Optimising Compilers
Computer Science Tripos Part I

Tobias Grosser

Questions!

Please ask any you like during the lecture
Or you can come talk to me afterwards
Or you can drop by my office when I'm in

Or you can email me any time you like

Office - SCI2
Email - tobias.grosser@cst.cam.ac.uk

mailto:tobias.grosser@cst.cam.ac.uk

Lecture |
Introduction

A non-optimising compiler

character stream

lexing

token stream

parsing

parse tree

translation

intermediate code

code generation

target code

An optimising compiler

character stream

lexing

token stream

parsing

optimisation parse tree

translation

optimisation intermediate code decompilation

code genefation

optimisation target code

Optimisation

(really “amelioration™!)

Good humans write simple, maintainable, general code.

Compilers should then remove unused generadlity,
and hence hopefully make the code:

® Smaller
® [aster

® Cheaper (e.g. lower power consumption)

Optimisation

Analysis
+
Transformation

Analysis + Transformation

® Transformation does something dangerous.

® Analysis determines whether it’s safe.

Analysis + Transformation

® An analysis shows that your program has
some property...

® ..and the transformation is designed to

be safe for all programs with that
property...

® ...so it’s safe to do the transformation.

Analysis + Transformation

int main(void)

{

return 427;

}

Analysis + Transformation

int main(void)

{

return £ (21);

}

Analysis + Transformation

int t = k * 2;
while (1 <= k¥2) {
j o= 3 % i
1 1+ 1;
}

Analysis + Transformation

int t = k * 2;
while (1 <= k¥2)] {
k k = 1;
1 1+ 1;
}

Stack-oriented code

1load O
Giload 1
ladd
1load Z
Giload 3
ladd
1mul
Cire curn

3-address code

ADD €34, E32, £33

C into 3-address code

int

ﬁ

re

b el

re

}
}

P

fact (1in-

(n == 0)
turn 1;
se |
turn n *

{

n)

1 acC

{

C into 3-address code

bl:

MOV

CM_)—I:

CNTRY
£32,arg:

Q

fact

;32

SUB argl,

CAII

fact

MUL resl,

X1

=

-

MOV resl,

X T

=

-

#0, 1labl
‘32 #1

t32,resl

1

Flowgraphs

® A graph representation of a program

® Each node stores 3-address instruction(s)

® Each edge represents (potential) control flow:

pred(n)

succ(n)

{n’
{n’

(n',n) € edges(G)}
(n,n') € edges(G)}

Flowgraphs

N T Tz fjt -
MOV grg

CMPEETT§2 10, labl

= CMPEQ t32, #0

c32, #1

T | SUB gl t32,#1

[%Mf§2 resl

Basic blocks

A maximal sequence of instructions ny, ..., nk which have

® exactly one predecessor (except possibly for ny)

® exactly one successor (except possibly for ng)

Basic blocks

ENTRY fact

CMPEQ t32, #0

MOV t32,argl

EXIT

CALL fact

SUB argl,t32, #1

MUL resl,t32,resl

MOV resl, #1
v
EXIT

Basic blocks

'ENTRY fact
MOV t32,arqgl

CMPEQ t32, #0
—

v

) v . SUB argl, t32,#1
MOV resl, #1 CALL fact

EXIT MUL resl, t32,resl
S —— EXIT

—

Basic blocks

| ENTRY fact |

MOV t32,argl
CMPEQ t32, #0

—

, v
v SUB argl, t32, #1

‘MOV resl,#l\ CALL fact

MUL resl,t32,resl

—

>| EXIT ‘4

Basic blocks

A basic block doesn’t contain any interesting control flow.

Basic blocks

Reduce time and space requirements
for analysis algorithms

by calculating and storing data flow information

once per block

(and recomputing within a block if required)
instead of

once per instruction.

Basic blocks

/

Basic blocks

Types of analysis

(and hence optimisation)

Scope:
® Within basic blocks (“local” / “peephole”™)
® Between basic blocks (“global” / “intra-procedural’)
® c.g. live variable analysis, available expressions
® Whole program (“inter-procedural®)

® c.g.unreachable-procedure elimination

Peephole optimisation

ADD t32,argl, #1 replace
MOV rO,rl: MOV X,y
MOV_rl,x0i MM livov y, x
MUL t33,r0,t32 | with
MOV X,y

MU L t33 rO, t37

Types of analysis

(and hence optimisation)

Type of information:

® Control flow

® Discovering control structure (basic blocks,
loops, calls between procedures)

® Data flow

® Discovering data flow structure (variable uses,
expression evaluation)

Finding basic blocks

|. Find all the instructions which are leaders:
® the first instruction is a leader;
® the target of any branch is a leader;and

® any instruction immediately following a
branch is a leader.

2. For each leader, its basic block consists of
itself and all instructions up to the next leader.

Finding basic blocks

EMOV “32 arg
CMPEOQ _32 #0, labl

SUB argl, v32

ECA.. fact ,
EMUL resl,- yresl.

labl: EMOV resl, #1

Summary

Structure of an optimising compiler

Why optimise?

Optimisation = Analysis + Transformation
3-address code

Flowgraphs

Basic blocks

Types of analysis

Locating basic blocks

