

V |G geG

efficiently (by preparing |G)|0) = \/lﬁ Zg ~19)10), then applying the quantum oracle Uy :
) |y) = @)y + f(2))).

If we had | H'), then could just make measurements to obtain elements of H.Recall Graph(f) =
{(g, f(g9)) : g € G}.We can prepare

|Graph(f Z|g 1f(g)) € Cl¢l g CIXI

V |G geG

efficiently (by preparing |G)|0) = \/lﬁ Zg ~19)10), then applying the quantum oracle Uy :
z)|y) = =)y + f(2))).

Strict H-periodicity of f means that measuring then discarding the second register produces a
coset state [c+ H) = \/_ g€+ R), for a uniformly random and unknown shift c € G.

We would like | H), but shift ¢ is unknown so can’t obtain from |c + H).
|dea: |c + H) = U_|H), where U, is the unitary mapping |g) — |c + g).

Want to find a basis {|x,)} that is invariant under the action of U, for all ¢ (up to a global
phase),i.e. U, |x,) = €"s|x,) for some 0.

Then performing basis change from this “shift-invariant” {‘Xg>} basis to the computational basis
{lg)} will map |c + H) and |H) to states with the amplitudes (up to phases), which means
measuring in the computational basis yields the same output probability distribution.

We would like | H), but shift ¢ is unknown so can’t obtain from |c + H).
|dea: |c + H) = U_|H), where U, is the unitary mapping |g) — |c + g).

Want to find a basis {|x,)} that is invariant under the action of U, for all ¢ (up to a global
phase),i.e. U, |x,) = €"s|x,) for some 0.

Then performing basis change from this “shift-invariant” {‘Xg>} basis to the computational basis
{lg)} will map |c + H) and |H) to states with the amplitudes (up to phases), which means
measuring in the computational basis yields the same output probability distribution.

Exercise: show that |x,) = \/% > ca Xg(@)|2), g € G, form a shift-invariant orthonormal

(9171 .. 9kETE
2 (Lot T).

basis (here, x,(7) = e

The quantum Fourier trgfisform (QFT)

The QFT is the unitary which maps the shift-invariant basis {|X9> : g € G} to the computational
basis {|g) : g € G}.

Exercise: show that QFT|x) = \/!;?! deG X4(7)|g)-

The quantum Fourier trgfisform (QFT)

The QFT is the unitary which maps the shift-invariant basis {|X9> : g € G} to the computational
basis {|g) : g € G}.

Exercise: show that QFT|x) = \/!;?! deG X4(7)|g)-

Can implement QFT over Z, exactly, with N a power of two, using O(log”® N) gates. Harder
exercise: write out a quantum circuit for this (hint: use controlled phase gates of the form

1 0
[0 e2m/2£])

The quantum Fourier trgfisform (QFT)

The QFT is the unitary which maps the shift-invariant basis {|X9> : g € G} to the computational
basis {|g) : g € G}.

Exercise: show that QFT|x) = \/!;?! deG X4(7)|g)-

Can implement QFT over Z, exactly, with N a power of two, using O(log”® N) gates. Harder
exercise: write out a quantum circuit for this (hint: use controlled phase gates of the form

1 0
[0 €2m/2£])

Can also implement QFT over Z,; exactly using O(log® N) gates.

The quantum Fourier trgfisform (QFT)

The QFT is the unitary which maps the shift-invariant basis {|X9> : g € G} to the computational
basis {|g) : g € G}.

Exercise: show that QFT|x) = \/!;?! deG X4(7)|g)-

Can implement QFT over Z, exactly, with N a power of two, using O(log”® N) gates. Harder
exercise: write out a quantum circuit for this (hint: use controlled phase gates of the form

[(1) 6272/25])
Can also implement QFT over Z,; exactly using O(log® N) gates.

Exercise: show the QFT over G x G’ is QF T, ® QFT ..

The quantum Fourier trgfisform (QFT)

The QFT is the unitary which maps the shift-invariant basis {|X9> : g € G} to the computational
basis {|g) : g € G}.

Exercise: show that QFT|x) = \/!;?! deG X4(7)|g)-

Can implement QFT over Z, exactly, with N a power of two, using O(log”® N) gates. Harder
exercise: write out a quantum circuit for this (hint: use controlled phase gates of the form

[(1) e272/2£])
Can also implement QFT over Z,; exactly using O(log® N) gates.

Exercise: show the QFT over G x G’ is QF T, ® QFT ..

So QFT over all abelian groups implementable exactly and efficiently.

|. Prepare a random coset state |c + H) via coset sampling.
2. Apply the quantum Fourier transform to |c + H).
3. Measure in the computational basis (this is Fourier sampling).

|. Prepare a random coset state |c + H) via coset sampling.
2. Apply the quantum Fourier transform to |c + H).
3. Measure in the computational basis (this is Fourier sampling).

Output distribution is same for |c + H) as it is for | H), so now can assume WLOG that ¢ = 0.

hyxy
N, € 7 for all

Exercise: check that the measurement yields (x4, ..., 7,) such that hjlv—‘fll:l + e+
h e H.

As for Simon’s algorithm, obtaining © (log|G|) such samples is sufficient to determine H.

What about non-abelian groups? Where does our algorithm for the abelian HSP break down
for non-abelian groups?

What about non-abelian groups? Where does our algorithm for the abelian HSP break down
for non-abelian groups?

Can still perform coset sampling to obtain random |cH).

What about non-abelian groups? Where does our algorithm for the abelian HSP break down
for non-abelian groups?

Can still perform coset sampling to obtain random |cH).

There is notion of Fourier transform for non-abelian groups, but there is no shift-invariant basis
(due to non-commutativity).

What about non-abelian groups? Where does our algorithm for the abelian HSP break down
for non-abelian groups?

Can still perform coset sampling to obtain random |cH).

There is notion of Fourier transform for non-abelian groups, but there is no shift-invariant basis
(due to non-commutativity).

It suspected that the HSP for non-abelian groups is hard, even on quantum computers.

Closely connected to group representation theory. Representations of non-abelian groups are
often much more complicated (e.g. hard to write down irreducible representations of the
symmetric group explicitly).

Although the non-abelian HSP is thought to be hard, it can be solved using polynomially many
queries to the input function f.

Although the non-abelian HSP is thought to be hard, it can be solved using polynomially many
queries to the input function f.

|dea: prepare M copies of the state |Graph(f)), along with a counter register and an indicator

register. The indicator register is measured at the end, this reveals what the hidden subgroup
H is.

Although the non-abelian HSP is thought to be hard, it can be solved using polynomially many
queries to the input function f.

|dea: prepare M copies of the state |Graph(f)), along with a counter register and an indicator

register. The indicator register is measured at the end, this reveals what the hidden subgroup
H is.

For each subgroup, apply a “check’” unitary to the full state, which updates the indicator register
if that subgroup is the hidden subgroup. If not, then the state only changes very slightly (L?
distance to the previous state is exponentially small in M).

Since number of subgroups is at most 21" I¢1, M can be O(log?|G|).

Divecralease 4

Dy = (r,s|rN =52 =¢,rs = sr1).

Dihedral groups are some of the simplest non-abelian groups.

Exercise: DHSP reduces polynomially to the case that the hidden subgroup is a reflection (order
two).

Divecralease 4

2 =e,rs=sr 1.

Dy=(r,s|rN =5
Dihedral groups are some of the simplest non-abelian groups.

Exercise: DHSP reduces polynomially to the case that the hidden subgroup is a reflection (order
two).

Best known result: Kuperberg's sub-exponential time algorithm runs in time 20(Viog V),

Divecralease 4

Dy=(r,s| N =52 =¢,rs =sr1).
Dihedral groups are some of the simplest non-abelian groups.

Exercise: DHSP reduces polynomially to the case that the hidden subgroup is a reflection (order
two).

Best known result: Kuperberg's sub-exponential time algorithm runs in time 20(Viog V),

Still believed to be hard for quantum computers: closely connected to problems on lattices
(e.g. shortest vector problem). So also connected to cryptography (lattice-based cryptography
is main candidate for post-quantum cryptography).

If hidden subgroup is known to be normal, then there is a poly time quantum algorithm (similar
to the abelian HSP algorithm, but involves group representation theory, more difficult to prove
correctness).

If hidden subgroup is known to be normal, then there is a poly time quantum algorithm (similar

to the abelian HSP algorithm, but involves group representation theory, more difficult to prove
correctness).

Graph isomorphism reduces polynomially to the hidden subgroup problem on the symmetric
group, where the subgroup is either of size 2 or is trivial. The symmetric group is much more
complicated than dihedral group, and its representations are much less simple to describe.

Even distinguishing a size 2 hidden subgroup from the trivial subgroup of S, is thought to
be hard.

	Motivation
	Two simple problems
	Two more problems
	Unifying the problems
	Subgroup periodicity
	The hidden subgroup problem (HSP)
	Examples
	Finding a BQP algorithm for abelian HSP
	Coset sampling
	Shift-invariant basis
	The quantum Fourier transform (QFT)
	Abelian HSP algorithm
	Non-abelian HSP
	Quantum query complexity
	Dihedral case
	Symmetric case
	Other cases

