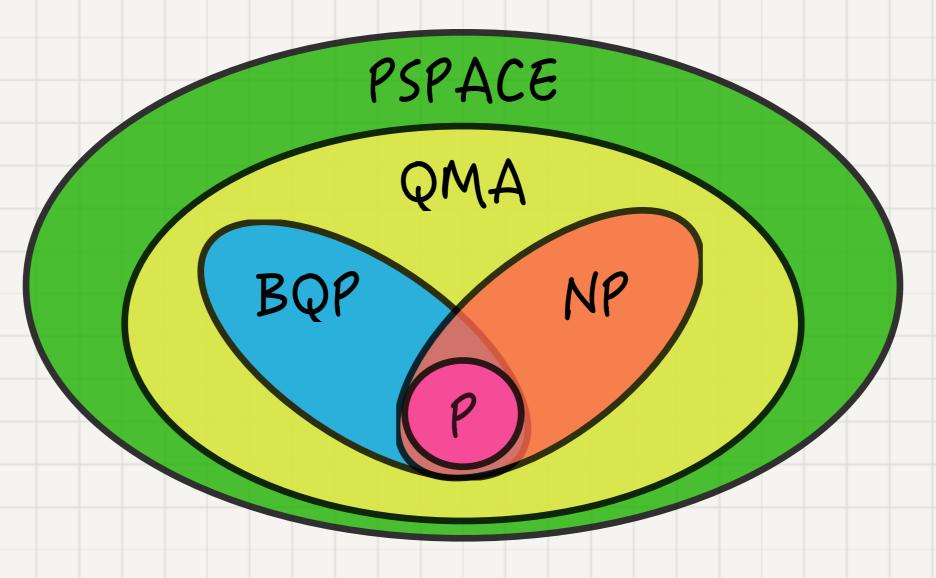
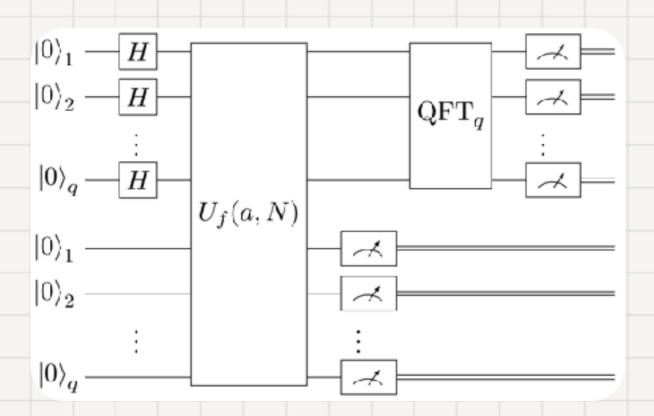
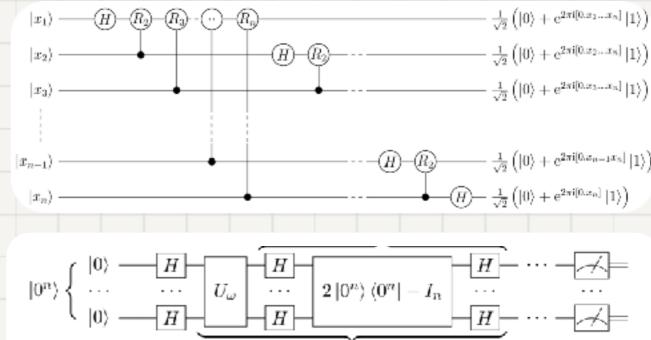
Quantum Complexity Theory BQP and QMA complexity classes



Tom Gur

Quantum algorithms



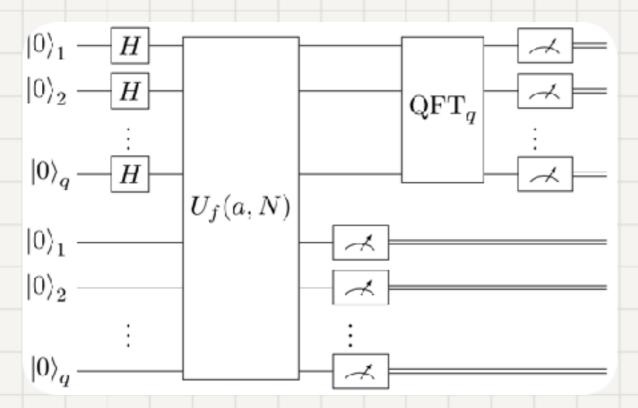


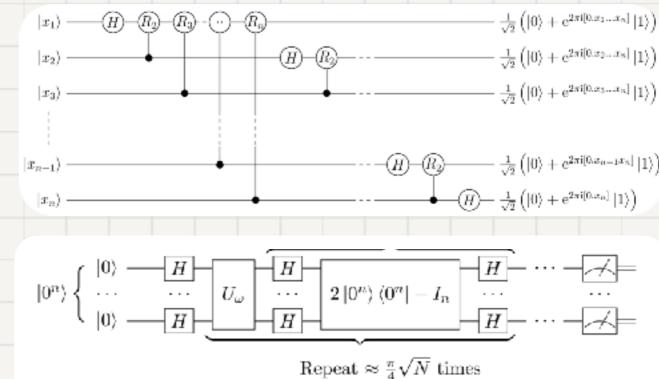
Repeat $\approx \frac{\pi}{4}\sqrt{N}$ times

- 1) Initialize input qubits + ancillas
- 2) Apply unitary gates
- 3) Perform a measurement

Why circuits and not Turing machines?

Quantum algorithms



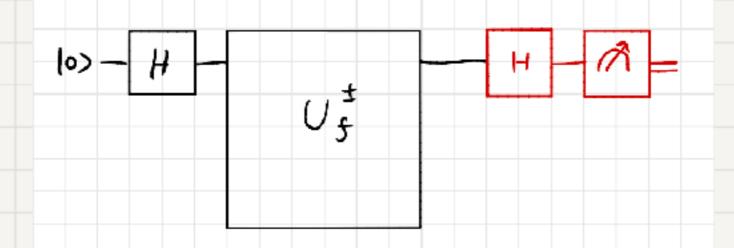


- 3 examples where quantum algorithms excel:
- (I) Finding sub-group structure (Shor's factoring)
- (II) Rapid mixing of Markov chains (Grover's search)
 - (III) Computing Fourier Transforms (QFT)

Example: quantum algorithm for parity

Goal: Given $f: \{0,1\} \rightarrow \{0,1\}$, compute $f(0) \oplus f(1)$

where f is represented by U_f^{\pm} , mapping $|x\rangle \to (-1)^{f(x)}|x\rangle$



After Hadamard:
$$\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle = |+\rangle$$

After query:
$$\frac{1}{\sqrt{2}} \left((-1)^{f(0)} |0\rangle + (-1)^{f(1)} |1\rangle \right) = \frac{(-1)^{f(0)}}{\sqrt{2}} \left(|0\rangle + (-1)^{f(1)-f(0)} |1\rangle \right)$$

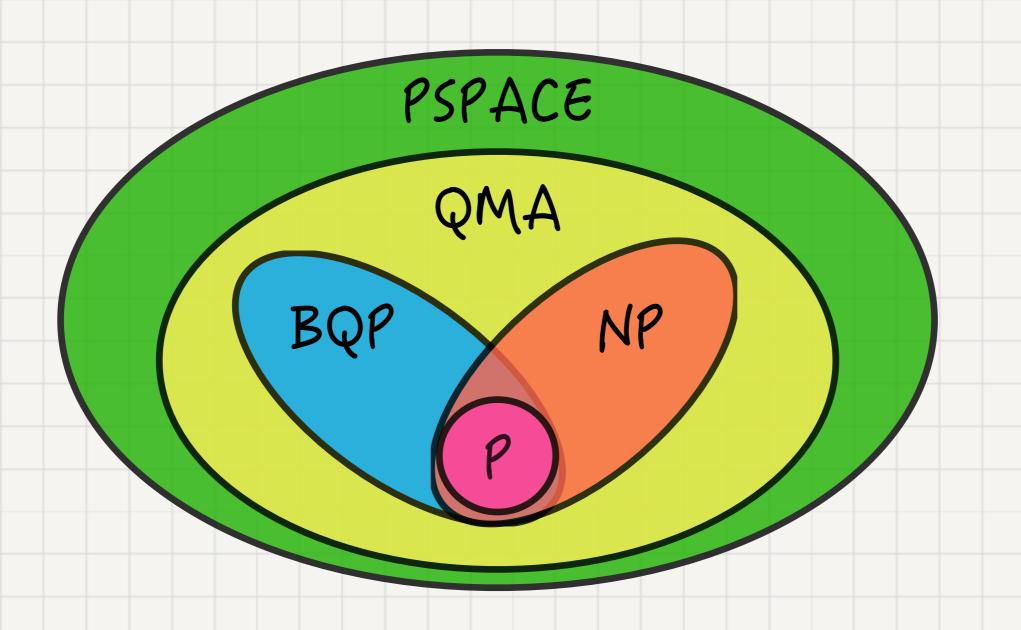
If
$$f(0) = f(1)$$
, we get $|+\rangle$, and after Hadamard $|0\rangle$

If
$$f(0) \neq f(1)$$
, we get $|-\rangle$, and after Hadamard $|1\rangle$

Quantum complexity classes

BQP = "quantum p"

QMA = "quantum NP"



BQP The set of all problems solvable by a poly-time uniform quantum circuits (Cn)_{nen} of polynomial size, w.p. 22/3 (i.e., $\forall_{x \in \{0,1\}^n} \Pr[C_n(x) = 1_L(x)] \ge 2/3$) T(n)-uniformity: Cn can be generated in T(n) time Circuit size: ** gates -> time complexity

6

BQP Soundness amplification

Claim 1 (Chernoff bound). Let A_1, \ldots, A_t be independent identically distributed random variables taking values in $\{0,1\}$. Then,

$$\Pr\left[\left|\frac{\Sigma_i A_i}{t} - \mathbb{E}[A_i]\right| \ge \delta\right] \le 2e^{-t\delta^2/2}$$
.

Let $A_1, ..., A_t$ be the outputs of invocations of a quantum circuit C(x).

Let
$$A = \frac{1}{t} \sum_{i=1}^{t} A_i$$
 be the average output.

The amplified quantum algorithm C' rules by majority.

On a 1-instance, $\mathbb{E}[A] \geq 2/3$, and the Chernoff bound gives

$$\Pr[|A - 2/3 \ge 1/6] \le 2e^{-t(1/6)^2/2} = \exp(-t)$$

The analysis for O-instances is symmetric.

Factoring_ Given nell, output primes pi,..., pn s.t. $M = P_1 \cdot P_2 \cdot \dots \cdot P_M$ Decision problem Factor (n, K) = 1 iff n has a prime factor < K Shor's algorithm Factor = BQP We know Factor ENP a coNP.

Grover's search

Given a string $x \in \{0,1\}^n$, output $i \in [n]$ such that $x_i = 1$

Classical complexity? $\Omega(n)$

Quantum complexity $\Omega(\sqrt{n})$

Quantum Fourier Transform

Given $(f_1, f_2, ..., f_N) \in \mathbb{C}^N$, output the DFT $(\hat{f}_1, \hat{f}_2, ..., \hat{f}_N)$

Classical complexity? $O(N \log N)$ Quantum complexity $\tilde{O}(\log N)$

QMA (Quantum NP)

Det LEQMA if FBQP algorithm V s.t.

∀xel 714> s.t. Pr [V(1x>14>)=1] ≥ 2/3

VXEL Y 14> Pr[V(1X>14>=1]<1/3

For NP we had 3SAT as a complete problem

 $\phi = (X_1 V X_2 V X_3) \Lambda (X_2 V \neg X_1 V X_4) \Lambda (\neg X_3 V \neg X_4 V X_5)$

QMA-complete problem Det A k-Iscal Hamiltonian is H=H, +... +Hm,

where V; H; is Hermitian acting on k qubits.

The energy H assigns to 14> is <41H14>0

The ground state minimise the energy E = min < 41H14>

Goal Is $E_G \leq a$ or $E_G \geq b$?

Physical interpretation

Schroginger's equation (4(t)) = e (4(0))

Classical-Quantum dictionary (Yuen)

SAT

Variables

Constraints/clauses

Assignments

* satisfied constraints

Optimal assignment

Satisfiable

Local Hamiltonian

Qubits

Hamiltonian terms

Quantum states

Energy

Ground State

Frustration-free

Quote of the day

1 think I can safely say that nobody understands quantum mechanics
— Richard Feynman

If you think quantum mechanics is weird, you should try quantum complexity theory

- Scott Aaronson