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Learning Guide

The course as lectured proceeds fairly evenly through these notes, with 7 lectures devoted to
part A, 5 to part B and 3 or 4 devoted to parts C and D. Part A mainly consists of analy-
sis/transformation pairs on flowgraphs whereas part B consists of more sophisticated analyses
(typically on representations nearer to source languages) where typically a general framework
and an instantiation are given. Part C consists of an introduction to instruction scheduling and
part D an introduction to decompilation and reverse engineering.

One can see part A as intermediate-code to intermediate-code optimisation, part B as (al-
ready typed if necessary) parse-tree to parse-tree optimisation and part C as target-code to
target-code optimisation. Part D is concerned with the reverse process.

Rough contents of each lecture are:

Lecture 1: Introduction, flowgraphs, call graphs, basic blocks, types of analysis
Lecture 2: (Transformation) Unreachable-code elimination

Lecture 3: (Analysis) Live variable analysis

Lecture 4: (Analysis) Available expressions

Lecture 5: (Transformation) Uses of LVA

Lecture 6: (Continuation) Register allocation by colouring

Lecture 7: (Transformation) Uses of Avail; Code motion

Lecture 8: Static Single Assignment; Strength reduction

Lecture 9: (Framework) Abstract interpretation

Lecture 10: (Instance) Strictness analysis

Lecture 11: (Framework) Constraint-based analysis;
(Instance) Control-flow analysis (for A-terms)

Lecture 12: (Framework) Inference-based program analysis
Lecture 13: (Instance) Effect systems

Lecture 13a: Points-to and alias analysis

Lecture 14: Instruction scheduling

Lecture 15: Same continued, slop

Lecture 16: Decompilation.
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Part A: Classical ‘Dataflow’ Optimisations

1 Introduction

Recall the structure of a simple non-optimising compiler (e.g. from CST Part IB).

token parse intermediate target
stream tree code code

character | __
stream
In such a compiler “intermediate code” is typically a stack-oriented abstract machine code (e.g.
OCODE in the BCPL compiler or JVM for Java). Note that stages ‘lex’, ‘syn” and ‘trn’ are in
principle source language-dependent, but not target architecture-dependent whereas stage ‘gen’
is target dependent but not language dependent.

To ease optimisation (really ‘amelioration’!) we need an intermediate code which makes
inter-instruction dependencies explicit to ease moving computations around. Typically we use
3-address code (sometimes called ‘quadruples’). This is also near to modern RISC architectures
and so facilitates target-dependent stage ‘gen’. This intermediate code is stored in a flowgraph
G—a graph whose nodes are labelled with 3-address instructions (or later ‘basic blocks’). We
write

—_—

pred(n) = {n'|(n',n) € edges(G)}
succ(n) = {n’|(n,n’) € edges(G)}

for the sets of predecessor and successor nodes of a given node; we assume common graph theory
notions like path and cycle.

Forms of 3-address instructions (a, b, ¢ are operands, f is a procedure name, and lab is a
label):

e ENTRY f: no predecessors;
e EXIT: no successors;
e ALU a,b,c: one successor (ADD, MUL, ... );

e CMP(cond) a,b,lab: two successors (CMPNE, CMPEQ, ...) — in straight-line code these
instructions take a label argument (and fall through to the next instruction if the branch
doesn’t occur), whereas in a flowgraph they have two successor edges.

Multi-way branches (e.g. case) can be considered for this course as a cascade of CMP instruc-
tions. Procedure calls (CALL f) and indirect calls (CALLI a) are treated as atomic instructions
like ALU a,b,c. Similarly one distinguishes MOV a, b instructions (a special case of ALU ig-
noring one operand) from indirect memory reference instructions (LDI a,b and STI a,b) used
to represent pointer dereference including accessing array elements. Indirect branches (used
for local goto (exp)) terminate a basic block (see later); their successors must include all the



possible branch targets (see the description of Fortran ASSIGNED GOTO). A safe way to over-
estimate this is to treat as successors all labels which occur other than in a direct goto [ form.
Arguments to and results from procedures are presumed to be stored in standard places, e.g.
global variables argl, arg2, resl, res2, etc. These would typically be machine registers in a
modern procedure-calling standard.

As a brief example, consider the following high-level language implementation of the factorial
function:

int fact (int n)

{
if (n == 0)
return 1;
} else {
return n * fact(n-1);
}

}

This might eventually be translated into the following 3-address code:

ENTRY fact ; begins a procedure called "fact"
MOV t32,argl ; saves a copy of argl in t32
CMPEQ t32,#0,labl ; branches to labl if argl ==
SUB argl,t32,#1 ; decrements argl in preparation for CALL
CALL fact ; leaves fact(argl) in resl (t32 is preserved)
MUL resl1,t32,resl
EXIT ; exits from the procedure
labl: MOV resi,#1
EXIT ; exits from the procedure

Slogan: Optimisation = Analysis + Transformation

Transformations are often simple (e.g. delete this instruction) but may need complicated analysis
to show that they are valid. Note also the use of Analyses without corresponding Transforma-
tions for the purposes of compile-time debugging (e.g. see the later use of LVA to warn about
the dataflow anomaly of possibly uninitialised variables).

Hence a new structure of the compiler:

arse
token P
stream tree

character \__
stream

optimise

intermediate target
code code

gen
This course only considers the optimiser, which in principle is both source-language and target-
architecture independent, but certain gross target features may be exploited (e.g. number of
user allocatable registers for a register allocation phase).




Often we group instructions into basic blocks: a basic block is a maximal sequence of in-
structions ny,...,n; which have

e exactly one predecessor (except possibly for n)
e exactly one successor (except possibly for ny)

The basic blocks in our example 3-address code factorial procedure are therefore:

ENTRY fact
MOV t32,argl
CMPEQ t32,#0,labl

SUB argl,t32,#1
CALL fact

MUL resl1,t32,resl
EXIT

labl: MOV resi,#1
EXIT

Basic blocks reduce space and time requirements for analysis algorithms by calculating and
storing data-flow information once-per-block (and recomputing within a block if required) over
storing data-flow information once-per-instruction.

It is common to arrange that stage ‘trn’, which translates a tree into a flowgraph, uses a new
temporary variable on each occasion that one is required. Such a basic block (or flowgraph) is
referred to as being in normal form. For example, we would translate

X = axb+c;
y = axb+d;

into

MUL t1,a,b
ADD x,tl,c
MUL t2,a,b
ADD y,t2,d.

Later we will see how general optimisations can map these code sequences into more efficient
ones.

1.1 Forms of analysis
Form of analysis (and hence optimisation) are often classified:
e ‘local’ or ‘peephole’: within a basic block;
e ‘global’ or ‘intra-procedural’: outwith a basic block, but within a procedure;

e ‘inter-procedural’: over the whole program.

This course mainly considers intra-procedural analyses in part A (an exception being ‘unreachable-
procedure elimination’ in section 1.3) whereas the techniques in part B often are applicable intra-
or inter-procedurally (since the latter are not flowgraph-based, further classification by basic
block is not relevant).



1.2 Simple example: unreachable-code elimination

(Reachability) Analysis = ‘find reachable blocks’; Transformation = ‘delete code which reach-
ability does not mark as reachable’. Analysis:

e mark entry node of each procedure as reachable;

e mark every successor of a marked node as reachable and repeat until no further marks
are required.

Analysis is safe: every node to which execution may flow at execution will be marked by the
algorithm. The converse is in general false:

if tautology (x) then Cp else Cj.

The undecidability of arithmetic (cf. the halting problem) means that we can never spot all
such cases. Note that safety requires the successor nodes to goto (exp) (see earlier) not to
be under-estimated. Note also that constant propagation (not covered in this course) could be
used to propagate known values to tests and hence sometimes to reduce (safely) the number of
successors of a comparison node.

1.3 Simple example: unreachable-procedure elimination

(A simple interprocedural analysis.) Analysis = ‘find callable procedures’; Transformation =
‘delete procedures which analysis does not mark as callable’. Data-structure: call-graph, a graph
with one node for each procedure and an edge (f,g) whenever f has a CALL g statement or f
has a CALLI a statement and we suspect that the value of @ may be g. A safe (i.e. over-estimate
in general) interpretation is to treat CALLI a as calling any procedure in the program which
occurs other than in a direct call context—in C this means (implicitly or explicitly) address
taken. Analysis:

e mark procedure main as callable;

e mark every successor of a marked node as callable and repeat until no further marks are
required.

Analysis is safe: every procedure which may be invoked during execution will be marked by
the algorithm. The converse is again false in general. Note that label variable and procedure
variables may reduce optimisation compared with direct code—do not use these features of a
programming language unless you are sure they are of overall benefit.



2 Live Variable Analysis (LVA)

A variable x is semantically live! at node n if there is some execution sequence starting at n
whose I/O behaviour can be affected by changing the value of x.

A variable x is syntactically live at node n if there is a path in the flowgraph to a node n’ at
which the current value of  may be used (i.e. a path from n to n’ which contains no definition
of x and with n’ containing a reference to ). Note that such a path may not actually occur
during any execution, e.g.

11: ; /* is ’t’ live here? x*/
if ((x+1)*(x+1) ==y) t = 1;
if (x*x+2%x+1 = y) t = 2;
12: print t;

Because of the optimisations we will later base on the results of LVA, safety consists of over-
estimating liveness, i.e.
sem-live(n) C syn-live(n)

where live(n) is the set of variable live at n. Logicians might note the connection of semantic
liveness and = and also syntactic liveness and .
From the non-algorithmic definition of syntactic liveness we can obtain dataflow equations:

live(n) = U live(s) | \ def (n) U ref(n)

s€succ(n)

You might prefer to derive these in two stages, writing in-live(n) for variables live on entry to
node n and out-live(n) for those live on exit. This gives
in-live(n) = out-live(n) \ def(n) U ref(n)
out-live(n) = U in-live(s)
s€suce(n)

Here def(n) is the set of variables defined at node n, i.e. {x} in the instruction x = x+y and
ref (n) the set of variables referenced at node n, i.e. {x,y}.
Notes:

e These are ‘backwards’ flow equations: liveness depends on the future whereas normal
execution flow depends on the past;

e Any solution of these dataflow equations is safe (w.r.t. semantic liveness).
Problems with address-taken variables—consider:

int x,y,z,t,*p;
x=1,y=2, z=3;

p = &x;
if (...) p = &y;
*p = 7;
if ) p = &x;
t = *p;

print z+t;

"Mention the words ‘extensional’ for this notion and ‘intentional’ for the ‘syntactic’ property below.



Here we are unsure whether the assignment *p = 7; assigns to x or y. Similarly we are uncertain
whether the reference t = *p; references x or y (but we are certain that both reference p). These
are ambiguous definitions and references. For safety we treat (for LVA) an ambiguous reference
as referencing any address-taken variable (cf. label variable and procedure variables—an indirect
reference is just a ‘variable’ variable). Similarly an ambiguous definition is just ignored. Hence
in the above, for *p = 7; we have ref = {p} and def = {} whereas t = *p; has ref = {p,x,y}
and def = {t}.
Algorithm (implement live as an array live[]):

for i=1 to N do livel[i] := {}
while (1live[] changes) do
for i=1 to N do

live[il :=( U live[s] | \ def(i) U ref(i).

s€succ(1)

Clearly if the algorithm terminates then it results in a solution of the dataflow equation. Actually
the theory of complete partial orders (cpo’s) means that it always terminates with the least
solution, the one with as few variables as possible live consistent with safety. (The powerset
of the set of variables used in the program is a finite lattice and the map from old-liveness to
new-liveness in the loop is continuous.)

Notes:

e we can implement the 1ive[] array as a bit vector with bit k& being set to represent that
variable xj (according to a given numbering scheme) is live.

e we can speed execution and reduce store consumption by storing liveness information
only once per basic block and re-computing within a basic block if needed (typically only
during the use of LVA to validate a transformation). In this case the dataflow equations

become:
live(n) = U live(s) | \ def (ir) U ref (i) - - - \ def (i1) U ref (i1)
s€succ(n)
where (i1, ...,4x) are the instructions in basic block n.

3 Available Expressions (AVAIL)

Available expressions analysis has many similarities to LVA. An expression e (typically the RHS
of a 3-address instruction) is available at node n if on every path leading to n the expression e
has been evaluated and not invalidated by an intervening assignment to a variable occurring in
e. Note that the e on each path does not have to come from the same instruction.

This leads to dataflow equations:

avail(n) = ﬂpEpred(n) (ava‘il(p) \ kle(p) U gen(p)) if pred(n) 7& {}
awail(n) = {} if pred(n) = {}.

Here gen(n) gives the expressions freshly computed at n: gen(x = y+z) = {y + z}, for example;
but gen(x = x+z) = {} because, although this instruction does compute x + z, it then changes



the value of x, so if the expression x + z is needed in the future it must be recomputed in light of
this.2 Similarly kill(n) gives the expressions killed at n, i.e. all expressions containing a variable
updated at n. These are ‘forwards’ equations since avail(n) depends on the past rather than
the future. Note also the change from U in LVA to N in AVAIL. You should also consider the
effect of ambiguous kill and gen (cf. ambiguous ref and def in LVA) caused by pointer-based
access to address-taken variables.

Again any solution of these equations is safe but, given our intended use, we wish the
greatest solution (in that it enables most optimisations). This leads to an algorithm (assuming
flowgraph node 1 is the only entry node):

availl1] := {}
for i=2 to N do availli] := U
while (availl] changes) do
for i=2 to N do
avail[i] := ﬂ (availl[p] \ kill(p) U gen(p)).
pEpred(1)

Here U is the set of all expressions; it suffices here to consider all RHS’s of 3-address instruc-
tions. Indeed if one arranges that every assignment assigns to a distinct temporary (a little
strengthening of normal form for temporaries) then a numbering of the temporary variables
allows a particularly simple bit-vector representation of availl[].

4 Uses of LVA

There are two main uses of LVA:

e to report on dataflow anomalies, particularly a warning to the effect that “variable ‘x’
may be used before being set”;

e to perform ‘register allocation by colouring’.

For the first of these it suffices to note that the above warning can be issued if ‘x’ is live at
entry to the procedure (or scope) containing it. (Note here ‘safety’ concerns are different—it is
debatable whether a spurious warning about code which avoids executing a seeming error for
rather deep reasons is better or worse than omitting to give a possible warning for suspicious
code; decidability means we cannot have both.) For the second, we note that if there is no
3-address instruction where two variables are both live then the variables can share the same
memory location (or, more usefully, the same register). The justification is that when a variable
is not live its value can be corrupted arbitrarily without affecting execution.

4.1 Register allocation by colouring

Generate naive 3-address code assuming all variables (and temporaries) are allocated a different
(virtual) register (recall ‘normal form’). Gives good code, but real machines have a finite number
of registers, e.g. 8 in x86 or 31 in MIPS. Derive a graph (the ‘clash graph’) whose nodes are

2This definition of gen(n) is rather awkward. It would be tidier to say that gen(x = x+z) = {x 4 z}, because
x + z is certainly computed by the instruction regardless of the subsequent assignment. However, the given
definition is chosen so that avail(n) can be defined in the way that it is; I may say more in lectures.

10



virtual registers and there is an edge between two virtual registers which are ever simultaneously
live (this needs a little care when liveness is calculated merely for basic block starts—we need
to check for simultaneous liveness within blocks as well as at block start!). Now try to colour
(= give a different value for adjacent nodes) the clash graph using the real (target architecture)
registers as colours. (Clearly this is easier if the target has a large-ish number of interchangeable
registers—not an early 8086.) Although planar graphs (corresponding to terrestrial maps) can
always be coloured with four colours this is not generally the case for clash graphs (exercise).
Graph colouring is NP-complete but here is a simple heuristic for choosing an order to colour
virtual registers (and to decide which need to be spilt to memory where access can be achieved
via LD /ST to a dedicated temporary instead of directly by ALU register-register instructions):

e choose a virtual register with the least number of clashes;

e if this is less than the number of colours then push it on a LIFO stack since we can
guarantee to colour it after we know the colour of its remaining neighbours. Remove the
register from the clash graph and reduce the number of clashes of each of its neighbours.

e if all virtual registers have more clashes than colours then one will have to be spilt. Choose
one (e.g. the one with least number of accesses?) to spill and reduce the clashes of all its
neighbours by one.

e when the clash graph is empty, pop in turn the virtual registers from the stack and
colour them in any way to avoid the colours of their (already-coloured) neighbours. By
construction this is always possible.

Note that when we have a free choice between several colours (permitted by the clash graph)
for a register, it makes sense to choose a colour which converts a MOV ri1,r2 instruction into a
no-op by allocating r1 and r2 to the same register (provided they do not clash). This can be
achieved by keeping a separate ‘preference’ graph.

4.2 Non-orthogonal instructions and procedure calling standards

A central principle which justifies the idea of register allocation by colouring at all is that
of having a reasonably large interchangeable register set from which we can select at a later
time. It is assumed that if we generate a (say) multiply instruction then registers for it can be
chosen later. This assumption is a little violated on the 80x86 architecture where the multiply
instruction always uses a standard register, unlike other instructions which have a reasonably
free choice of operands. Similarly, it is violated on a VAX where some instructions corrupt
registers rO-r5.

However, we can design a uniform framework in which such small deviations from uniformity
can be gracefully handled. We start by arranging that architectural registers are a subset of
virtual registers by arranging that (say) virtual registers vO—v31 are pre-allocated to architec-
tural registers rO—r31 and virtual registers allocated for temporaries and user variables start
from 32. Now

30f course this is a static count, but can be made more realistic by counting an access within a loop nesting
of n as worth 4™ non-loop accesses. Similarly a user register declaration can be here viewed as an extra (say)
1000 accesses.

11



e when an instruction requires an operand in a given architectural register, we use a MOV
to move it to the virtual encoding of the given architectural register—the preference graph
will try to ensure calculations are targeted to the given source register;

e similarly when an instruction produces a result in a given architectural register, we move
the result to an allocatable destination register;

e finally, when an instruction corrupts (say) rx during its calculation, we arrange that its
virtual correspondent vx has a clash with every virtual register live at the occurrence of
the instruction.

Note that this process has also solved the problem of handling register allocation over pro-
cedure calls. A typical procedure calling standard specified n registers for temporaries, say
r0-r[n-1] (of which the first m are used for arguments and results—these are the standard
places argl, arg2, resl, res2, etc. mentioned at the start of the course) and k registers to be
preserved over procedure call. A CALL or CALLI instruction then causes each variable live
over a procedure call to clash with each non-preserved architectural register which results in
them being allocated a preserved register. For example,

int f(int x) { return g(x)+h(x)+1;}

might generate intermediate code of the form

ENTRY £

MOV v32,r0 ; save argl in x

MOV r0O,v32 ; omitted (by "other lecturer did it" technique)
CALL g

MOV v33,r0 ; save result as v33

MOV r0,v32 ; get x back for argl

CALL h

ADD v34,v33,r0 ; v34 = g(x)+h(x)
ADD r0O,v34,#1 ; result = v34+1
EXIT

which, noting that v32 and v33 clash with all non-preserved registers (being live over a procedure
call), might generate code (on a machine where r4 upwards are specified to be preserved over
procedure call)

f: push {r4,r5} ; on ARM we do: push {r4,r5,1r}
mov rd,r0
call g

mov r5,r0

mov r0,r4

call h

add r0,r5,r0

add r0,r0,#1

pop {r4,r5} ; on ARM we do: pop {r4,r5,pc} which returns ...
ret ; ... so don’t need this on ARM.

12



Note that r4 and r5 need to be push’d and pop’d at entry and exit from the procedure to
preserve the invariant that these registers are preserved over a procedure call (which is exploited
by using these registers over the calls to g and h. In general a sensible procedure calling standard
specifies that some (but not all) registers are preserved over procedure call. The effect is that
store-multiple (or push-multiple) instructions can be used more effectively than sporadic 1d/st
to stack.

4.3 Global variables and register allocation

The techniques presented have implicitly dealt with register allocation of local variables. These
are live for (at most) their containing procedure, and can be saved and restored by called
procedures. Global variables (e.g. C static or extern) are in general live on entry to, and exit
from, a procedure and in general cannot be allocated to a register except for a whole program
“reserve register r(n) for variable (z)” declaration. The allocator then avoids such registers for
local variables (because without whole program analysis it is hard to know whether a call may
indirectly affect r(n) and hence (x)).

An amusing exception might be a C local static variable which is not live on entry to a
procedure—this does not have to be preserved from call-to-call and can thus be treated as an
ordinary local variable (and indeed perhaps the programmer should be warned about sloppy
code). The Green Hills C compiler used to do this optimisation.

5 Uses of AVAIL

The main use of AVAIL is common sub-expression elimination, CSE, (AVAIL provides a tech-

nique for doing CSE outwith a single basic block whereas simple-minded tree-oriented CSE

algorithms are generally restricted to one expression without side-effects). If an expression e is

available at a node n which computes e then we can ensure that the calculations of e on each

path to n are saved in a new variable which can be re-used at n instead of re-computing e at n.
In more detail (for any ALU operation @):

e for each node n containing = := a ® b with a & b available at n:
e create a new temporary t;
e replace n:z:=a®bwithn:z :=t;

e on each path scanning backwards from n, for the first occurrence of a®b (say n’ : y := a®b)
in the RHS of a 3-address instruction (which we know exists by AVAIL) replace n’ with
two instructions n’ : t :=a ® b; n” 1y :=t.

Note that the additional temporary ¢ above can be allocated by register allocation (and also
that it encourages the register allocator to choose the same register for ¢ and as many as possible
of the various y). If it becomes spilt, we should ask whether the common sub-expression is big
enough to justify the LD/ST cost of spilling of whether the common sub-expression is small
enough that ignoring it by re-computing is cheaper. (See Section 8).

One subtlety which I have rather side-stepped in this course is the following issue. Suppose
we have source code

13



X 2

y ¢

axb+c;
axb+c;

then this would become 3-address instructions:

MUL t1,a,b
ADD x,tl,c
MUL t2,a,b
ADD y,t2,c

CSE as presented converts this to

MUL t3,a,b
MOV t1,t3
ADD x,tl,c
MOV t2,t3
ADD y,t2,c

which is not obviously an improvement! There are two solutions to this problem. One is to
consider bigger CSE’s than a single 3-address instruction RHS (so that effectively axb+c is
a CSE even though it is computed via two different temporaries). The other is to use copy
propagation—we remove MOV t1,t3 and MOV t2,t3 by the expedient of renaming t1 and t2
as t3. This is only applicable because we know that t1, t2 and t3 are not otherwise updated
The result is that t3+c becomes another CSE so we get

MUL t3,a,b
ADD t4,t3,c
MOV x,t4
MOV y,t4

which is just about optimal for input to register allocation (remember that x or y may be spilt
to memory whereas t3 and t4 are highly unlikely to be; moreover t4 (and even t3) are likely
to be allocated the same register as either x or y if they are not spilt).

6 Code Motion

Transformations such as CSE are known collectively as code motion transformations. Another
famous one (more general than CSE?) is Partial Redundancy Elimination. Consider

a=...;
b= ...;
do
{ = a+b; /* here */
a=...;
= atb;

} while (...)

4One can see CSE as a method to remove totally redundant expression computations.
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the marked expression a+b is redundantly calculated (in addition to the non-redundant calcu-
lation) every time round the loop except the first. Therefore it can be time-optimised (even if
the program stays the same size) by first transforming it into:

a= ...;

b= ...;

... = atb;

do

{ ... = atb; /* here */
a=...;
... = atb;

} while (...)

and then the expression marked ‘here’ can be optimised away by CSE.

7 Static Single Assignment (SSA) Form

Register allocation re-visited: sometimes the algorithm presented for register allocation is not
optimal in that it assumes a single user-variable will live in a single place (store location or
register) for the whole of its scope. Consider the following illustrative program:

extern int f(int);
extern void h(int,int);

void g()

{ int a,b,c;
a=1f(1); b=1£(2); h(a,b);
b=£f(3); c=£f4); h(,c);
c =f(5); a=£(6); h(c,a);

}

Here a, b and c all mutually clash and so all get separate registers. However, note that the first
variable on each line could use (say) ré4, a register preserved over function calls, and the second
variable a distinct variable (say) r1. This would reduce the need for registers from three to two,
by having distinct registers used for a given variable at different points in its scope. (Note this
may be hard to represent in debugger tables.)

The transformation is often called live range splitting and can be seen as resulting from
source-to-source transformation:

void g(O)

{ int al,a2, bl,b2, ci,c2;
al = £f(1); b2 = £(2); h(al,b2);
bl = £(3); c2 = £(4); h(bl,c2);
cl = £(5); a2 = £(6); h(cl,a2);

}

This problem does not arise with temporaries because we have arranged that every need
for a temporary gets a new temporary variable (and hence virtual register) allocated (at least
before register colouring). The critical property of temporaries which we wish to extend to
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user-variables is that each temporary is assigned a value only once (statically at least—going
round a loop can clearly assign lots of values dynamically).

This leads to the notion of Static Single Assignment (SSA) form and the transformation to
it.

SSA form (see e.g. Cytron et al. [2]) is a compilation technique to enable repeated assign-
ments to the same variable (in flowgraph-style code) to be replaced by code in which each
variable occurs (statically) as a destination exactly once.

In straight-line code the transformation to SSA is straightforward, each variable v is replaced
by a numbered instance v; of v. When an update to v occurs this index is incremented. This
results in code like

v=23; v=v+tl; v =vtw; w = v*2;

(with next available index 4 for w and 7 for v) being mapped to
vy = 3; vg = vrtl; vg = vgtwg; Wy = Vo*2;

On path-merge in the flowgraph we have to ensure instances of such variables continue
to cause the same data-flow as previously. This is achieved by placing a logical (static single)
assignment to a new common variable on the path-merge arcs. Because flowgraph nodes (rather
than edges) contain code this is conventionally represented by a invoking a so-called ¢-function
at entry to the path-merge node. The intent is that ¢(z,y) takes value x if control arrived from
the left arc and y if it arrived from the right arc; the value of the ¢-function is used to define a
new singly-assigned variable. Thus consider

{ if (p) { v =v+l; v = v+w; } else v=v-1; } w = v*2;
which would map to (only annotating v and starting at 4)

{ if (p) { vq4 = v3+l; v5 = vu+w; } else vg=vs-1; } vy = ¢(v5,vg); W = vr*2;

8 The Phase-Order Problem

The ‘phase-order problem’ refers to the issue in compilation that whenever we have multiple
optimisations to be done on a single data structure (e.g. register allocation and CSE on the
flowgraph) we find situations where doing any given optimisation yields better results for some
programs if done after another optimisation, but better results if done before for others. A
slightly more subtle version is that we might want to bias choices within one phase to make
more optimisations possible in a later phase. These notes just assume that CSE is done before
register allocation and if SSA is done then it is done between them.

We just saw the edge of the phase order problem: what happens if doing CSE causes a
cheap-to-recompute expression to be stored in a variable which is spilt into expensive-to-access
memory. In general other code motion operations (including Instruction Scheduling in Part C)
have harder-to-resolve phase order issues.

9 Compiling for Multi-Core

Multi-core processors are now the norm with the inability of additional transistors due to
Moore’s Law to translate into higher processor clock frequencies (cf. failure of Dennard scaling
and Part IT Comparative Architectures).
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Effectively compiling for them is, however, a challenging task and current industrial offerings
are far from satisfactory. One key issue is whether we wish to write in a sequential language
and then hope that the compiler can parallelise it (this is liable to be rather optimistic for
languages which contain aliasing, especially on NUMA architectures, but also on x86-style
multi-core) since “alias analysis” (determining whether two pointers may point to the same
location) is undecidable in theory and tends to be ineffective in practice (see Section 18 for
an O(n?) approach). Otherwise a compiler for a sequential language needs hints about where
parallelism is possible and/or safe. Open/MP and Cilk++ are two general-purpose offerings
with very different flavours.

The alternative is writing explicitly parallel code, but this easily becomes target-specific and
hence non-portable. Languages with explicit message passing (MPI) are possibilities, and for
graphics cards Nvidia’s CUDA or OpenCL (which targets heterogeneous systems in general)
are standard.

A promising direction is that of languages which explicitly express the isolation of two
processes (disjointness of memory accesses).

For time reasons this course will not say more on this topic, but it is worth noting that the
change from uni-processing to multi-core is bigger than almost any other change in computing,
and the sequential languages which we learned how to compile efficiently for sequential machines
seem no longer appropriate.
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Part B: Higher-Level Optimisations

This second part of the course concerns itself with more modern optimisation techniques than
the first part. A simplistic view is that the first part concerned classical optimisations for im-
perative languages and this part concerns mainly optimisations for functional languages but
this somewhat misrepresents the situation. For example even if we perform some of the op-
timisations (like strictness optimisations) detailed here on a functional language, we may still
wish to perform flowgraph-based optimisations like register allocation afterwards. The view I
would like to get across is that the optimisations in this part tend to be interprocedural ones
and these can often be seen with least clutter in a functional language. So a more correct view
is that this part deals with analyses and optimisations at a higher level than that which is easily
represented in a flowgraph. Indeed they tend to be phrased in terms of the original (or possibly
canonicalised) syntax of the programming language, so that flowgraph-like concepts are not
easily available (whether we want them to be or not!).

As a final remark aimed at discouraging the view that the techniques detailed here ‘are only
suited to functional languages’, one should note that for example ‘abstract interpretation’ is
a very general framework for analysis of programs written in any paradigm and it is only the
instantiation of it to strictness analysis given here which causes it to be specialised to programs
written in a functional paradigm. Similarly ‘rule-based program property inference’ can be seen
as a framework which can be specialised into type checking and inference systems (the subject
of another CST Part II course) in addition to the techniques given here.

One must remark however, that the research communities for dataflow analyses and higher-
level program analyses have not always communicated sufficiently for unified theory and notation
to have developed.

We start by looking at classical intra-procedural optimisations which are typically done at
the syntax tree level. Note that these can be seen as code motion transformations (see Section 6).

10 Algebraic Identities

One form of transformation which is is not really covered here is the (rather boring) purely
algebraic tree-to-tree transformation such as e +0 — e or (e +n) + m — e+ (n + m) which
usually hold universally (without the need to do analysis to ensure their validity, although
neither need hold in floating point arithmetic!). A more programming-oriented rule with a
trivial analysis might be transforming

let x = e in if e’ then ... x ... else e’
in a lazy language to
if e’ then let x = e in ... X ... else e’’

when e’ and e’’ do not contain x. The flavour of transformations which concern us are those
for which a non-trivial (i.e. not purely syntactic) property is required to be shown by analysis
to validate the transformation.

10.1 Strength reduction

A slightly more exciting example is that of strength reduction. Strength reduction generally
refers to replacing some expensive operator with some cheaper one. A trivial example given by
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a simple algebraic identity such as 2*xe — let x =e in x + z. It is more interesting/useful
to do this in a loop.

First find loop induction variables, those whose only assignment in the loop is i ;= i ® ¢
for some operator @ and some constant® ¢. Now find other variables j, whose only assignment
in the loop is j := ca @ ¢1 ® i, where 2 ® (y B z) = (x @ y) ® (x ® z) and ¢y, ¢y are constants
(we assume this assignment to j is before the update to i to make the following explanation
simpler).

The optimisation is to move the assignment j := co ® ¢; ® i to the entry to the loop®, and
add an end-of-loop-body assignment j := j @ (¢; ® ¢). Now that we know the relation of i to
j we can, for example, change any loop-termination test using ¢ to one using j and therefore
sometimes eliminate ¢ entirely. For example, assume int v[100]; and ints to be 4 bytes wide
on a byte addressed machine. Let us write &&v for the byte address of the first element of array
v, noting it is a constant, and consider

for (i=0; i<100; i++) v[i] = 0;

Although this code is sometimes optimal, many machines need to calculate the physical byte
address &&v + 4 * i separately from the store instruction, so the code is really

for (i=0; i<100; i++) { p = &&v + 4*i; Stored4ZerobytesAt(p); }
Strength reduction gives:

for ((i=0, p=&&v); i<100; (i++, p+=4)) StoredZerobytesAt(p);
and rewriting the loop termination test gives

for ((i=0, p=&&v); p<&&v+400; (i++, p+=4)) StoredZerobytesAt(p);
Dropping the i (now no longer used), and re-expressing in proper C gives

int *p;
for (p=&v[0]; p<&v[100]; p++) *p = O;

which is often (depending on exact hardware) the optimal code, and is perhaps the code that
the C-hackers of you might have been tempted to write. Let me discourage you—this latter
code may save a few bytes on your current hardware/compiler, but because of pointer-use, is
much harder to analyse—suppose your shiny new machine has 64-bit operations, then the loop
as originally written can (pretty simply, but beyond these notes) be transformed to be a loop
of 50 64-bit stores, but most compilers will give up on the ‘clever C programmer’ solution.

I have listed strength reduction in this tree-oriented-optimisation section. In many ways it is
easier to perform on the flowgraph, but only if loop structure has been preserved as annotations
to the flowgraph (recovering this is non-trivial—see the Decompilation section).

% Although I have written ‘constant’ here I really only need “expression not affected by execution of (invariant
in) the loop”.
51f ¢ is seen to be assigned a constant on entry to the loop then the RHS simplifies to constant.
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11 Abstract Interpretation

In this course there is only time to give the briefest of introductions to abstract interpretation.

We observe that to justify why (—1515) x 37 is negative there are two explanations. One is
that (—1515) x 37 = —56055 which is negative. Another is that —1515 is negative, 37 is positive
and ‘negative X positive is negative’ from school algebra. We formalise this as a table

® (=) (0 ()
(=) | () 0) (=)

(0) | (0) (0) (0)

) (=) ) +)

Here there are two calculation routes: one is to calculate in the real world (according to the
standard interpretation of operators (e.g. X means multiply) on the standard space of values) and
then to determine the whether the property we desire holds; the alternative is to abstract to an
abstract space of values and to compute using abstract interpretations of operators (e.g. X means
®) and to determine whether the property holds there. Note that the abstract interpretation
can be seen as a ‘toy-town’ world which models certain aspects, but in general not all, of reality
(the standard interpretation).

When applying this idea to programs undecidability will in general mean that answers
cannot be precise, but we wish them to be safe in that “if a property is exhibited in the
abstract interpretation then the corresponding real property holds”. (Note that this means we
cannot use logical negation on such properties.) We can illustrate this on the above rule-of-
signs example by considering (—1515) 4+ 37: real-world calculation yields —1478 which is clearly
negative, but the abstract operator @ on signs can only safely be written

—~~ |

& [ (=) (0 (1)
=) (=) =) (™)
©) | (=) (0) (+)
[ ) ()

where (7) represents an additional abstract value conveying no knowledge (the always-true
property), since the sign of the sum of a positive and a negative integer depends on their
relative magnitudes, and our abstraction has discarded that information. Abstract addition &
operates on (?) by (?)®x = (?) = 2 & (?) — an unknown quantity may be either positive
or negative, so the sign of its sum with any other value is also unknown. Thus we find that,
writing abs for the abstraction from concrete (real-world) to abstract values we have

abs((—1515) +37) = abs(—1478) = (—), but

abs(—1515) @ abs(37) = (—) & (+) = (7).
Safety is represented by the fact that (—) C (?7), i.e. the values predicted by the abstract
interpretation (here everything) include the property corresponding to concrete computation

(here {z € Z | z < 0}).
Note that we may extend the above operators to accept (?) as an input, yielding the

definitions
® | (=) (0 ) () ® (=) (0 () (™)
(=) [ (+) 0 (=) (7) == = 0O
0) | (0) (0) (0) (0) ©0) | (=) () ) ()
() | (=) 0 (+) (7) )@ ) ) O
M@ O @ @ M@ O O O
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and hence allowing us to compose these operations arbitrarily; for example,

(abs(—1515) ® abs(37)) ® abs(42) = ((—) @ (+)) ® (+) = (?), or
(abs(—1515) @ abs(37)) @ abs(0) = ((—) @ (+)) ® (0) = (0).

Similar tricks abound elsewhere e.g. ‘casting out nines’ (e.g. 123456789 divides by 9 because
142434+4+54+6+7+8+9 =45 does, 45 because 4+5 does).

One point worth noting, because it turns up in programming equivalents, is that two different
syntactic forms which have the same standard meaning may have differing abstract meanings.
An example for the rule-of-signs is (x + 1) x (z — 3) 4+ 4 which gives (?) when x = (—) whereas
(x x )+ (=2 xz)+ 1 gives (+).

Abstract interpretation has been used to exhibit properties such as live variable sets, avail-
able expression sets, types etc. as abstract values whose computation can be seen as pre-
evaluating the user’s program but using non-standard (i.e. abstract) operators during the com-
putation. For this purpose it is useful to ensure the abstract computation is finite, e.g. by
choosing finite sets for abstract value domains.

12 Strictness Analysis

This is an example of abstract interpretation which specialises the general framework to deter-
mining when a function in a lazy functional language is strict in a given formal parameter (i.e.
the actual parameter will necessarily have been evaluated whenever the function returns). The
associated optimisation is to use call-by-value (eager evaluation) to implement the parameter
passing mechanism for the parameter. This is faster (because call-by-value is closer to current
hardware than the suspend-resume of lazy evaluation) and it can also reduce asymptotic space
consumption (essentially because of tail-recursion effects). Note also that strict parameters can
be evaluated in parallel with each other (and with the body of the function about to be called!)
whereas lazy evaluation is highly sequential.

In these notes we will not consider full lazy evaluation, but a simple language of recur-
sion equations; eager evaluation is here call-by-value (CBV—evaluate argument once before
calling the function); lazy evaluation corresponds to call-by-need (CBN—pass the argument
unevaluated and evaluate on its first use (if there is one) and re-use this value on subsequent
uses—argument is evaluated 0 or 1 times). In a language free of side-effects CBN is seman-
tically indistinguishable (but possibly distinguishable by time complexity of execution) from
call-by-name (evaluate a parameter each time it is required by the function body—evaluates
the argument 0,1,2,.. . times).

The running example we take is

plus(x,y) = cond(x=0,y,plus(x-1,y+1)).
To illustrate the extra space use of CBN over CBV we can see that

plus(3,4) — cond(3=0,4,plus(3-1,4+1))
plus(3-1,4+1)
plus(2-1,4+1+1)
plus(1-1,4+1+1+1)

4+1+1+1

5+1+1

111117
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— 6+1
— 7.

The language we consider here is that of recursion equations:

Fl(xl,...,mkl) = €1

E(z1,...,25,) = en
where e is given by the syntax
ex=u; | Ailer,...,er,) | Filer,...ex,)

where the A; are a set of symbols representing built-in (predefined) function (of arity r;). The
technique is also applicable to the full A-calculus but the current formulation incorporates recur-
sion naturally and also avoids difficulties with the choice of associated strictness optimisations
for higher-order situations.

We now interpret the A; with standard and abstract interpretations (a; and ag respectively)
and deduce standard and abstract interpretations for the F; (f; and ff respectively).

Let D = 72, (= 7ZZ U {L}) be the space of integer values (for terminating computations
of expressions e) augmented with a value L (to represent non-termination). The standard
interpretation of a function A; (of arity r;) is a value a; € D™ — D. For example

+(Ly) = L

+(z, L) = L

+(z,y) = x+xy otherwise
cond(L,z,y) = L
cond(0,z,y) = vy
cond(p,z,y) = x otherwise

(Here, and elsewhere, we treat 0 as the false value for cond and any non-0 value as true, as in
C.)

We can now formally define the notion that a function A (of arity r) with semantics a €
D" — D is strict in its ith parameter (recall earlier we said that this was if the parameter had
necessarily been evaluated whenever the function returns). This happens precisely when

(le, C 7di—17di+17 co,dy € D) a(dl,. . .,di_l,J_,dH_l, e ,dr) = 1.

We now let Df = 2 &f {0,1} be the space of abstract values and proceed to define an ag

for each a;. The value ‘0’ represents the property ‘guaranteed looping’ whereas the value ‘1’
represents ‘possible termination’.
Given such an a € D" — D we define af : 2" — 2 by

af(xy,...,xy) = 0 if (Vdy,...,dr € Dst. (z;=0=dj= 1)) a(dy,...,d,) =1

= 1 otherwise.

22



This gives the strictness function ag which provides the strictness interpretation for each A;.

Note the equivalent characterisation (to which we shall return when we consider the relationship

of ffto f)
aﬁ(xl,...,xr):0<:>(Vd1,...,dr€Ds.t. (x;=0=d;=1))a(dy,...,d,) =L
For example we find

+i(z,y) = zAy
cond*(p,z,y) = pA(zVy)
We build a table into our analyser giving the strictness function for each built-in function.

Strictness functions generalise the above notion of “being strict in an argument”. For a
given built-in function a, we have that a is strict in its ith argument iff

af(1,...,1,0,1,...,1) =0

(where the ‘0’ is in the ith argument position). However strictness functions carry more infor-
mation which is useful for determining the strictness property of one (user) function in terms
of the functions which it uses. For example consider

let f1(x,y,z) = if x then y else z
let f2(x,y,z) = if x then y else 42
let gi(x,y) = f1(x,y,y+1)
let g2(x,y) = f2(x,y,y+1)

Both £1 and £2 are strict in x and nothing else—which would mean that the strictness of gl
and g2 would be similarly deduced identical-—whereas their strictness functions differ

i (zy,2) = 2A(yVaz)
2 w,y,2) = =

and this fact enables us (see below) to deduce that g1 is strict in x and y while g2 is merely
strict in x. This difference between the strictness behaviour of £1 and £2 can also be expressed
as the fact that £1 (unlike £2) is jointly strict in y and z (i.e. (Vo € D)f(z,L,1) = 1) in
addition to being strict in x.

Now we need to define strictness functions for user-defined functions. The most exact way
to calculate these would be to calculate them as we did for base functions: thus

f(x,y) = if tautology(x) then y else 42

would yield
fixy) =z Ay

assuming that tautology was strict. (Note use of f? in the above—we reserve the name f# for
the following alternative.) Unfortunately this is undecidable in general and we seek a decidable
alternative (see the corresponding discussion on semantic and syntactic liveness).
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To this end we define the ff not directly but instead in terms of the same composition and
recursion from the a? as that which defines the F; in terms of the A;. Formally this can be seen
as: the f; are the solution of the equations

Fl(xl,...,xkl) = €1

Fo(z1,...,25,) = en

when the A; are interpreted as the a; whereas the ff are the solutions when the A; are interpreted

as the ag.

Safety of strictness can be characterised by the following: given user defined function F' (of
arity k) with standard semantics f : D¥ — D and strictness function f*: 28 — 2 by

@1, x) =0= (Vdy,...,dy € Dst. (z;=0=dy = 1)) f(dy,...,d) =L

Note the equivalent condition for the A; had = strengthened to <—this corresponds to the
information lost by composing the abstract functions instead of abstracting the standard com-
position. An alternative characterisation of safety is that f%() < f(Z).

Returning to our running example

plus(x,y) = cond(x=0,y,plus(x-1,y+1)).
we derive equation
plusﬁ(x,y) = condﬁ(eqﬁ(x,()ﬂ),y,plusﬁ(sublﬁ(:n), addlﬁ(y)). (1)

Simplifying with built-ins

eq'(z,y) = xAy
0 = 1

add1®(z) = z

sublf(z) = =

gives

plus*(z,y) = z A (y V plus*(z,y)).
Of the six possible solutions (functions in 2 x 2 — 2 which do not include negation—negation
corresponds to ‘halt iff argument does not halt’)

{AMz,9).0, Az,y).x Ay, Az,y).z, ANz,v).y, Nz,y).zVy, Az,y).l}

we find that only A(z,y).x and A(z,y).x Ay satisfy equation (1) and we choose the latter for
the usual reasons—all solutions are safe and this one permits most strictness optimisations.

Mathematically we seek the least fixpoint of the equations for plus® and algorithmically we
can solve any such set of equations (using £#[i] to represent fl-ﬁ, and writing eg to mean e; with
the Fj and A; replaced with f]ti and ag) by:

for i=1 to n do f#[i] := AZ.0
while (f#[] changes) do
for i=1 to n do
f#[i] = ATel.
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Note the similarity to solving dataflow equations—the only difference is the use of functional
dataflow values. Implementation is well served by an efficient representation of such boolean
functions. ROBDDs” are a rational choice in that they are a fairly compact representation with
function equality (for the convergence test) being represented by simple pointer equality.

For plus® we get the iteration sequence A(z.y).0 (initial), A(x,y).z A y (first iteration),
Az, y).x Ay (second iteration, halt as converged).

Since we can now see that plus®(0,1) = plus*(1,0) = 0 we can deduce that plus is strict in
x and in y.

We now turn to strictness optimisation. Recall we suppose our language requires each
parameter to be passed as if using CBN. As indicated earlier any parameter shown to be strict
can be implemented using CBV. For a thunk-based implementation of CBN this means that we
continue to pass a closure \().e for any actual parameter e not shown to be strict and evaluate
this on first use inside the body; whereas for a parameter shown to be strict, we evaluate e
before the call by passing it using CBV and then merely use the value in the body.

13 Constraint-Based Analysis

In constraint-based analysis, the approach taken is that of walking the program emitting con-
straints (typically, but not exclusively) on the sets of values which variables or expressions may
take. These sets are related together by constraints. For example if x is constrained to be an
even integer then it follows that x + 1 is constrained to be an odd integer.

Rather than look at numeric problems, we choose as an example analysis the idea of control-
flow analysis (CFA, technically 0-CFA for those looking further in the literature); this attempts
to calculate the set of functions callable at every call site.

13.1 Constraint systems and their solution

This is a non-examinable section, here to provide a bit of background.

Many program analyses can be seen as solving a system of constraints. For example in
LVA, the constraints were that a “set of live variables at one program point is equal to some
(monotonic) function applied to the sets of live variables at other program points”. Boundary
conditions were supplied by entry and/or exit nodes. I used the “other lecturer did it” tech-
nique (here ‘semantics’) to claim that such sets of such constraints have a minimal solution.
Another example is Hindley-Milner type checking—we annotate every expression with a type
ti, e.g. (el-i1 eg")l63 and then walk the program graph emitting constraints representing the need
for consistency between neighbouring expressions. The term above would emit the constraint
t1 = (t2 — t3) and then recursively emit constraints for e; and es. We can then solve these
constraints (now using unification) and the least solution (substituting types to as few ¢; as
possible) corresponds to ascribing all expressions their most-general type.

In the CFA below, the constraints are inequations, but they again have the property that a
minimal solution can be reached by initially assuming that all sets a; are empty, then for each
constraint a O ¢ (note we exploit that the LHS is always a flow variable) which fails to hold,
we update o to be ¢ and loop until all equations hold.

"ROBBD means Reduced Ordered Binary Decision Diagram, but often OBDD or BDD is used to refer to the

same concept.
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One exercise to think of solving inequation systems is to consider how, given a relation R,
its transitive closure 7' may be obtained. This can be expressed as constraints:

RCT
{@y)} CTA{(y,2)} SR = {(z,2)} T

14 Control-Flow Analysis (For A-Terms)

This is not to be confused with the simpler intraprocedural reachability analysis on flow graphs,
but rather generalises call graphs. Given a program P the aim is to calculate, for each expression
e, the set of primitive values (here integer constants and A-abstractions) which can result from
e during the evaluation of P. (This can be seen as a higher-level technique to improve the
resolution of the approximation “assume an indirect call may invoke any procedure whose
address is taken” which we used in calculating the call graph.)

We take the following language for concrete study (where we consider ¢ to range over a set
of (integer) constants and z to range over a set of variables):

ex=ux|c|Av.e|elex|let x =ep in es.

Programs P are just terms in e with no free variables. For this lecture we will consider the
program, P, given by
let id = Ax.x in id id 7

We now need a notion of program point (generalisation of label) which we can use to reference
uniquely a given expression in context. This is important because the same expression may
occur twice in a program but we wish it to be treated separately. Thus we label the nodes
of the syntax tree of the above program uniquely with their occurrences in the tree (formally
sequences of integers representing the route from the root to the given node, but here convenient
integers). This gives

(let 1d!® = (\x®.x21)22 in ((ig30 1931)32 733)34y1,
The space of flow values F' for this program is
{(\x20.x21)22 733}

which again in principle require the labelling to ensure uniqueness. Now associate a flow variable
with each program point, i.e.

iy, 10, G20, 21, (22, (30, (031, 32, (33, (X34.

In principle we wish to associate, with each flow variable «; associated with expression e’, the
subset of the flow values which it yields during evaluation of P. Unfortunately again this is
undecidable in general and moreover can depend on the evaluation strategy (CBV/CBN). We
have seen this problem before and, as before, we give a formulation to get safe approximations
(here possibly over-estimates) for the a;.8 Moreover these solutions are safe with respect to any
evaluation strategy for P (this itself is a source of some imprecision!).

We get constraints on the «; determined by the program structure (the following constraints
are in addition to the ones recursively generated by the subterms e, e1, ez and e3):

8The above is the normal formulation, but you might prefer to think in dataflow terms. «; represents
possible-values (i) and the equations below are dataflow equations.
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for a term z' we get the constraint a; 2 «; where 27 is the associated binding (via
let 2/ =---or \ad.--.);

for a term ¢’ we get the constraint o; D {c'};

e for a term (\z7.e*)" we get the constraint o; O {(Az7.e¥)'};

for a term (efe5)? we get the compound constraint (o — ;) 2 ay;

e for a term (let z! = ¢ in ek)? we get the constraints oy O oy, and oy D ay;

e for a term (if e]i then e} else eg)i we get the constraints «; 2 ay and a; D «y.

Here (7 + d) D [ represents the fact that the flow variable 8 (corresponding to the information
stored for the function to be applied) must include the information that, when provided an
argument contained within the argument specification =y, it yields results contained within the
result specification 0. (Of course § may actually be larger because of other calls.) Formally
(v~ d) 2 B is shorthand for the compound constraint that (i.e. is satisfied when)

whenever 5 D {(Az?.e")P} we have ag D vy A D .
You may prefer instead to to see this directly as “applications generate an implication”:

o for a term (e{eg)i we get the constraint implication

a; D {(Arle" )P} = oy D ap Ny D .

Now note this implication can also be written as two implications

a; D {( Az} = ag 2 o
a; 2 {( A2t} = o D

Now, if you know about Prolog/logic programming then you can see these expression forms as
generating clauses defining the predicate symbol D. Most expressions generate simple ‘always
true’ clauses such as a; O {c'}, whereas the application form generates two implicational clauses:

ag D ag = «j D {(Az%.e")P}
a; Doy = a; O {(\z%e")P}

Compare the two forms respectively with the two clauses

app([],X,X).
app([AIL],M, [AIN]) :- app(L,M,N).

which constitutes the Prolog definition of append.
As noted in Section 13.1 the constraint set generated by walking a program has a unique
least solution.
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The above program P gives the following constraints, which we should see as dataflow
inequations:

a1 2 o3y let result
alg 2 Qo9 let binding
azs D {(Ax?.x21)22}  \-abstraction
a1 2D Qo X use
azs 2 {73} constant 7
azp 2 Qo id use

31— a3 2O Qg application-32
a3] 2 Qo id use

g3 > 34 2O (39 application-34

Again all solutions are safe, but the least solution is

] — Q34 — 39 — (91 — Q9 — {(/\XQD.X21)22, 733}
30 — (31 — 10 — (g — {(AXQO.le)m}
R {733}

You may verify that this solution is safe, but note that it is imprecise because (Ax?%.x%1)?2 € a4
whereas the program always evaluates to 733. The reason for this imprecision is that we have only
a single flow variable available for the expression which forms the body of each A-abstraction.
This has the effect that possible results from one call are conflated with possible results from
another. There are various enhancements to reduce this which we sketch in the next paragraph
(but which are rather out of the scope of this course).

The analysis given above is a monovariant analysis in which one property (here a single
set-valued flow variable) is associated with a given term. As we saw above, it led to some
imprecision in that P above was seen as possibly returning {7, Ax.x} whereas the evaluation of
P results in 7. There are two ways to improve the precision. One is to consider a polyvariant
approaching in which multiple calls to a single procedure are seen as calling separate procedures
with identical bodies. An alternative is a polymorphic approach in which the values which flow
variables may take are enriched so that a (differently) specialised version can be used at each
use. One can view the former as somewhat akin to the ML treatment of overloading where we
see (letting A represent the choice between the two types possessed by the + function)

op + : int*int->int A real*real->real
and the latter can similarly be seen as comparable to the ML typing of
fn x=>x : Va.a—>a.

This is an active research area and the ultimately ‘best’ treatment is unclear.

15 Class Hierarchy Analysis

This section is just a pointer for those of you who want to know more about optimising object-
oriented programs. Dean et al. [3] “ Optimization of Object-Oriented Programs Using Static
Class Hierarchy Analysis” is the original source. Ryder [4] “Dimensions of Precision in Reference
Analysis of Object-Oriented Programming Languages” gives a retrospective.
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16 Inference-Based Program Analysis

This is a general technique in which an inference system specifies judgements of the form
F'ke:o

where ¢ is a program property and I' is a set of assumptions about free variables of e. One
standard example (covered in more detail in the CST Part II ‘Types’ course) is the ML type
system. Although the properties are here types and thus are not directly typical of program
optimisation (the associated optimisation consists of removing types of values, evaluating in a
typeless manner, and attaching the inferred type to the computed typeless result; non-typable
programs are rejected) it is worth considering this as an archetype. For current purposes ML
expressions e can here be seen as the A-calculus:

en=x|Ar.e|erer
and (assuming « to range over type variables) types ¢ of the syntax
to=alint |t —t.

Now let I' be a set of assumptions of the form {z; : ¢1,...,z, : t,} which assume types t; for
free variables z;; and write I'[z : ] for ' with any assumption about x removed and with z : ¢
additionally assumed. We then have inference rules:

(VAR)P[$ b at

Dlz:tjFe:t
I'Xve:t—t
The :t—=t I'key:t
T'Fejey:t '

(LAM)

(APP)

Safety: the type-safety of the ML inference system is clearly not part of this course, but its
formulation clearly relates to that for other analyses. It is usually specified by the soundness
condition:
({Fe:t)= (le] € [t])

where [e] represents the result of evaluating e (its denotation) and [t] represents the set of
values which have type t. Note that (because of {}) the safety statement only applies to closed
programs (those with no free variables) but its inductive proof in general requires one to consider
programs with free variables.

The following gives a more program-analysis—related example; here properties have the form

¢ = odd | even | ¢ — ¢'.

We would then have rules:

(VAR)F[Q: cplFx o

Dlz:¢lFe:q
I'FAze:¢p— ¢
ke :¢p—¢ I'key: ¢
I'Feex: ¢ '

(LAM)

(APP)
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Under the assumptions
I'={2:even, +:even — even — even, X :even — odd — even}

we could then show
I'FAz ) \y.2 xxz+y: odd — even — even.

but note that showing
I"'F Az \y.2 X o+ 3 X y: even — even — even.

would require I to have two assumptions for x or a single assumption of a more elaborate
property, involving conjunction, such as:

X even — even — even N
even — odd — even A
odd — even — even A
odd — odd — odd.

Exercise: Construct a system for odd and even which can show that
C'Eff)+ f(2)(Av.x) - odd

for some T'.

17 Effect Systems

This is an example of inference-based program analysis. The particular example we give concerns
an effect system for analysis of communication possibilities of systems.
The idea is that we have a language such as the following

ex=ux|Ar.e|erex | £7x.e| Elej.ea | if e then ey else es.

which is the A-calculus augmented with expressions £7x.e which reads an int from a channel £
and binds the result to x before resulting in the value of e (which may contain z) and £lej.eq
which evaluates e; (which must be an int) and writes its value to channel £ before resulting in
the value of es. Under the ML type-checking regime, side effects of reads and writes would be
ignored by having rules such as:

Pz :intlFe:t

READ
( ) I'FE&ze:t
I'kep:iint I'keg:t
WRITE .
( ) I'F&lejes:t

For the purpose of this example, we suppose the problem is to determine which channels
may be read or written during evaluation of a closed term P. These are the effects of P. Here
we take the effects, ranged over by F, to be subsets of

{We, Re | € a channel}.
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The problem with the natural formulation is that a program like
N Ax.(2.x

has an immediate effect of writing to £ but also a latent effect of writing to ¢ via the resulting
A-abstraction.
We can incorporate this notion of effect into an inference system by using judgements of the
form
I'ke:t, F

whose meaning is that when e is evaluated then its result has type ¢t and whose immediate effects
are a subset (this represents safety) of F. To account for latent effects of a A-abstraction we
need to augment the type system to

tu=int |t 5 ¢

Letting one(f) = {f} represent the singleton effect, the inference rules are then

(VAR)F[Q: ctE it

Clx:int)|Fe:t, F
I'E&lxe:t, one(Re) UF

I'ey:int, F I'keg:t, F’
I'H&lej.eg i t, F U one(We) U F

Plz:tjke:t,F
F}—)\x.e:tgt’,w

Fl—elzt}i/;t’,F I'key:t, F’
I'teey:t!/,FUF UF"

(READ)

(WRITE)

(LAM)

(APP)

Note that by changing the space of effects into a more structured set of values (and by
changing the understanding of the (), one and U constants and operators on effects e.g. using
sequences with U being append) we could have captured more information such as temporal
ordering since

lx.CNx +1).42 :int, {Re} U {W,}

and
C17.67x,42 : int, {W:} U {R¢}.

Similarly one can extend the system to allow transmitting and receiving more complex types
than int over channels.

One additional point is that care needs to be taken about allowing an expression with fewer
effects to be used in a context which requires more. This is an example of subtyping although
the example below only shows the subtype relation acting on the effect parts. The obvious rule
for if-then-else is:

I'kep:iant, F I'keg:t, F’ I'kes:t, F”
I'-if e; then ey elsees:t, FUF' UF"

(COND)
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However, this means that
if z then A\z.£13.x + 1 else A\x.x + 2

is ill-typed (the types of ez and es mismatch because their latent effects differ). Thus we tend
to need an additional rule which, for the purposes of this course can be given by

Tre:t 5S¢ P
FI—e:tﬂt’,F

(SUB) (provided F’ C F")

Safety can then similarly approached to that of the ML type system where semantic function
[e] is adjusted to yield a pair (v, f) where v is a resulting value and f the actual (immediate)
effects obtained during evaluation. The safety criterion is then stated:

{IFe:t,F)= (ve[t] N f < F where (v, f) = [e])

Incidentally, various “purity analyses” for Java (which capture that a pure method has no
effect on existing data structures) are closely related to effect systems.

18 Points-To and Alias Analysis

Consider an MP3 player containing code:

for (channel = 0; channel < 2; channel++)
process_audio(channel);

or even

process_audio_left();
process_audio_right();

These calls can only be parallelised (useful for multi-core CPUs) if neither call writes to a
memory location read or written by the other.

So, we want to know (at compile time) what locations a procedure might write to or read
from at run time.

For simple variables, even including address-taken variables, this is moderately easy (we
have done similar things in “ambiguous ref’ in LVA and “ambiguous kill” in Avail), but note
that multi-level pointers int a, *b=&a, **c=&b; make the problem more complicated here.

So, given a pointer value, we are interested in finding a (finite) description of what locations
it might point to—or, given a procedure, a description of what locations it might read from or
write to. If two such descriptions have empty intersection then we can parallelise.

To deal with new () we will adopt the crude idea that all allocations done at a single program
point may alias, but allocations done at two different points cannot:

for (i=1; i<2; i++)
{t =new();
if (i==1) a=t; else b=t;

= new();
new() ;

Q0
nn
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We see a and b as possibly aliasing (as they both point to the new on line 2, while ¢ and d
cannot alias with a, b or each other. A similar effect would occur in

for (...)

{ p = cons(a,p);
p = cons(b,p);

}

Where we know that p points to a new from line 2, which points to a new from line 3, which
points to a new from line 2 .. ..

Another approximation which we will make is to have a single points-to summary that says
(e.g.) p may point to ¢ or d, but definitely nothing else. We could record this information on a
per-statement level which would be more accurate, but instead choose to hold this information
once (per-procedure). Hence in

p = &c;
*p = 3;
p = &d;
q = &e;

we will assume that the indirect write may update c or d but not e.
Strategy:

e do a “points-to” analysis which associates each variable with (a description of) a set of
locations.

e can now just say “x and y may alias if their results from points-to analysis is not provably
disjoint”.

Alias analysis techniques can become very expensive for large programs “alias analysis is unde-
cidable in theory and intractable in practice”. Simpler techniques tend to say “I don’t know”
too often.

We will present Andersen’s O(n?) algorithm, at least in part because the constraint-solving
is identical to 0-CFA! Note that we only consider the intra-procedural situation.

First assume programs have been written in 3-address code and with all pointer-typed oper-
ations being of the form

x:=newy {is a program point (label)

x:=null optional, can see as variant of new

x =&y only in C-like languages, also like new variant
T =y copy

T = *y field access of object

XL =Y field access of object

Note that pointer arithmetic is not considered. Also, note that while new can be seen as
allocating a record, we only provide operations to read and write all fields at once. This means
that fields are conflated, i.e. we analyse x.f = e and x.g = e as identical—and equivalent to
«xxr = e. It is possible to consider so-called ‘field-sensitive’ analyses (not in this course though,
so use google if you want to know more).
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18.1 Andersen’s analysis in detail

Define a set of abstract values
V = Var U {new, | £ € Prog} U {null}

As said before, we treat all allocations at a given program point as indistinguishable.

Now consider the points-to relation. Here we see this as a function pt(z) : V. — P(V). As
said before, we keep one pt per procedure (intra-procedural analysis).

Each line in the program generates zero or more constraints on pt:

Fai=&y:y € pt(x) bz :=null : null € pt(z)
F z := newy : newy € pt(x) Fx:=y:pt(y) C pt(x)
z € pt(y) z € pt(x)
==y pt(2) C pt(z) Fxx =y pt(y) C pt(2)

Note that the first three rules are essentially identical.
The above rules all deal with atomic assignments. The next question to consider is control-
flow. Our previous analyses (e.g. LVA) have all been flow-sensitive, e.g. we treat

x = 1; print x; y = 2; print y;

and

X 1; y =2 ; print x; print y

differently (as required when allocating registers to x and y). However, Andersen’s algorithm is
flow-insensitive, we simply look at the set of statements in the program and not at their order
or their position in the syntax tree. This is faster, but loses precision. Flow-insensitive means
property inference rules are essentially of the form (here C is a command, and S is a set of
constraints):
FC:S FCO:9

FC,C":S5US

(ASS) (SEQ)

Fe:=¢€': (as above)
FC:S HC' S

(COND)I— if ethen C else C': SU Y’

FC:S
Fwhileedo C: S

(WHILE)

The safety property A program analysis on its own is never useful—we want to be able to
use it for transformations, and hence need to know what the analysis guarantees about run-time
execution.

Given pt solving the constraints generated by Andersen’s algorithm then we have that

e at all program points during execution, the value of pointer variable x is always in the
description pt(x). For null and &z this is clear, for new, this means that z points to a
memory cell allocated there.
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Hence (alias analysis, and its uses):

e If pt(x) N pt(y) is empty, then z and y cannot point to the same location, hence it is safe
to (e.g.) swap the order of n=*x; *y=m, or even to run them in parallel.

Epilogue for Part B

You might care to reflect that program analyses and type systems have much in common. Both
attempt to determine whether a given property of a program holds (in the case of type systems,
this is typically that the application of an operator is type-safe). The main difference is the use
to which analysis results are put—for type systems failure to guarantee type correctness causes
the program to be rejected whereas for program analysis failure to show a result causes less
efficient code to be generated.
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Part C: Instruction Scheduling

19 Introduction

In this part we introduce instruction scheduling for a processor architecture of complexity typical
of the mid-1980’s. Good examples would be the MIPS R-2000 or SPARC implementations of
this period. Both have simple 5-stage pipelines (IF,RF,EX,MEM,WB) with register bypassing
and both have delayed branches and delayed loads. One difference is that the MIPS had no
interlocks on delayed loads (therefore requiring the compiler writer, in general, to insert NOP’s
to ensure correct operation) whereas the SPARC had interlocks which cause pipeline stalls
when a later instruction refers to an operand which is not yet available. In both cases faster
execution (in one case by removing NOP’s and in the other by avoiding stalls) is often possible
by re-ordering the (target) instructions essentially within each basic block.

Of course there are now more sophisticated architectures: many processors have multi-
ple dispatch into multiple pipelines. Functional units (e.g. floating point multipliers) may be
scheduled separately by the pipeline to allow the pipeline to continue while they complete.
They may be also duplicated. High-performance architectures go as far as re-scheduling in-
struction sequences dynamically, to some extent making instruction scheduling at compile time
rather redundant. However, the ideas presented here are an intellectually satisfactory basis for
compile-time scheduling for all architectures.

The data structure we operate upon is a graph of basic blocks, each consisting of a sequence of
target instructions obtained from blow-by-blow expansion of the abstract 3-address intermediate
code we saw in Part A of this course. Scheduling algorithms usually operate within a basic block
and adjust if necessary at basic block boundaries—see later.

The objective of scheduling is to minimise the number of pipeline stalls (or the number
of inserted NOP’s on the MIPS). Sadly the problem of such optimal scheduling is often NP-
complete and so we have to fall back on heuristics for life-size code. These notes present the
O(n?) algorithm due to Gibbons and Muchnick [5].

Observe that two instructions may be permuted if neither writes to a register read or written
by the other. We define a graph (actually a DAG), whose nodes are instructions within a basic
block. Place an edge from instruction a to instruction b if a occurs before b in the original
instruction sequence and if a and b cannot be permuted. Now observe that any of the minimal
elements of this DAG (normally drawn at the top in diagrammatic form) can be validly scheduled
to execute first and after removing such a scheduled instruction from the graph any of the new
minimal elements can be scheduled second and so on. In general any topological sort of this
DAG gives a valid scheduling sequence. Some are better than others and to achieve non-NP-
complete complexity we cannot in general search freely, so the current O(n?) algorithm makes
the choice of the next-to-schedule instruction locally, by choosing among the minimal elements
with the static scheduling heuristics

e choose an instruction which does not conflict with the previous emitted instruction
e choose an instruction which is most likely to conflict if first of a pair (e.g. 1d.w over add)

e choose an instruction which is as far as possible (over the longest path) from a graph-
maximal instruction—the ones that can validly be scheduled as the last of the basic block.
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On the MIPS or SPARC the first heuristic can never harm. The second tries to get instructions
which can provoke stalls out of the way in the hope that another instruction can be scheduled
between a pair which cause a stall when juxtaposed. The third has similar aims—given two
independent streams of instructions we should save some of each stream for inserting between
stall-pairs of the other.

So, given a basic block

e construct the scheduling DAG as above; doing this by scanning backwards through the
block and adding edges when dependencies arise, which works in O(n?)

e initialise the candidate list to the minimal elements of the DAG
e while the candidate list is non-empty

— emit an instruction satisfying the static scheduling heuristics (for the first iteration
the ‘previous instruction’ with which we must avoid dependencies is any of the final
instructions of predecessor basic blocks which have been generated so far.

— if no instruction satisfies the heuristics then either emit NOP (MIPS) or emit an
instruction satisfying merely the final two static scheduling heuristics (SPARC).

— remove the instruction from the DAG and insert the newly minimal elements into
the candidate list.

On completion the basic block has been scheduled.

One little point which must be taken into account on non-interlocked hardware (e.g. MIPS)
is that if any of the successor blocks of the just-scheduled block has already been generated
then the first instruction of one of them might fail to satisfy timing constraints with respect to
the final instruction of the newly generated block. In this case a NOP must be appended.

20 Antagonism Between Register Allocation and Instruction
Scheduling

Register allocation by colouring attempts to minimise the number of store locations or registers
used by a program. As such we would not be surprised to find that the generated code for

X :=a; y := b;
were to be

1d.w a,r0
st.w r0,x
1d.w b,r0
st.w r0,y

This code takes 6 cycles? to complete (on the SPARC there is an interlock delay between each
load and store, on the MIPS a NOP must be inserted). According to the scheduling theory
developed above, each instruction depends on its predecessor (def-def or def-use conflicts inhibit
all permutations) this is the only valid execution sequence. However if the register allocator
had allocated r1 for the temporary copying y to b, the code could have been scheduled as

9Here I am counting time in pipeline step cycles, from start of the first 1d.w instruction to the start of the
instruction following the final st.w instruction.
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1d.w a,r0
1d.w b,r1
st.w r0,x
st.w rl,y

which then executes in only 4 cycles.

For some time there was no very satisfactory theory as to how to resolve this (it is related to
the ‘phase-order problem’ in which we would like to defer optimisation decisions until we know
how later phases will behave on the results passed to them). The CRAIG system [1] is one
exception, and 2002 saw Touati’s thesis [8] “Register Pressure in Instruction Level Parallelism”
which addresses a related issue.

One rather ad hoc solution is to allocate temporary registers cyclically instead of re-using
them at the earliest possible opportunity. In the context of register allocation by colouring this
can be seen as attempting to select a register distinct from all others allocated in the same basic
block when all other constraints and desires (recall the MOV preference graph) have been taken
into account.

This problem also poses dynamic scheduling problems in pipelines for corresponding 80x86
instruction sequences which need to reuse registers as much as possible because of their limited
number. High-performance processors achieve effective dynamic rescheduling by having a larger
register set in the computational engine than the potentially small instruction set registers and
dynamically ‘recolouring’ live-ranges of such registers with the larger register set. This then
achieves a similar effect to the above example in which the rO-r1 pair replaces the single r0,
but without the need to tie up another user register.
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Part D: Decompilation and Reverse
Engineering

This final lecture considers the topic of decompilation, the inverse process to compilation
whereby assembler (or binary object) files are mapped into one of the source files which could
compile to the given assembler or binary object source.

Note in particular that compilation is a many-to-one process—a compiler may well ignore
variable names and even compile x<=9 and x<10 into the same code. Therefore we are picking
a representative program.

There are three issues which I want to address:

e The ethics of decompilation;
e Control structure reconstruction; and

e Variable and type reconstruction.

You will often see the phrase reverse engineering to cover the wider topic of attempting
to extract higher-level data (even documentation) from lower-level representations (such as
programs). Our view is that decompilation is a special case of reverse engineering. A site
dedicated to reverse engineering is:

http://www.reengineer.org/

Legality /Ethics

Reverse engineering of a software product is normally forbidden by the licence terms which a
purchaser agrees to, for example on shrink-wrap or at installation. However, legislation (varying
from jurisdiction to jurisdiction) often permits decompilation for very specific purposes. For
example the EU 1991 Software Directive (a world-leader at the time, now superseded by the EU’s
2009/24/EC Directive “on the legal protection of computer programs”) allowed the reproduction
and translation of the form of program code, without the consent of the owner, only for the
purpose of achieving the interoperability of the program with some other program, and only if
this reverse engineering was indispensable for this purpose. Newer legislation has been enacted,
for example the US Digital Millennium Copyright Act which came into force in October 2000
has a “Reverse Engineering” provision which
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. permits circumvention, and the development of technological means for such
circumvention, by a person who has lawfully obtained a right to use a copy of a
computer program for the sole purpose of identifying and analyzing elements of the
program necessary to achieve interoperability with other programs, to the extent
that such acts are permitted under copyright law.”

Note that the law changes with time and jurisdiction, so do it where/when it is legal! Note also
that copyright legislation covers “translations” of copyrighted text, which will certainly include
decompilations even if permitted by contract or by overriding law such as the above.

A good source of information is the Decompilation Page [9] on the web

http://www.program-transformation.org/Transform/DeCompilation

in particular the “Legality Of Decompilation” link in the introduction.
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Control Structure Reconstruction

Extracting the flowgraph from an assembler program is easy. The trick is then to match intervals
of the flowgraph with higher-level control structures, e.g. loops, if-the-else. Note that non-
trivial compilation techniques like loop unrolling will need more aggressive techniques to undo.
Cifuentes and her group have worked on many issues around this topic. See Cifuentes’ PhD [10]
for much more detail. In particular pages 123-130 are mirrored on the course web site

http://www.cl.cam.ac.uk/Teaching/current/OptComp/

Variable and Type Reconstruction

This is trickier than one might first think, because of register allocation (and even CSE). A
given machine register might contain, at various times, multiple user-variables and temporaries.
Worse still these may have different types. Consider

f(int *x) { return x[1] + 2; }

where a single register is used to hold x, a pointer, and the result from the function, an integer.
Decompilation to

f(int r0) { r0 = r0+4; r0 = *(int *)r0; r0O = r0 + 2; return r0; }

is hardly clear. Mycroft uses transformation to SSA form to undo register colouring and then
type inference to identify possible types for each SSA variable. See [11] via the course web site

http://www.cl.cam.ac.uk/Teaching/current/0OptComp/
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