OOP Michaelmas 2025 Prof. Robert Harle

Object Oriented Programming
Prof. Robert Harle

|JA CST, Michaelmas 2025

The OOP Course

Intro to Java

Class Design and Encapsulation

Memory

Inheritance

Polymorphism

Object Lifecycle, Garbage Collection and Copying
Collections, Comparisons

Generics

Coupling, Errors and Exceptions

Design Patterns, Lambdas, Method References and
Streams

OCVvoOoNOGOhWDN =

—

Books and Resources |

= OOP Concepts

= Look for books for those learning to first program in an OOP language (Java,
C++, Python)

= Java: How to Program by Deitel & Deitel (also C++)

= Thinking in Java by Eckels

= Java in a Nutshell (O' Reilly) if you already know another OOP language
= Java specification book: http://java.sun.com/docs/books/jls/

= | ots of good resources on the web

= Design Patterns
= Design Patterns by Gamma et al.

OREILLY"
GLOBAL

EDITION 3

. Real-World
Lots of good resources on the web gon Yeor odern Java

Developmen

A Project-Driven Guide to Fundamentals in Java

Java® How to Program

INACTION ~ Eony Obieas

aaaaaaaaaaaaaaaaaa

Books and Resources ||

http://www.cl.cam.ac.uk/teaching/current/OOProg/

(Links out to moodle site)

Books and Resources ll|

Chat GPT?

Gemini?

(Other generative Als are available. Your home
may be repossessed if you do not keep up
repayments on your mortgage. Eftc etc)

OOP Michaelmas 2025 Prof. Robert Harle

Motivations, Languages, OOP Intro

Motivating OOP

Battling Complexity

P AC LO N E Large software gets complicated fast

SEAN MAN have had your head in a bush for tions and you've got areal treat for the
- MC us the last few years. That’s right, it's a ears and eyes. Get tapping and start

e e e It became clear it was hard to write this code

1 ' Paclone - (C) 1990/1991 Sean McManus [71]

:r‘Aglx;if;g?l written July 1990 - Remix 29th September 1991 f [72] but aISO it Was rea”y hard to maintain it

3 ' Listening 2 Anam (!) [73)

4.2 174])

5 MODE 1:PEN 1:PAPER 0:INK 0.0:INK 1,26:BORDER 0:LOCATE 17,8 [3A]
:PRINT"PACLONE" : LOCATE 8.10:PRINT"By Sean McManus - Sept 199 [3A]

“:LOCATE 8,14 :PRINT"Featuring TRANSOUND STEREO":SYMBOL 255. [3A
e 500075 Bol iR ENT Dagtyning,Jra : 3l

S Aoy 39955 o g0 T0 14 BEAD a8 acvaL 41081 FokE donn (s In the 1960s they were searching for ways to
irst data line !":STOP (58]

7 DATA DD,6E.00,DD.66.02,CD,1A,BC.DD,5E.04,DD.56,05 01,10,04 [85]
,13,13.05 E5,1A . AE.77,23,13,10,F9.E1,01,00,08,09,230,04,01.,50 [85]

écgéggig;ig?i‘ggzggic'?o[;t?lhk:o:Fon h=1 TO 77:READ a$:a=VAL(" [94] tame thls com pIeXIty

&"+a$) :POKE mem.a:mem=mem+1:chk=chk4a:NEXT:READ chk$:IF chk¢ [941]
SVAL("&"+chk$) THEN PRINT"Checksum"z"is wrong.":STOP [94]

9 NEXT [47])

10 DATA 10.01,00.00,00.00.00,00.00,00,00,00,00.00,00,FC,FC,0 [C6]
0,40, ,FC FC.AR.54 ,E8,FC,A8,00,00,00,00,04,0C.0C.08,44,.CC.CC.8 [C6]
f1.44,00,0C,88,41,03,C3,82,00.00,00,00,54,D4 ,FC,A8,51,FC.D4,A [C6]
8,00,00,00,00.00,00,00,00,10,04.00,00,11,22.00.00,22,00.00,1 [C6]
502 [C6] 2

L1 DATA €0.62,00,40.30,32,80,40,00.C0,80,05,C0,C0,04,11,0F,0 [9E]
F.82,54,C3.C3.A8,44 .FC,FC.88,40.CC,CC,80,00,C0,C0,00,00,C0,C [9E]
0.,00,00,C0.C0,00,00,C0,C0,00,00,C0,C0,00,00,40,80,00,10,04,0 [9E]
0.54,54,00,54,54.54,A8,00,A8 FC,A8,54 FC, A8, ,A8,54,FC,FC,A8,2 [9E]
112 [9E]

12 DATA 54.FC,FC,A8,00,00,00,00.40.C0,C0,80,40,C0,C0,80,05,0 [60]

Maintainability Wishlist

e Simple to locate code responsible for a particular feature
e Simple to understand what the code does

e Simple to add or remove a new feature

e Simple to change existing behaviour

e Make it (more) difficult to introduce new bugs

Types of Languages

= Declarative - specify what to do, not how to do it.

Functional - functions at the core
Logic - reason about facts and rules
Reactive - reason about streams of data and events

E.g. HTML describes what should appear on a web page, and not how it
should be drawn to the screen

E.g. SQL statements such as “select * from table” tell a program to get
information from a database, but not how to do so

= Imperative — specify both what and how

= Procedural - group code into procedures

= OOP - group procedures and data together
= E.g. “double x" might be a declarative instruction that you want the

variable x doubled somehow. Imperatively we could have “x=x*2” or
“X=X+X”

OCaML

= OCaML is a functional language and therefore
declarative

= |t may appear that you tell it how to do everything,
but you should think of it as providing an explicit
example of what should happen

= The compiler may optimise i.e. replace your
implementation with something entirely different
but 100% equivalent.

What is OOP?

Object-oriented programming (OOP) is a programming paradigm
based on the concept of "objects"”, which can contain data and
code: data in the form of fields, and code, in the form of procedures
(often known as methods). Objects are usually defined by classes
that group fields and methods together.
‘ These objects
are easier to

reason about

and maintain

Procedural
code OOP objects
monster interact to achieve

same result

Characteristics of OOP

Encapsulation
Abstraction

Inheritance

R

(Subtype) Polymorphism

We will cover these concepts in the rest of the course and see how
they help develop software that can cope for changing
requirements as well as improve maintainability of code (when
done properly).

A given language is like a ‘pick n mix’ of concepts that
the language creator needed for their task, or which
other developers have requested

Either languages:

= become very niche/specialist (in which case they
may be ‘pure’)

= grow to be general purpose (in which case they
become behemoth jack-of-all-trades).

Java, C++, ...

Poor choice for smaller programs where
abstractions are not needed

May not be as intuitive for reasoning / mathematical
types of problems

Often involves more boilerplate code and memory
footprint in exchange for abstractions

Requires thinking about stateful objects
Can introduce coupling without care (e.g. bad

inheritance, more dependencies). We'll explore this
later.

OOP Michaelmas 2025 Prof. Robert Harle

Intro to Java

Why Java?

Java was designed as an OOP language
It remains widely used — www.tiobe.com/tiobe-index/

It is quite forgiving for beginners since it does not
require manual memory management

Java’s Virtual Machine

» Java was intended as an early language to connect different
devices (1990s) and was thus well placed when the web
came along.

= But many architectures were attached to the internet —
how do you write one program for them all?

= And how do you keep the size of the program small (for
quick download)?

= Could use an interpreter (— Javascript). But:
= High level languages not very space-efficient

= The source code would implicitly be there for anyone to
see, which hinders commercial viability.

= Went for a clever hybrid interpreter/compiler

Traditional Model

0S1 :
. Machine

Source Compiler

a code for

OS1

Run on
ONY
computer

Binary fiIe>

0S2 _
Compiler Machine Run on

code fOr g OS2
052 RLUALE computer

(Might also need to adapt the source code to work with each architecture)

Java Model

Java
SToll[{olcB Compiler I Runon
code g Cyiscoae 3 0S1 JVM

Run on
0S2 JVM

The JVM (Java Virtual Machine) is a piece of software that converts Java
bytecode (an architecture agnostic machine code) to local machine code

Pros/cons

= + Bytecode is compiled so not easy to reverse engineer

= + The JVM ships with tons of libraries which makes the
bytecode you distribute small

= + The toughest part of the compile (from
human-readable to computer readable) is done by the
compiler, leaving the computer-readable bytecode to be
translated by the JVM (— easier job — faster job)

= - Still a performance hit compared to fully compiled
(“native”) code (although the gap closes all the time)

BTW Python also does this

Although it's less explicit than with Java, python will generate .pyc files that are
the Python bytecode for your program

(note Java bytecode and Python bytecode are not the same)

In both cases you explicitly invoke the virtual machine to run your program

Java YourProgram

python your program.py

Java Hello world

In HelloWorld.java:

public class HelloWorld {

public static void main ({
System.out.print (“Hello world”);

}

In terminal:
> jJavac HelloWorld. java
> java HelloWorld

Java Hello world

In HelloWorld.java:

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”) ;

}

In terminal; There is one class (unit of code) per

> javac HelloWorld.java file

> Java HelloWorld The class name and the filename

must match (capitals and all)

Java Hello world

In HelloWorld.java:

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”) ;

}

In terminal: Scoping (of functions, of loops, etc)

> javac HelloWorld.java is handled by explicit braces

> Java HelloWorld In python this is done with
whitespace

In Java you can butcher the
whitespace and get away with it (but
don’t)

Java Hello world

In HelloWorld.java:

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”) ;

}
}
In terminal: main is function that Java knows to
> javac HelloWorld.java execute automatically

> Java HelloWorld It takes an array of Strings that are

the arguments (if any) given on the
command line when running

It returns void (think None in python)

Java Hello world

In HelloWorld.java:

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”);

}

In terminal: Java has grouping of classes called
> javac HelloWorld.java packages

> Java HelloWorld Here, there is a package System. It

contains a subpackage out. It
contains a function printin which
prints a supplied line to screen.
“Hello world” is the supplied line

Java Hello world

In HelloWorld.java:

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”);

}

In terminal: Every statement ends with an

> javac HelloWorld.java explicit semi-colon

> java HelloWorld

Java Hello world

In HelloWorld.java:

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”) ;

}

In terminal; This compiles the Java bytecode
and stores it in a file

> a4 HelloWorld.]
javac nelloWor.ld.java HelloWorld.class

> java HelloWorld

Java Hello world

In HelloWorld.java:

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”) ;

}

In terminal: This executes the bytecode on the

> javac HelloWorld.java JVM (the java program)

> Java HelloWorld Note we specify the class name to

run and not the .class or .java files

Java will look in HelloWorld.class to
see if there is a main method to
execute. If not it will fail.

Practicalities

Java Developer’s Kit (JDK)
- Contains javac and other useful tools you need
- Download and install the latest openJDK on your
system

Integrated Dev Environment
- With built-in debugger to explore what is happening
- | recommend IntelliJ IDEA

(Note there is also the JRE — Java Runtime Enironment — this is a subset of the
JDK that contains the JVM but not the compile tools like javac

jshell

When you download the Java JDK you get §shell for free
This is a REPL (Read-Eval-Print Loop) like you've used with Python

Great to start out with but not the ‘normal’ way to interact with Java

| harle@harle1: ~ QU= = o x

harle@harlel:~$ jshell
| Welcome to JShell -- Version 17.0.12
| For an introduction type: /help intro

jshell> int x=1
b r— >

jshell> []

Representing State (Data)

Modelling interaction requires a notfion of states that
can be observed and changed.

For example:

Watching movies on neftflix (state of your user account)
Making bank transactions (state of your bank balance)
Eating food (state of your body)

For keeping track of state we have variables...

Variables in Java

Values (data) are stored in memory and are referred to using
variables in code

int myVar 10; creates an integer value 10 named myVar
Java is strongly typed — you have to explicitly assign types to
variables®. Those types may be built-in primitive types or
reference types (more on this later):

double amount; // declare 'amount' as a double
int count = 0; // variable of primitive type
String courseName = "OOP"; // courseName refers to

// String reference type

* subject to the var discussion in a few slides

Aside: Naming conventions

In Python we use snake case
e course name = ‘O0P’
e num lectures =10
e assign_marks()

In Java, we use CamelCase
e String courseName = “O0P7;
e int numLectures = 10;
e void assignMarks() {...}

Primitive Types in Java

“Primitive” types are the built in ones. They are building blocks for
more complicated types that we will be looking at soon.

* boolean —1 bit (true, false)

= char — 16 bits as an unsigned integer (0O to 65,535)
= byte — 8 bits as a signed integer (-128 to 127)

= short — 16 bits as a signed integer

= int —32 bits as a signed integer

= long — 64 bits as a signed integer

= float — 32 bits as a floating point number

» double — 64 bits as a floating point number

Reference Types in Java

Any type that isn’t a primitive is a reference type

* boolean —1 bit (true, false)

= char — 16 bits as an unsigned integer (0O to 65,535)
= byte — 8 bits as a signed integer (-128 to 127)

= short — 16 bits as a signed integer

= int —32 bits as a signed integer

= long — 64 bits as a signed integer

= float — 32 bits as a floating point number

» double — 64 bits as a floating point number

Immutable to Mutable State

ML
- val x=5;
> val x = 5 : 1int
- xX=7;
> val 1t = false : bool
- val x=9;
> val x = 9 : int
Java
int x=5; // Create variable and assign value
x=7; // (Re) assign value
int x=9; // Compile fail - attempt

// to redeclare x

Type conversion

Variables of one type can be promoted or narrowed to another
type, where it is appropriate to do so.

For example:

If you do arithmetic on different types, Java implicitly promotes one
argument to the widest range.
E.g. 2.0 * 3 results in 6.0 as a double

You can also explicitly narrow the type through a cast (could be
dangerous)
E.g. (int) 6.4 results in 6

Local variable type inference

A recent addition to Java is the ability to infer types on local
variables:

var courseName = "Java';

var data = getData() ;
var data = new ArraylList<Map<String, Integer>>();

Can make code more readable when used correctly. But use good
judgement - some things aren’t helped:

var x = 7; // Is this an int? short? char?

// Both of these are valid
byte[] arraydemo = new byte[6];
byte arraydemo2[] = new byte[6];

Ox1AC594
Ox1AC595
Ox1AC596
Ox1AC597
O0x1AC598 jshell>intf, g[], h;
f==>0
Ox1AC599 g ==>null
h ==> O
Ox1AC5A0
jshell> int[] f,g,h;
Ox1AC5A1 f ==> null

g ==>null
Ox1AC5A2 h ==> null

Naming variables

You tend to write code once but read the same code many more
times.

Optimise for maintenance and readability.
Java convention: use Camel Case with an initial lowercase letter

E.g. fontColour, age, xComponent but not variableToHoldAge, etc.

Representing Behaviour (Functions)

Function Prototypes

= Functions are made up of a prototype and
a body

= Prototype specifies the function name,
arguments and possibly return type

= Body is the actual function code

fun myfun(a,b) = ...;

int myfun(int a, int b) {...}

Actually procedures

= More correctly, functions are like mathematical
functions: they take inputs and provide an output

 Now we have procedures: these can manipulate
state outside of the function (a ‘side effect’), and
may have no return type at all

intx=1; intx=1;
void demo() { int demo(int a) {
X = X+1; X = Xx+1;
} return a+x;
}
demo(); // xis 2 demo(1); // returns 3

demo(); //xis 3 demo(1); // returns 4

Overloading Functions

= Same function name
= Different arguments
= Possibly different return type

int myfun(int a, int b) {...}
float myfun(float a, float b) {...}
double myfun(double a, double b) {...}

= But not just a different return type

int myfun(int a, int b) {...}
float myfun(int a, int b) {...} X

Objects and Classes
(Behaviour and state grouped together)

Objects

An object is a bundle of state and behaviour
The state of an object is defined through its fields

The behaviours of an object is defined through its
methods (OOP speak for function/procedure)

“Invoking a method” means executing the
associated behaviour of a specific object

Classes

= A class is a blueprint/tfemplate for a specific type of
object

= A class defines both type and implementation
o Type:where can the object be used
o Implementation: how the object does things
= The methods of a class can be seen as an API

In Java, all source code is contained in classes (this
Isn't a requirement of OOP, although it's common)

Java Class Structure

import java.util.ArrayList; // 0. import statements
public class Vector2D { // start of the class definition
// 1. constants

// 2. fields

// 3. constructors Every class must be in its
// 4. methods own file, called
} // end of the definition <C|assname>'java

// no code allowed here!

Loose Terminology

State Behaviour
Fields Functions
Instance Variables Methods
Properties Procedures
Variables

Members

Naming Classes

Class names are often nouns, and use camel case with a
capital letter at the start

E.g. Vector2D, ScreenWriter, ...

Declaring fields

public class Vector2D ({

public double x;
public double y;

Access modifier

Declaring a constructor

public class Vector2D {

public double x;
public double vy;

public Vector2D (double x, double vy) {
this.x = x; // the this keyword
// refers to the object itself
this.y = y;

If you don’t give any constructor, Java creates an empty
constructor for you that does the minimum. It would be
equivalent to:

public Vector2D () { }

public Vector2D (double x, double y) {

J

1. Constructors don'’t return anything, not even void. (Why?)

2. Constructors have the same name as the class

Creating Objects

We use the new keyword plus a constructor to create an object

Vector2D myVector = new Vector2D(3, 7);

new Vector2D(3, 7) > Java creates object in

memory (on the heap)
public Vector2D (double x,

double y) {

Initialise state of the object
this.x = x; // 3 = by invoking constructor
this.y = vy; // 7

Overloading Constructors

public class Vector2D {

public double x;
public double vy;

public Vector2D (double x, double vy)

this.x =
this.y =
}

Xy
Yr

public Vector2D () {

this.x =
this.y =

Vector2D vectorl
Vector2D vector?

0;
0;

= new Vector2D (

new Vector2D (

3
)

14

14

7);

{

As long as the
signatures differ, you
can have as many

constructors as you
like

Parameterised Classes

= ML's polymorphism allowed us to specify functions that
could be applied to multiple types

> fun self(x)=x;
valself=fn:'a->"'a

= |n Java, we can achieve something similar through
Generics; C++ through remplaftes

= Classes are defined with placeholders (see later
lectures)

= We fill them in when we create objects using them

LinkedList<Integer> = new LinkedList<Integer>()

LinkedList<Double> = new LinkedList<Double>()

You can create those too...

public class Vector2D<LT> {

public T x;
public T vy;
We’ll have lots

more to say on

public T getX() { these later

return Xx;

}

// etc

Using static in your classes

Static fields

= A static field is created only once in the program's execution, despite
being declared as part of a class

One of these created every

private float mVATRate; <« tume d r‘eW Shoplt.em IS
private static float sVATRate; instantiated. Nothing keeps
T them all in sync.

public class Shopltem {

Only one of these created ever. Every
Shopltem object references it.

Static fields

public class Whatever { Only one instance of the field is
public float x = 2; created and every object uses
public static floaty=7; that one instance

* Pros:
o Auto synchronised
X=2 across instances

o Space efficient

Object 1

= Cons:

o Makes code harder to
understand (best for
final constants)

Static Methods

Methods that don’t ‘belong’ to an object, but make sense

In the class
public class Maths { public class Maths {
public float sqrt(float x) {...} public static float sqrt(float x)
public double sin(float x) {...}
{...} Vs public static float sin(float x) {...}
public double cos(float x) public static float cos(float x)
{...} {...}
b J..
Maths mathobject = new Math(); Maths.sqrt(9.0);

mathobject.sqrt(9.0);

Static Methods

Can access

Static fields

Static Methods

Can access

Instance Methods Instance fields
(member methods) Can access (member fields)

Static Methods

= Easier to debug (only depends on static state)
= Self documenting
= Groups related methods in a Class without requiring an object

= The compiler can produce more efficient code since no
specific object is involved

= Enables a readable factory method pattern
o LocalDate.now()
o List.of()

OOP Michaelmas 2025 Prof. Robert Harle

Class Design and Encapsulation

OK, you can make classes. But how do you
decide what goes in a given classe

Rookie error: God/Monster class

Just have one class for each project you do

Correct Classes

= We want our class to be a grouping of
conceptually-related state and behaviour

= One popular way to group Is using grammar
= Noun — Object
= Verb — Method

= YA simulation of the Earth's orbit around the
SU_I’]”

Correct Classes

= We want our class to be a grouping of
conceptually-related state and behaviour

= One popular way to group Is using grammar
= Noun — Object
= Verb — Method

= YA simulation of the Earth's orbit around the
SU_I’]”

UML: Representing a Class Graphically

MyFancyClass
-age :int <€—1 State
Pl (fields)
“” means
private access + setAge(age: int) : void -
~ Behaviour
(methods)
“+” means

public access

College 1 0..* Student

Arrow going left to right says “a College has zero or more
sfudents”

Arrow going right to left says “a Student has exactly 1
College”

What it means in real terms is that the College class will
contain a variable that somehow links to a set of Student
objects, and a Student will have a variable that
references a College object.

Note that we are only linking classes: we don't start
drawing arrows between or to primitive types.

Example from code

Location

+ name; String
+ coord: Vector2D

Vector2D

+ X: double
+ y:double

+ Location(
name:String,
coord:Vector2D)

+ Location(
name:String, x:double,
y:double)

+ Vector2D(x: double,
y:double)

+ add(v::Vector2D)

SRP and Cohesion

Modularity and Code reuse

You've long been taught to break down complex problems into
more tractable sub-problems.

Each class represents a sub-unit of code that (if written well)
can be developed, tested and updated independently from
the rest of the code.

Indeed, two classes that achieve the same thing (but perhaps
do it in different ways) can be swapped in the code

Properly developed classes can be used in other programs
without modification.

Java also has the notion of packages to group together classes
that are conceptually linked

How do we maximise the chance our classes are reused?

Single Responsibility Principle

Just because you can doesn’t mean you should.

A class has responsibility over a single functionality.

There is only one single reason for a class to change

SRP Violation

x Combines Model

concern (operating income)
and View concern (draw on
screen)

public class CompanyIncomeStatement ({

public GUI gui;
void drawSummaryOnScreen () ({

}
double calculateOperatingIncome () {

}

| may want the functionality around income in my program, but
have no interest in using the graphical display of it. So either |
import loads of dead code or i don't use your class...

Aside: Model-View-Controller

A lot of interactive programs are designed around the
Model-View-Controller (MVC) concept

The idea is you keep very clear boundaries between:

Model: The code that stores and manipulates the underlying
state/data

View: The code that deals with how to draw the state to screen
Controller: The code that sequences everything together,

handling input such as clicks, updating the view code when it
needs to be updated.

SRP Benefits

1. The class is easier to understand because there’s only
a small number of self explanatory methods and fields

2. The class is easier to maintain because changes are
Isolated

3. Easier to re-use because it doesn’t contain
unnecessary responsibilities

e How to reason about the quality of your code?

e Cohesion measures how strongly grouped the responsibilities
of a class are

e (Code easier for others to locate, understand and use

In other words, how related are the methods compared to the
intention of the class?

Good Ways to Get Cohesion

e Functional
o methods are grouped because solving a defined task

o e.g. CSV parsing

e Informational

o methods are grouped because worked on a same domain object

o e.g. maths libraries

e Sequential
o outputs of methods becomes input of other methods

o e.g. text processing pipeline

Less Good Ways to Get Cohesion

e Logical

o grouping functionalities that sound like it fits in a similar category but
are different (e.g. grouping XML and JSON parsing)

e Utility classes
o multiple different concerns
e Temporal/Procedural

o parts of a module are grouped because follow an execution
pattern/particular time (e.g. data validation, data storage, notification)

Cohesion Summary

Level of Cohesion

Pro

Con

Functional (high cohesion)

Easy to understand

Can lead to overly simplistic classes

Informational (medium cohesion)

Easy to maintain

Can lead to unnecessary
dependencies

Sequential (medium cohesion)

Easy to locate related operations

Encourage violation of SRP

Logical (medium cohesion)

Provide a form of high level
categorisation

Encourage violation of SRP

Utility (low cohesion)

Simple to put in place

Harder to reason about the
responsibility of the class

Temporal (low cohesion)

Harder to understand and use
individual operations

OOQOP Principle 1: Encapsulation

We want to provide an appropriate API to the object
that only exposes what it needs to

Supporting encapsulation means supporting tools to
hide things away that a user of the class shouldn’t need
to even know about

Encapsulation Example

public class Student {
public int age;

public static void main(String[] args) {
Student s = new Student();
s.age =21;

Student s2 = new Student();

s2.age=-1;
By exposing the age
Student s3 = new Student(); field, we can’t stop
s3.age=10055; something stupid
} being set there

Encapsulation Example

public class Student {
private int age;

public boolean setAge(int a) {
if (a>=0 && a<130) {
age=a;

By hiding the age away
(making it private), we

return true; prevent this problem
}
return false; To make it useful we
i provide a method to set

age that incorporates

public int getAge() {return age;} _
sanity checks

public static void main(String[] args) {
Student s = new Student();
s.setAge(21);

}
1

Encapsulation

Encapsulation allows us to decouple the API (set of
methods an object supports) from the underlying state so
we can e.g. change that implementation

class Location { class Location {

private float x;

orivate float y: private Vector2D v;

float getX() {return v.getX();}

float getX() {return x;}
float getY() {return v.getY();}

float getY() {return y;}

void setX(float nx) {v.setX(nx);}

void setX(float nx) {x=nx;}
void setY(float ny) {v.setY(ny);}

void setY(float ny) {y=ny;} \
}

Access Modifiers

Can be accessed by

Modifier Class Package Subclass | Everyone
public
protected
no modifier
private

Aka Information Hiding

Another name for encapsulation is information hiding or even
Implementation hiding in some texts.

ldea: Classes expose a clean interface that allows full
interaction with it, but which exposes nothing about its internal
state or how it manipulates it.

Remember, you can always make a private member public, but
not vice-versa!

Immutability

Immutabillity

Mutable objects (i.e. those where their state can be
changed during execution) can be very powerful,, but
they also increase complexity and can be a common
source of bugs

Our access modifiers give us a way to make an
immutable class, whereby you can set the internal data
on initialisation but not change it...

Immutable class definition

public class Vector2D { private means no one using the

private final int x; class can directly get at the data
private final int y;
final says the value can'’t be

public Vector2D (int x, changed once it has been set (it's a

. .
this.x = x; MY pelt-and-braces thing here)
} chis.y = Not providing any setters means
anyone using the class can’t set
public int getX() { anything

return x;}
The constructor allows the values to

public int getY() { be set

return y;}

(You can also make the class final: this signals intent and prevents a world
where you subclass and provide access through the subclass)

Although...

Java 16 introduced a record type which generates this:

public class Vector2D ({
private final int x;
private final int y;

public Vector2D (int x, int y) {
this.x X;
this.y v’

}

public int getX() {return x;}

public int getY¥() {return y;}

From this:

public record Vector2D (int x, int y) {}

(actually, it generates more for you: equals(), hashcode(), etc. We just haven't
got to that yet)

Creating an immutable class

e Make all fields final, avoid setXXX methods
e Or, in Java 16+, use record types

e Optionally, provide change-factory methods
Common but not universal to use withXXX names
for these. E.g

String.toUpper (), LocalDate.withYear (2022)

Immutable benefits

1. Reduce the scope for bugs
2. Can be thread-safe (more on this next year!)

3. Easier to reason about

Immutable classes are everywhere in the JDK

@ Integer, Double, BigDecimal...
® String

® IlocalDate, LocalTime ...

e UUID

e Optional

® Fnums (usually & 1diomatically)

O Enums can compare with == 1nstead of .equals/()

OOP Michaelmas 2025 Prof. Robert Harle

Memory, pointers, references

Primifives, References and Memory

What is the value of a variable?

For primitive types (int etc) it may seem obvious: the value is whatever
itise.g. 1, 2.0, etc

In memory, primitives are stored directly (we’ll see how shortly)

int amount = 100

Objects

What is the value of a variable?

For an object (a custom types, Vector2D etc) the value of the
associated variable is a memory address for where to find all the data
associated with that object.

We say that the value of the variable is a reference

We'll see why shortly, but this gives some interesting results...

Vector2D vec = new Vector2D() ;

Vector2D
object

#00120364758

Reference

Values are copied on assignment

Values are either primitives or references. They are copied on
assignment.

int amount = 100;

int amountCopy = amount;

Values are copied on assignment

Values are either primitives or references. They are copied on
assignment.

int amount = 100;

int amountCopy = amount;

amountCopy = 200;

Values are copied on assignment

Values that are references also copy BUT NOT THEREFORE THE
OBJECTS

Vector2D v = new Vector2D(1,2);

#00120364758

Values are copied on assignment

Values that are references also copy BUT NOT THEREFORE THE
OBJECTS

Vector2D v = new Vector2D(1,2);

#00120364758

Vector2D vCopy = Vv;

#00120364758

Values are copied on assignment

Values that are references also copy BUT NOT THEREFORE THE
OBJECTS

Vector2D v = new Vector2D(1,2);

#00120364758

Vector2D vCopy = Vv;

#00120364758

vCopy.setX (3) ;

int[] refl = null;

P <null>

Where stuff goes: The stack and heap
abstractions

How do we organise all the code and data for our program in
memory?

This is actually really complex (and covered in Operating
Systems) but there is an intermediate abstraction that gives
programmers a mental model that is widely used (beyond Java)

Let’s look at what happens when you call a
function/method/procedure/...

Simple visualisation of a function’s data

When we call a function/method, we need to store three things:

Any local variables
created by the
function

A memory address
for where to jump
Any arguments to when we're

that the function done with the

was called with function (return

address)

The Call Stack

Frames are

‘ Last-In-First-Out
(LIFO) i.e. a stack

Stack pointer

Stack frames
(one for each
function call

The Call Stack: Example

int twice(int d) return 2*d;
int triple(int d) return 3*d;
int a =50;

int b = twice(a);

int ¢ = triple(a);

O A, WNR

Nested Functions

int twice(int d) { return 2*d }

int triple(int d) {return 3*d;}

int sextuple(int d) {return twice(triple(d));
int a=50;

int b = sextuple(a);

O kA, WNR

Recursive Functions

int pow (int x, inty) {
if (y==0) return 1;
int p = pow(x,y-1);
return x*p;

}
int s=pow(2,7);

1
2
3
4
5
6
7

Tail-Recursive Functions |

int pow (int x, inty, int t) {
if (y==0) return t;
return pow(x,y-1, t*x);

}

int s = pow(2,7,1);

o Ul WN -

Tall-Recursive Functions Il

int pow (int x, inty, int t) {
if (y==0) return t;
return pow(x,y-1, t*x);

int s = pow(2,7,1);

1
2
3
4}
5
6

Note that when a stack frame is ‘popped’ (the function has finished), all
the variables it created will be deleted.

We talk about those variables having ‘local scope’.
Static variables have global scope

Member variables/fields have the scope defined by their owning object

Objects aren’t primitives

So the call stack keeps track of our function calls and variables and it
does so efficiently (no wasted space)

But what happens if something on the stack changes size? This would
mess things up considerably (you’d have to move everything and
update return addresses...yuk)

Primitives are good here: no size changes possible.
For objects, we store references on the stack (which are just memory

addresses which are known size numbers) and make them point to a
different section of memory...

The Heap

int[] x = new int[3];
public void resize(int size) {

X=new int[size];
for (int=0; i<3; i++)
x[i]=tmpli];
}

resize(5);

Stack

= —

The Heap

The heap is (as its name suggests) more of a mess. There will be gaps
between objects.

But it gives us the flexibility to do what we need to do

Pointers vs References

You may have come across pointers in other languages
(e.g. C, C++, etc). They are variables that hold integer
values that are interpreted as memory addresses.

Thus these are the same concept as a reference, but are a
bit more ‘raw’...

Manipulating memory directly allows us to write fast,
efficient code, but also exposes us to bigger risks

= Get it wrong and the program 'crashes’' .

Pointers: Box and Arrow Model

= A pointer is just the memory address of the first memory slot
used by the variable

= The pointer type tells the compiler how many slots the whole
object uses

/] C++ xptr1 F——> X
Intx =72;

int *xptr1 = &x; /
xptr2

int *xptr2 = xptr1;

= Asingle character is fine, but a text string is of variable length — how
can we cope with that?

= \We simply store the start of the string in memory and require it to
finish with a special character (the NULL or terminating character,
aka "\0'")

= S0 now we need to be able to store memory addresses — use
pointers

7 8 9 0 11 12 13 14 15 16 17 18

C S R U L E S | \0

11 *

= We think of there being an array of characters (single letters) in
memory, with the string pointer pointing to the first element of that
array

Example: Representing Strings Il

char letterArray[] = {'h",'e",'l',"l','0",'\0'}; h | e | | | | o | \O

char *stringPointer = &(letterArray[0]);

stringPointer

printf(“%s\n”,stringPointer);
letterArray[3]="\0';

printf(“%s\n”,stringPointer);

References

= Pointers are useful but dangerous

= References can be thought of as restricted
pointers
= Still just a memory address
= But the compiler limits what we can do to it

= C, C++: pointers and references
= Java: references only
= ML: references only

References vs Pointers

validity

Pointers References
Represents a memory Yes Yes
address
Can be arbitrarily Yes No
assigned
Can be assigned to Yes Yes
established object
Can be tested for No Yes

References Example (Java)

int[] refl = null;
refl = new int[]{1,2,3,4};
int[] ref2 = refl;

refl[3]=7;
ref2[1]=6;

—

{1,2,3,4}

——

{1,6,3,7}

Why not have references to primitives?

A reference is just a memory address -
typically a 1ong

If we referred to all primitives using
references, we'd be doubling our memory
usage (reference size ~= primitive size).
Object sizes are typically >> reference size

But there are cases where you might want to
reference a primitive directly...

Pass-by-value

When we call changeVal

id ch Val (int i
void changeVal (int x) { with argument val, we copy

X = 2%x; the value into the stack
} frame.
We can change that copy’s
value, but it won’t affect the
int val = 3; original

changeVal (val) ;

// val is 3 still This approach of copying is
known as pass-by-value,
and it’s all Java offers

Pass-by-value

X is a copy of val

void changeVal (vector2D v) ({

v.setX (3) ;

Vector2D val = new
Vector2D(1,2) ;
changeVal (val) ;

Java applies pass by value to
references too, meaning it takes
the reference value (a memory
address) and copies it into the
stack frame. Thus v is a reference
to the same object as val.

Because v points to the same
object, you can make changes to
the object by accessing the
reference

Again, All Java offers is pass by
value (but for references the value
IS @ memory address)

Pass-by-value

Vv is a copy of val
and therefore the

same memory
address

Pass-by-reference (not Java)

void changeVal (int &x) {

X = 2*x;

int val = 3;
changeVal (val) ;
// val is 6!

The example is C++, where the &
symbol means to get the memory
address (pointer) to the thing that
is offered

So in this example x is a reference
to val and the update actually
WOorks

Java does not support this.

Pass-by-reference (not Java)

X is a reference
to val

public static void func(int x, int[] a) {
x=1;
X=xX+1;
a = new int[]J{1};
a[0]=a[0]+1;
}

public static void main(String[] arguments) {
int num=1;
int numarray[] = {1};

func(num, numarray);

System.out.printin(num+" "+numarray[0]);
}
A 11
B. “12
C. 21
D. 22

OOP Michaelmas 2025 Prof. Robert Harle

Inheritance

Inheritance |

class Student { = There is a lot of duplication here
public int age; » Conceptually there is a hierarchy that we're
public String name; not really representing
public int grade; = Both Lecturers and Students are people

} (no, really).

class Lecturer { = We can view each as a kind of
oublic int age; specialisation of a general person
public String name; = They have all the properties of a person
public int salary; = But they also have some extra stuff

i specific to them

(I should not have used public variables here, but | did it to keep things simple)

Inheritance ||

class Person { = We create a base class (Person)
oublic int age: and add a new notion: classes can
oublic String name; inherit properties from it |
} = Both state and functionality
= |njava the extends keyword is
class Student extends Person { used to inherit from a class
public int grade; = We say:
i = Person is the superclass of

Lecturer and Student

class Lecturer extends Person { = | ecturer and Student subclass
public int salary; Person

}

Loose terminology

Person Student
Parent class Child class
Superclass Subclass

Base class Derived class

What is Inheritance?

When a class inherits from another class it;
e |Itinherits its type. So Lecturer is-a Person.

e incorporates (“inherits”) all the attributes and behaviours
from that class.

e can directly access the public & protected members of that
class (but not the private)

e can redefine some inherited behaviour, or add new attributes
and behaviour.

What gets Inherited?

A subclass inherits from its parent classes:
e Type

e Fields

e Methods

private superclass fields cannot be accessed directly* by the
subclass

* this is worded carefully. Private superclass fields are within the subclass,
but they are not directly accessible. Most people consider this restriction to
mean they aren'’t “inherited”. You can still get at them iff there are inherited
public/private methods that give you access to them

The magic Object Class

All classes inherit from Object in Java. i.e.

public class MyClass

—

public class MyClass extends Object

Because it's always true, we never bother drawing it on UML
or writing it in code. But it's there, and we’ll look at some of
the things it provides later.

Representing Inheritance Graphically

Person Also known as an “is-a” relation
- hame As in “Student is-a Person”
- age
m

& I b
© 0.
@ o
c >
() D
O Student Lecturer

- exam_score - salary

Constructors and Inheritance

To build an object of the Student class
- First you have to build the foundation (Object)
- Then the 1st subclass (Person)
- Then the 2nd subclass (Student)

Student

Person Person

Object | > Object —> Object

When you construct an object of a type with parent classes,
we call the constructors of all of the parents in sequence.
This is done implicitly - Java compiler inserts call to
super ()

What if your classes have explicit constructors that take
arguments? You need to explicitly chain and use super ()
In constructor code to invoke superclass constructor.

Constructor Chaining

public class Person ({
protected String name;
protected int age;

public Person (String name, int age) {

this.name = name;
this.age = age;

public class Student extends Person {
private long studentId;

public Student (String name, int age, long studentId)

super (name, age) ; // means: Person(name, age)
this.studentId = studentlId;

= \We know we can fype cast between
numeric types

inti=7;

float f = (float) i; //f==7.0
double d = 3.2;

inti2 =(int)d; //i2==3

= With inheritance it is reasonable to type
cast an object within the inheritance tree...

= Student is-a Person

Person
= Hence we can use a Student object
ZF anywhere we want a Person object
= Can perform widening conversions
Student (up the tree)
Student s = new Student(); public void print(Person p) {...}

Person p = (Person) s;

/

Explicit cast

Student s = new Student();
print(s);

\

Implicit cast

Narrowing

Person "

—

Student

Person p = new Person();

Student s = (Student) p;

el

FAILS. Not enough info
In the real object to represent

a Student

Narrowing conversions move down
the tree (more specific)

Need to take care...

Student s = new Student();
Person p = (Person) s;
Students s2 = (Student) p;

/

OK because underlying object
really is a Student

Fields and Inheritance

class Person { Student inherits this as a public
public String mName; < variable and so can access it

protected int mAge;
\ Student inherits this as a

private double mHeight;
}

protected variable and so can
access it directly

class Student extends Person {

public void do_something() {
mName="Bob”; Student inherits this but as a

mAge=7/0; private variable and so cannot

mHeight=1.70; access it directly (so this code

i won’t compile)

Fields and Inheritance: Shadowing

classA{ publicint x; }

class B extends A {
publicint x;

}

class C extends B {
public int x;

public void action() {
// Ways to set the x in C

x =10;

this.x = 10;

// Ways to set the x in B _ . .
super.x = 10; Don’t write code like this.
((B)this).x = 10; Ever.

| mean it.
// Ways to set the x in A

((A)this.x = 10;

Methods and Inheritance: Overriding

= We might want to require that every Person can dance. But the way
a Lecturer dances is not likely to be the same as the way a Student

dances...
class Person
: . { Person defines a 'default’
public void dance() {))
~ _ implementation of
jiggle_a_bit(); - dance()
}
}
Use @0verride class Student extends Person { Student overrides the
notation for code bli id dance() {
- public vol default
clarity twerk(): |
}
}

Lecturer just inherits the
default implementation

class Lecturer extends Persql { and jiggles

}

Abstract Classes

Abstract Classes and Methods

= Sometimes we want to force a
subclass to implement a method

but there isn't a convenient abst;‘_ct C:‘is Pirsor:j{d)

. . public abstract void dance();
default behaviour to put in the }
parent

class Student extends Person {
» An abstract method is used in a public void dance() {
. twerk();

base class to do this |

= |t has no implementation /

whatsoever class Lecturer extends Person {
public void dance() {
jiggle_a_bit();
}
}

» Note that | had to declare the class abstract too. This is

because it has a method without an implementation so
we can't directly instantiate a Person.

public abstract class Person {
public abstract void dance();

}

= All state and non-abstract methods are inherited as
normal by children of our abstract class

= |nterestingly, Java allows a class to be declared abstract
even if it contains no abstract methods! (\Why?)

Representing Abstract Classes

Italics indicate the class
or method is abstract

Person
+dance() &
Student Lecturer
+ dance() + dance()

Intferfaces

Abstracting Further: Interfaces

= An interface is a contract that groups together required
methods

= [For now] It’s a collection of exclusively abstract
functions that force classes that inherit from them to
provide concrete implementations

» Interfaces are declared using interface rather than
class

» Interfaces are used via implements rather than
extends

Abstracting Further: Interfaces

<<interface>>
Drivable

+ turn()
+ brake()

AW

Bicycle

+ turn()
+ brake()

Car

+turn()
+ brake()

interface Drivable {
public void turn();
public void brake();

}

class Bicycle implements Drivable {
public void turn() {...}
public void brake() {... }

}

class Car implements Drivable {
public void turn() {...}
public void brake() {... }

Type is inherited via extends and implements

interface Drivable {
public void turn();
public void brake();

}

abstract class Vehicle implements Drivable { = Vehicle inherits the Drivable

public abstract void turn(); type. i.e. Vehicle is-a Drivable
public void brake() {... }

}

class Car extends Vehicle {

pug:fcvofj Lurrll()(§'{'} } = Car inherits Vehicle’s types
PUBIE VOIG BTAKED .- i.e. Car is-a Vehicle and is-a
} Drivable

* You can use instanceof to
check this if you want to
iInvestigate

Abstract class or interface?

Feature Abstract Class Interface

(Abstract) Methods V4 v
Behaviour v v
Class can Implement Multiple X v
Instance Variables V4 X
Protected/Package Scoped V4 X
Methods

(Java 9) Private methods V4 V4
Static methods V4 v

Inheritance gone wrong

When inheritance goes wrong, it's usually because it's being
used when there isn’t a good is-a relationship

A common error is to relate classes using inheritance (“is-a”)
when you should use composition (*has-a”) and vice versa

Surprisingly this mistake is easier to make than you might
think. Even the JDK has issues...

JDK Stack

class Stack extends Vector { Inheritance
public Object pop () { .. }

public voild push (Object o) { }

This is bad because a Stack is not a Vector (which is the original ArrayList in
Java). The result is Stack suddenly has methods that don’t make sense - e.g.
add(int index, E element)

JDK Stack as it should have been

class Stack { Composition

private Vector 1nternalContailiner;

Here, we decide Stack has-a Vector. In this way we can use the
implementation in Vector without exposing methods that aren’t relevant

OOP Michaelmas 2025 Prof. Robert Harle

Polymorphism, Multiple Inheritance,
Coupling

(Subtype) Polymorphism

Polymorphism

Poly - morph = many forms

Polymorphism in OOP means that many kinds of objects can
provide the same method, and we can invoke that method without
knowing which kind of object will perform it. We typically refer to this
characteristic as subtyping polymorphism.

Other forms of polymorphism previously too:
- Parametric polymorphism (i.e. generics)
- Ad-hoc polymorphism (i.e. overloading)

Polymorphic Methods

Student s = new Student(); = Assuming Person has a default
Person p = (Person)s; dance() method, what should
p.dance(); happen here??

= General problem: when we refer to an object via a parent
type and both types implement a particular method: which
method should it run?

Static Polymorphism

= Static polymorphism
= Decide at compile-time

= Since we don't know what the true type of the
object will be, we just run the parent method

= Type errors give compile errors

= Compiler says “p is of type Person”
= So p.dance() should do the default
dance() action in Person

Student s = new Student();
Person p = (Person)s;
p.dance();

Static Polymorphism

Person p = null;

if (inputParam == 1) p = (Person) new Student();
else p = (Person) new Lecturer();

p.dance(); // the implementation from Person class runs

Dynamic Polymorphism

= Dynamic polymorphism
= Run the method in the child

= Must be done at run-time since that's when we
know the child's type

= Type errors cause run-time faults (crashes!)

Student s = new Student(); = Compiler Io.oks ?n memory and finds
Person p = (Person)s; that the object is really a Student
p.dance(); = So p.dance() runs the dance() action

in Student

= A drawing program that can draw circles,
squares, ovals and stars

= |t would presumably keep a list of all the
drawing objects

— = Option 1
Ircie

s draw) = Keep a list of Circle objects, a list of

Square objects,...

>quare = |terate over each list drawing each
B object in turn

Oval = What has to change if we want to add
+ draw() a new shape?

Star
+ draw()

The Canonical Example |

Shape = Option 2
= Keep a single list of Shape references

= Figure out what each object really is,
A narrow the reference and then draw()

Circle

for every Shape s in myShapelList
if (s is really a Circle)
Circle c = (Circle)s;
c.draw();
else if (s is really a Square)
Oval Square sqg = (Square)s;
sg.draw();
else if...

et + draw()

Square

+ draw()

+ draw()

St
I = What if we want to add a new shape?

+ draw()

Shape

- X_position: int
- y_position: int

+draw()

JAY

Circle

+ draw()

Square

+ draw()

Oval

+ draw()

Star

+ draw()

= Option 3 (Polymorphic)
= Keep a single list of Shape references

= Let the compiler figure out what to do
with each Shape reference

For every Shape s in myShapelList
s.draw();

= What if we want to add a new shape?

Implementations

= Java

= All methods are dynamic polymorphic.
= Python

= All methods are dynamic polymorphic.
» C++

= Only functions marked virtual are dynamic
polymorphic

= Polymorphism in OOP is an extremely important concept
that you need to make sure you understand...

Multiple Inheritance

Electrician

Plumber

N\

N\

Imagine you work for a
construction firm and you have
software to track your
tradespeople.

You already have an Electrician
class and a Plumber class

You’ve been asked to deal with a
new employee who is qualified to
do both!

Your solution: multiple
inheritance!

(Health warning: Java doesn’t support this)

Electrician

Plumber

N\

N\

Plumbtrician

Imagine you work for a
construction firm and you have
software to track your
tradespeople.

You already have an Electrician
class and a Plumber class

You’ve been asked to deal with a
new employee who is qualified to
do both!

Your solution: multiple
inheritance!

(Health warning: Java doesn’t support this)

Multiple inheritance of behaviour

Electrician Plumber e Introduces a new problem: name
clashes
T dodobl] dodobl e Which doJob() should

A A Plumbtrician inherit?

e There are various ways to
handle this. Generally it’s
fixable, but can add complexity
to your code

Plumbtrician

7?77?77

(Health warning: Java doesn’t support this)

Electrician Plumber

rate: float rate: float

N\ N\

Plumbtrician

Multiple inheritance of state

e State is particularly problematic,
because you can end up
iInheriting multiple states with the
same name

e Need nasty syntax like
Electrician::rate and
Plumber::rate — have to change
It everywhere in your code!

e \Whatever you do your code
ends up being less readable and
might confuse and lead to bugs

(Health warning: Java doesn’t support this)

Employee

A

Electrician

Plumber

N\

N\

Plumbtrician

e The ‘dreaded diamond'’is
particularly annoying, since it
guarantees loads of state and
behaviour name clashes

(Health warning: Java doesn’t support this)

No (despite what the internet may tell you). It's a tool that can be
useful.

But, like all tools, you need to know when to use it and what the
consequences might be

For the most part, multiple inheritance adds complexity and sometimes
ambiguity to your code. Sometimes it's the result of not creating a
correct class hierarchy, sometimes (often) the same effect can be
achieved more neatly using other methods, and sometimes it’s the
neatest way to do it (in truth, rarely)

Java limits how far you can go with it...

Java's Take on it

= Classes can have at most one direct parent. Period.
= But we can allow multiple interfaces to be directly inherited

interface Drivable {

<<interface>> <<interface>> publ?c vo?d turn();
Drivable Identifiable } public void brake();
+ turn() + getldentifier()
* brake() interface Identifiable {

ﬂ public void getldentifier();
ZX }

class Bicycle implements Drivable {
public void turn() {...}
public void brake() {... }

Bicycle Car }

+turn() + turn()

+ brake() + brake() class Car implements Drivable, Identifiable {
+ getldentifier() public void turn() {...}

public void brake() {... }
public void getldentifier() {...}

}

= Agiven class can extend up to one direct parent but multiple
direct interfaces

= Name clashes in abstract functions is OK since there was no
implementation in the first place!

= There’s no state to have name clashes on! (caveat: see next few
slides)

public class Lecturer extends Person implements
GeniusAbility, NinjaAbility, .. { }

Just for fun...

interface Collection<E> extends Iterable<E>
abstract class AbstractCollection<E> implements Collection<E>

abstract class AbstractlList<E> extends AbstractCollection<EkE>

implements List<E>

public class ArrayList<E> extends AbstractList<E>
implements List<E>,

RandomAccess, ‘

Cloneable,

Serializable

= Early Java had interfaces that were completely abstract, so this
multiple inheritance was solved by the previous rules

= Early Java had interfaces that were completely abstract, so this
multiple inheritance was solved by the previous rules

= But Java 8 added default methods to interfaces (Java 8)
public interface Somelnterface {

default void some method () {

System.out.println (“Oh no..”)

= Why??!!

Imagine having thousands of classes implementing your interface
(definitely true for the JDK interfaces).. What happens if you decide
that you want to add a new feature to the API?

If you just add it to the interface, you will break every class that
implements it

You could inherit from it and add a subinterface. But APIs do evolve
- having a huge inheritance hierarchy would really suck

Default methods solve this: you can add an implementation that the
The other classes will just inherit, and put the functionality you need
INn your new class

Cool! But, it does give us multiple inheritance of behaviour
headaches (not state)...

Resolution Rules for Method Clashes

1. Classes always win

2. Otherwise, subinterfaces win. The method with the same signature
in most specific interface is selected

3. If the choice is still ambiguous, the class inheriting must override
the method and be explicit

(Note you have to know these resolution rules to know
what Java will actually do. That does not result in
readable, easily-maintained code :-/)

Principles for good OOP

Open-Closed Principle (OCP)

Easy to add new
behaviour

s

Make your classes open to extension but
closed to modification

\

Hard to change
existing behaviour

OCP example

Il Original

public class Order {
private List<ltem> items;

public Order(List<ltem> items) {
this.items = items; Goal: add discount ability

}

public double calculateTotal() {
// Compute

}
}

OCP example

/I OCP Violation

public class Order {
private List<ltem> items;
private double discount;

public Order(List<ltem> items, double discount) {
this.items = items;
this.discount = discount;

) We modified the original
and this carries a high risk
oublic double calculateTotal() { ~ Of breaking things
/| Compute with discount
}

}

OCP example

/I OCP Fixed

public interface Discount {
double applyDiscount(double total);

}

public class DiscountedOrder extends Order {
private Discount discount;

public DiscountedOrder(List<ltem> items, Discount discount) {
super(items);

this.discount = discount; Inheritance used to

i extend while original is

untouched
@Override
public double calculateTotal() {
// Compute wih discount

}
}

Liskov Substitution Principle

e Concerned with subtyping and inheritance

e Subtypes must be behaviourally substitutable for their
base types without negative side effects

e |f don’t adhere to it, leads to clunky code and corner cases

public interface Persistable {
vold load() ;

vold save () ;

Example Violation

class ApplicationSettings 1mplements Persistable { .. }

class UserSettings implements Persistable { .. }

class AdminSettings implements Persistable {
void load() { .. }

void save() { throw new NotImplementedException(); }

You can’t use substitute a Persistable for an
AdminSettings without getting a negative effect
(an exception thrown)

Example Violation

static void saveAll (List<Persistable> resources) {
for (Persistable r: resources) {
1f (r i1nstanceof AdminSettings) { continue; }

r.persist () ;

This is nasty code that suggests we have the
wrong abstraction

Example Violation

public interface Loadable {

volid load () ;

public interface Persistable {

volid save () ;

This solves it

JDK LSP Violation!

public interface Iterator<kE> {
boolean hasNext () ;
E next();
default void remove () {

throw new UnsupportedOperationException ("remove") ;

OOP Michaelmas 2025 Prof. Robert Harle

Object Life Cycle, Garbage Collection,
Copying

Creating objects

Object Creation

new MyObject()

Load
MyObject.class

Is MyObject already loaded
in memory?

Create

java.lang.Class
object

Allocate memory
for object

Allocate any
static fields

Run non-static
initialiser blocks

Run static
initialiser blocks

Run constructor

Initialisation

T 1. Blah loaded
PUDIIC CIass bla
private int mX =7; 2. sX created
public static int sX=9; 3.sXsetto 9
{ 4,sXsetto 3
mX=5: 5. Blah object allocated
} 6. mX setto 7
static { 7.mXsetto5
SX=3: 8. Constructor runs (mX=1, sX=9)
} 9. b set to point to object
blic Blah ;
pl:nx':i; oy 10. Blah object allocated
sX=9; 11. mX setto 7
} ; 12. mX setto 5

13. Constructor runs (mX=1, sX=9)

Blah b = new Blah(); 14. b2 set to point to object

Blah b2 = new Blah();

Deleting objects

= A typical program creates lots of objects, not all of which need
to stick around all the time

= Approach 1:

= Allow the programmer to specify when objects should be
deleted from memory

= Lots of control, but what if they forget to delete an object?
= A “memory leak”

= Approach 2:
= Delete the objects automatically (Garbage collection)

= But how do you know when an object will never be used
again and can be deleted??

Cleaning Up (Java) |

= Java reference counts. i.e. it keeps track of how many
references point to a given object. If there are none, the
programmer can't access that object ever again so it can be

deleted

Person object
Href =2

ri

r2

—)

rl = null;
r2 = null;

Person object
Href=0

rl

r2

Deletable

Mark and Sweep

Stack

Mark and Sweep

Step 1: (Mark) Starting at each stack reference, follow
references of everything reachable. Mark each object you find

Stack

Mark and Sweep

Step 2: (Sweep) Traverse all objects on the heap. If they are marked,

unmark them. If they are not marked, queue them for deletion
- .

Java supports multiple different GCs, which take different approaches to
the next phase.

Delete immediately. Simplest approach. But if there’s lots to delete,
can take a while. Unpredictable pauses.

Delete next time. Queue for deletion if we've already spent too long
deleting in this round.

Don’t delete. In some cases, we could decide not to delete (either
ever, or until we hit a critical point such as running out of memory).

After any deletion, the GC can also decide to compact: rearrange the
surviving objects in memory to reduce gaps. Means updating the
references too of course.

Compacting

Over time, heap
deletions and creations
leaves tiny chunks of
available memory —
iInefficient use

Moving objects around
allows us to pool the
available memory. More
efficient but all the refs
need to be updated!

The Collector isn’t Free

The work the GC does is clearly work that takes away from the
main program you are running.

We have different strategies and GC algorithms for different
scenarios

Tenured
(Old)

Survivors

Core observation: the majority of objects actually don’t last long

All objects are created in Eden
If they survive a few GCs, they are promoted to Survivors
If they survive a few more GCs, they are promoted to Tenured

The GC runs frequently on Eden, less so on Survivors and much
less so on Tenured

You can actually select the GC you want. These are common:

Serial GC. A ‘stop-the-world’ GC where the program stops
executing entirely while the GC runs. Simple, but not great for
responsive programs (must tolerate short pauses). Tiny
implementation though, so gets used for embedded applications.

Parallel GC. Another ‘stop-the-world” GC. But runs the collection
from multiple concurrent threads to be faster

Garbage first (G1). The modern default. The GC monitors
memory concurrently (while the app still runs), doing as much as
it can. Uses short stop-the-world events to do the deletions,
creating regions in memory and prioritising based on how much
needs to be done.

Epsilon GC. Don't do anything at all (a no-op GC). Useful if you

lenow vvorrir nroaram will 1iece conctant memaoryy

= Most OO languages have a notion of a destructor too
= Gets run when the object is destroyed

= Allows us to release any resources (open files, etc) or memory
that we might have created especially for the object

class FileReader { int main(int argc, char ** argv) {
public:
// Construct a FileReader Object
// Constructor FileReader *f = new FileReader();
FileReader() {
f = fopen(“myfile”,’r"); Use object here
Cit } pen(“my) // j
// Destructor // Destruct the object
~FileReader() { delete f;
fclose(f);
} }
private :

FILE *file;
}

Java’s finalise()

= Java has a method finalize in Object that was meant to be a
destructor

= But it can only run when the GC actually deletes the object,
which may be never, or certainly isn’'t easy to predict!

= Mostly became too problematic and it is now deprecated (i.e.
don’t use it).

= May be able to use try-with-resources (Lecture 10)

Copying objects

Object Copying

= Sometimes we really do want to copy an object

Person object Person object Person object

(name = “Bob”) l (name = “Bob”) (name = “Bob”)

r r r_copy

= Aka ‘cloning’

Shallow and Deep Copies

public class MyClass {
private MyOtherClass moc;

}

MyClass object

MyClass object

i

MyOtherClass
object

MyClass object

\/ MyOtherClass /

object
MyClass object MyClass object
MyOtherClass MyOtherClass
object object

Copy Constructors

Most programmers prefer to define a copy constructor that
takes in an object of the same type and manually copies
the data

public class Vehicle {
private int age;
private double vx;
private double vy;

public Vehicle(Vehicle v) {
this.age=age;
this.vx = vx;
this.vy = vy;

}

Copy Constructors

= Now we can create copies by:

Vehicle v = new Vehicle(5, 0.f, 5.f);

Vehicle vcopy = new Vehicle(v);

= This is a neat approach, but:
o deep copying can be hard
o inheritance makes it hard:

Car c = new Car(5, 0.f, 5.f); // Copy constructor is not inherited

Vehicle v = (Vehicle)c; // If we need to copy this later, how do we
// know to call new Car and not new Vehicle?

Java fried to solve this with clone()

= Every class in Java ultimately inherits from the Object
class

= This class contains a clone() method so we just call
this to clone an object, right?

= This can go horribly wrong if our object contains
reference types (objects, arrays, etc)

Health warning: most java programmers recommend against using
clone(), but it’s instructive to at least discuss it here

Java Cloning

= So do you want shallow or deep?
= The default implementation of clone() performs a shallow copy

= But Java developers were worried that this might not be
appropriate: they decided they wanted to know for sure that we'd
thought about whether this was appropriate

= Java has a Cloneable interface

= |If you call clone on anything that doesn't extend this interface, it
fails

Clone Example |

public class Velocity {
public float vx;
public float vy;
public Velocity(float x, float y) {
VX=X;
VY=Y,
}
I

public class Vehicle {
private int age;
private Velocity vel,
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);
}
Jy

Clone Example Il

public class Vehicle implements Cloneable {
private int age;
private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);

}

@Override
public Object clone() {
return super.clone(); // shallow: won’t clone the vel object

}
I

Clone Example Il

public class Velocity implement Cloneable {

public Object clone() {
return super.clone();

}
|5

public class Vehicle implements Cloneable {
private int age;
private Velocity v;
public Student(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);

}

public Object clone() {
Vehicle cloned = (Vehicle) super.clone(); // start with a shallow copy
cloned.vel = (Velocity)vel.clone(); // add any deep copies you need
return cloned;

}
I

Cloning Arrays

= Arrays have build in cloning but the
contents are only cloned shallowly

int intarray[] = new int[100];
Vector3D vecarray = new Vector3D[10];

int intarray2[] = intarray.clone();
Vector3D vecarray2 = vecarray.clone();

Overall

= Cloning is messy in Java

* When done right, it solves a lot of issues
with copy constructors

» But it often isn’'t done right, and causes
confusion

Covariant Return Types

= The need to cast the clone return is annoying

public Object clone() {
Vehicle cloned = (Vehicle) super.clone();
cloned.vel = (Velocity)vel.clone();
return cloned;

)

= Recent versions of Java allow you to override a method
in a subclass and change its return type to a subclass of
the original's class

class C {
class A {} A mymethod() {}

}

class B extends A {}

class D extends C {
B mymethod() {}

X

Marker Interfaces

If you look at what's in the Cloneable interface, you'll find it's empty!!
What's going on?
Well, the clone() method is already inherited from Object so it
doesn't need to specify it
This is an example of a Marker Interface

= A marker interface is an empty interface that is used to label

classes
= This approach is found occasionally in the Java libraries

OOP Michaelmas 2025 Prof. Robert Harle

Collections, Comparisons

Collections

Java Class Library

= Java the platform contains around 4,000
classes/interfaces

= Data Structures

= Networking, Files

= Graphical User Interfaces

= Security and Encryption

= Image Processing

= Multimedia authoring/playback
= And more...

= All neatly(ish) arranged intfo packages (see APl docs)

<<interface>>
Iterable

~

<<interface>>
Collection

Important chunk of the class library
A Collection is some sort of grouping of
things (objects)

Usually when we have some grouping we
want to go through it (“iterate over it")

The Collections framework has two main
Interfaces: lterable and Collection. They
define a set of operations that all classes in
the Collections framework support

add(Object o), clear(), isEmpty(), etc.

» <<interface>> List

= An ordered collection of elements that may
contain duplicates

= LinkedLlst: linked list of elements
= Arraylist: array of elements (efficient access)

= Vector: legacy class, as Arraylist but
threadsafe

LinkedList<Double> Il = new LinkedList<Double>();
ll.add(1.0);

ll.add(0.5);

Il.add(3.7);

ll.add(0.5);

ll.get(1); // get element 2 (==3.7)

ArrayList vs LinkedList

= Arraylist
= Good general purpose implementation
= Use as default
= More CPU cache sympathetic

= LinkedList
= Worse performance for many read operations
= Use when adding elements aft start
= Orwhen adding/remove a lot

LinkedList O(N) O(1) O(N) O(N)

= for loop

LinkedList<Integer> list = new LinkedList<Integer>();
for (int i=0; i<list.size(); i++) {

Integer next = list.get(i);

)
= foreach loop

LinkedList list = new LinkedList();
for (Integer i : list) {

}

lterators

= What if our loop changes the structure®e

for (int i=0; i<list.size(); i++) {
If (i==3) list.remove(i);

}
= Java introduced the lterator class

lterator<Integer> it = list.iterator();
while(it.hasNext()) {Integer i = it.next();}

for (; it.hasNext();) {Integer i = it.next();}
= Safe to modify sfructure

while(it.hasNext()) {
it.remove();

}

Queues

» <<interface>> Queue

= An ordered collection of elements that may contain
duplicates and supports removal of elements from the
head of the queue

= offer() to add to the back and poll() to take from the
front

= LinkedlList: supports the necessary functionality

= PriorityQueue: adds a notion of priority to the queue so
more important stuff bubbles to the top

LinkedList<Double> Il = new LinkedList<Double>();
|l.offer(1.0);
|l.offer(0.5);

Il.poll(); // 1.0
Il.poll(); // 0.5

= <<interface>> Map i L am
= Like dictionaries in ML ‘
= Maps key objects to value objects
= Keys must be unique

= Values can be duplicated and
(sometimes) null.

= TreeMap: keys kept in order

= HashMap: Keys not in order, efficient
access (see Algorithms)

TreeMap<String, Integer> tm = new TreeMap<String,Integer>();
tm.put(“A”1);

tm.put(“B”,2);

tm.get(“A”); //returns 1

tm.get(“C”); // returns null

tm.contains(“G”); // false

ldea: somehow boil everything in an Object down to @
single number in a chosen range, say O — 128. This number
is its hash, h

Assign the object to an array element a[h]. Then we have instant
lookup for it!

Problem: either we have enormous arrays or we have multiple
Objects going to the same slot

900

@
o0

Solution: link-list the
objects with the same
hash

TreeMap vs HashMap

= <<inferface>> Set
= A collection of elements with no duplicates

. . > S
that represents the mathematical notion of ' Ut

a set ¢ -
= TreeSet: objects stored in order

= HashSet: objects in unpredictable order but
fast to operate on (see Algorithms course)

TreeSet<Integer> ts = new TreeSet<Integer>();
ts.add(15);

ts.add(12);

ts.contains(7); // false

ts.contains(12); // true

ts.first(); // 12 (sorted)

TreeSet vs Hashset

= TreeSet
= Based on a TreeMap R S
= Asserts a consistent ordering

N N
‘g
= HashSet ‘= v

= Based on a HashMap ~ " \N.>-.-

HashSet o(1) o(1) 0o(1)

Collections Methods

= The Collections classis packed with
handy static methods to do things like:

= Make an unmodifiable view

ArrayList<Double> list = new ArrayList<>();

List<Double> imList = Collections.unmodifiableList(list);
list.add(6.0); // fine

imList.add(3.0); // exception

» Synchronized view (see Part |B)

ArrayList<Double> list = new ArrayList<>();
ArrayList<Double> threadsafelist = Collections.synchronizedList(list);

Comparing Objects

Comparing Primitives

= > Greater Than

= >= Greater than or equal to
= == Equal fo

= |I= Not equal to

= < Less than

= <= Less than or equal fo

= Clearly compare the value of a primitive
= But what does (refl==ref2) do<¢?
= Test whether they point to the same object?

= Test whether the objects they point fo have
the same statee¢

Reference Equality

 rl==r2, r1l=r2

= These test reference equality

= |.e. do the two references point ot the same chunk
of memory?

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

False (references differ)

(pl==p2); =

(pl!=p2); < True (references differ)

(p1==p1); —
True

Value Equality

= Use the equals() method in Object

= Default implementation just uses reference equality
(==) so we have to override the method

public EqualsTest {
publicint x = 8;

@Override

public boolean equals(Object o) {
EqualsTest e = (EqualsTest)o;
return (this.x==e.x);

}

public static void main(String args[]) {
EqualsTest t1 = new EqualsTest();
EqualsTest t2 = new EqualsTest();
System.out.printIn(t1==t2);
System.out.printIn(tl.equals(t2));
}
}

Back to hashCode()

= Java requires:

If equals(ol, 02)
then
ol.hashCode()==02.hashCode()

Generating hashes

= Let your IDE do the heavy lifting
= Or use java.util.Objects.hash(...);
= Always use the same fields as equals()

Comparable<T> Interface |

= int compareTo(T obj);

= Part of the Collections Framework

= Doesn't just tell us true or false, but smaller, same, or
larger: useful for sorting.

= Refurns an integer, r:
= <O This object is less than obj
= r==0 This object is equal to obj
= >0 This object is greater than obj

Comparable<T> Intertace I

public class Point implements Comparable<Point> {
private final int mX;
private final int mY;
public Point (int, int y) { mX=x; mY=y; }

// sort by y, then x
public int compareTo(Point p) {
if (mY>p.mY) return 1;
else if (mY<p.mY) return -1;
else {
if (mX>p.mX) return 1;
else if (mX<p.mX) return -1;
else return 0.
}
}
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

Comparator<T> Interface |

= inf compare(T objl, T obj2)

= Also part of the Collections framework and
allows us to specify a specific ordering for a
particular job

= E.g. a Person might have natural ordering that
sorts by surname. A Comparator could be
written to sort by age instead...

Comparator<T> Interface I

public class Person implements Comparable<Person> {
private String mSurname;
private int mAge;
public int compareTo(Person p) {
return mSurname.compareTo(p.mSurname);

}
}

public class AgeComparator implements Comparator<Person> {
public int compare(Person p1, Person p2) {
return (pl.mAge-p2.mAge);

}
}

ArrayList<Person> plist = .. .;

Collections.sort(plist); // sorts by surname
Collections.sort(plist, new AgeComparator()); // sorts by age

Operator Overloading

= Some languages have a neat feature that
allows you to overload the comparison
operators. e.g. in C++

class Person {
public:
Int mAge
bool operator==(Person &p) {
return (p.mAge==mAge);
3
}

Person a, b;
b ==a; // Test value equality

OOP Michaelmas 2025 Prof. Robert Harle

Generics

Reminder: Generics

Non-generics type: List

Generics: List<String>, List<Integer>

Why do we want typese

» Type systems assign types to key ferms in our
source code

= There are logical rules that can be applied to
the types to ensure type safety and reduce the
chance of bugs

= Stafic type checking checks types at compile
(which is where we want to capture bugs!)

= Dynamic type checking checks type safety at
runtime

Why do we want Genericse

= Generics are part of a type system and they
aim to allow "a fype or method fo operafe on
objects of various types while providing
complile-time type safety” [Wikipedid]

= Generics are aka Parametric Polymorphism

= Inreal terms it stops a specific type of error at
compile time...

Collections are a good motivator

// Make a TreeSet object = The original Collections framework just
TreeSet ts = new TreeSet(); dealt with collections of Objects

= Everything in Java “is-a” Object so
that way our collections framework
will apply to any class

// Loop through = But this leads to:

iterator it = ts.iterator(); . :
while(it.hasNext()) { Constant casting of the result

// Add integers to it
ts.add(new Integer(3));

Object o = it.next(); (ugly)
Integer i = (Integer)o; = The need to know what the
i return type is

= Accidental mixing of types in the
collection

Collections are a good motivator

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through

iterator it = ts.iterator(); Going to fail for the

while(it.hasNext()) { second element!
Object o = it.next(); ((But it will compile: the

. error will be at runtime)
Integer i = (Integer)o;

Generics lets us catch errors at compile

List<String> list = new ArrayList<>();
list.add("a");

list.add("b") ;

list.add(8); // compile error

(Note the shorthand of using <> instead of <String> on the
RHS: Java fills in the type from the LHS)

Declaring a Generic class

public class Box<T> {
private T t;

public Box (T t) {

this.t = t; There’s nothing special about

} ‘T’ - you can use what you like

public void set (T t) {
this.t = t;
}

public T get ()
return t;

}

Bounded Parameters

public class Box<T extends Number>
private T t;

public Box (T t) {
this.t = t;
}

public void set (T t) {
this.t = t;

} Box<Integer> boxl; // ok

public T get () ({ Box<String> box2; // error
return t; Box<BigInteger> box3; // ok
} Box<Object> box4; // error

} Box<Double> box5; // ok

Methods too!

public class GenericMethod {

public static <T> wvoid filllList(
List<T> 1list,
T val) {
for (int i=0; i<list.size(); i++)
list.set (i, wval);

Java’'s Generics Implementation

Java’'s goal

Add generics to its type safety system, retaining
backwards compatibility

The generic class is tfreated as a template by the
compiler, which generates new classes from it
whenever you ask for something

E.Q. If your code contains ArraylList<Integer> it
would generate a Java class for ArrayListinteger
or some such

Essentially you search/replace the template
param, T, with “Integer” to get a new class.
Repeat for any other types used in the code

C++ does this

Option 1: tfemplates

class MyClass<T> {
T membervar;

5

C++ does this

-

class MyClass_float {
float membervar;

I

class MyClass_int {
int membervar;

I

class MyClass_double {
double membervar;

5

Opftion 2: type erasure

At compile time, do all the type checks you can.

Then delete the type information in the compiler
outpuT.

|.e. ArraylList<iInteger> is checked, and then
written to bytecode as plain Arraylist. The JVM will
never know and so dynamic checks aren'’t
possible.

Java does this

Opftion 2: type erasure

LinkedList<Integer> |l = LinkedList Il =
new LinkedList<Integer>(); new LinkedList();

for (Integeri : II) { for (Objecti :) {
do_sthing(i); do_sthing((Integer)i);

} }

Pros/Cons of Type Erasure

Pros
e Bytecode unchanged: backwards compatible
e Compile fime type checking reduces bugs

e Avoids bloat of templates (all those extra
classes)

Cons

e No runtime (dynamic) checking
e Has some unexpected consequences...

You can't use primitive parameters

e The compiler replaces the template parameter
with Object

T memberVar — Object memberVar

e Obviously can'’t work for primitives (which don’t
descend from Object)

Creation is tricky

T memberVar = new T () ;

Objects are created via new atrunfime in the
JVM

But the JVM doesn’t know what T was (it's been
erased after compile). So all it can do is:

Object memberVar = new Object();

Which isn’t particularly useful...

Method overloading is limited

void addAll (List<String> items) {...}

void addAll (List<Integer> items) {...}

While the raw code has distinguishable types in its
argument list, they will both erase to LinkedList so
you just can’t do this:

void addAll (List items) {...}

void addAll (List items) {...}

Generics, Inheritance and Covariance

Covariance

Covariance: If B is a subtype of A then | should be
able to use B everywhere | expect an A.

(Think Liskov substitution principle)

Java classes are covariant

Student s = new Student();
Person p = (Person) s; // fine

Covariance

Person
// Object casting
Student s = new Student();

z S Person p = (Person) s;

Student

A Student is-a Person

List<T>
// List casting

z S LinkedList<Person> pllist = new LinkedList<Person>();
List<Person> plist = (List<Person>) playlist;
LinkedList<T>

A LinkedList of Person is a List of Person

Java Arrays are covariant

Java arrays are also covariant

If B is a subtype of A then | should be able to use B[] everywhere |
expect an Af].

Student[] sarray= new Student[20];
Person[] parray = (Person[]) sarray; // fine

But Is this righte<e

Student[] sarray= new Student[20];
Person[] parray = (Person[]) sarray; // fine

Is an array of stfudents an array or personse

But Is this righte<e

Student[] sarray= new Student[20];
Person[] parray = (Person[]) sarray; // fine

Is an array of stfudents an array or personse

NO

But Is this righte<e

Student[] sarray= new Student[20];
Person[] parray = (Person[]) sarray;

Parray[2] = new Lecturer(); // Eeek!!!

If you try this, it will compile, but you get a
Nnasty runfime error

Java Arrays are reified

SO covariance in arrays opens up
the possibility of runtime errors

This Is possible because arrays
know their type at runtime - they
are reified

What about Genericse

Person // This compiles
Student[] s = new Student[20];
Person[] p = (Person(])s;
; // This doesn’t compile
Student

List<Student> s = new LinkedList<Student>();
List<Person> s = (List<Person>)p;

Generics are invariant: why the different approach?

Conceptual: making arrays coovariant was arguably wrong and
it led to runtime errors

Practical: Generic types are erased so even if they were
covariant, the runtime wouldn’t know if we did something bad
— NO runtime error, just nasty effects later in your program!!

This presents a problem...

Imagine you wanted a function that can
be handed a list and will just print out
everything in I, regardless of type

public void printList(??)

Wildcards

We can use wildcards 1o do this

void printAll (List<?> list) {
for (Object o : 1list)
System.out.println (o) ;
}

You can call anything on list that returns
the underlying type e.g. list.get(3);

If you call anything that takes the type as
INnput, it won't compile e.g.
list.add(“hi”);

Bounded Wildcard: Lower

<? extends A> matches anything thatis type A or a
subtype of it (Covariance)

public void printNumberList (
List<? extends Number> list) {

for (Number n: list) {
System.out.println(n) ;

}

Bounded Wildcard: Lower

List<? extends Number>
It's safe to read Number types from this

It's dangerous to write anything o this (you can’t tell if it's
Double or Integer, etc)

Bounded Wildcard: Upper

<? super A> matches anything thatis fype A or a
supertype of it (contravariance)

List<? super Number>
It’s only safe to read Objects from this

IT's safe to write Number or its subclasses

Bounded Wildcard: Both

public static void copy (
List<? extends Number> src,
List<? super Number> dest) ({

for (Number number : src)
dest.add (number) ;

OOP Michaelmas 2025 Prof. Robert Harle

Coupling, Errors and Exceptions

Coupling

e Degree to which different parts of a program depend on
each others

e High coupling: relying on internals/implementation details

e Loose coupling: relying on interface and defined

behaviour

o No need to know how a smartwatch works to read the time

o Changes to the watch’s internals (software) do not affect reading
the time

Coupling

High coupling

Low coupling

BankStatementAnalyzer

uses

BankStatementAnalyzer

uses

uses

-

BankStatementCSVParser

BankStatementCSVParser

<<BankStatementParser>>

Bad Coupling

e Relying on internal implementation details which may
change

e Accessing / updating poorly encapsulated fields
e Reckless use of inheritance introduces high coupling

between two classes because if the parent class changes
(fields, methods...) it could affect the children classes

Boxing

Boxing and Unboxing

e Java automatically converts between the primitive types and

their corresponding object wrapper classes to make life simpler.
This is called autoboxing.

e Boxing: turnan int into an Integer

e Unboxing: turn an Integer into an int

Note that boxed objects have more memory overhead!

An int takes up 4 bytes

An Integer ~16 bytes (special headers and flags to be an Object)

Auto-Boxing

public void something (Integer I) {
}

int 1 = 4;

something (i); // works: auto-boxing

Auto-Unboxing

public void other (int 1) {
J

Integer 1 = 3;

other (i); // auto-unboxing

Auto-Unboxing Warning

public void other (int 1) {
J

Integer 1 = null;

other (i); // auto unbox gives NPE!

(if you'd tried other(null) it would not have compiled...)

Errors

Return Codes

The traditional imperative way to handle errors is to return a
value that indicates success/failure/error

public int divide(double a, double b) {
if (b==0.0) return -1; // error
double result = a/b;
return 0; // success

}

if (divide(x,y)<0) System.out.printIn(“Failure!!”);

Problems with Return Codes

Could (and often do) ignore the return value

Have to keep checking what the return values are meant to
signify, etc.

The actual result often can't be returned in the same way

Error handling code is mixed in with normal execution (makes
code harder to read and hence maintain)

Example

#include <stdio.h>
#include <stdlib.h>

int main() { if (ferror(file)) {

const char* filename = "example.txt"; perror ("Error reading from

FILE* file = fopen(filename, "r"); file");

if (file == NULL) { fclose(file) ;
perror ("Error opening file"); return EXIT FAILURE;
return EXIT FAILURE; }

}

char buffer[100]; // Close the file

while (fgets (buffer, if (fclose(file) !'= 0) {

sizeof (buffer), file) !'= NULL) ({ perror ("Error closing file");

// Check for read errors return EXIT FAILURE;
if (ferror(file)) { }

perror ("Error reading from
file");
return EXIT SUCCESS; }
fclose(file) ;

return EXIT_FAILURE;

}
printf ("%$s", buffer);

Example

#include <stdio.h>
#include <stdlib.h>

int main() { if (ferror(file)) {

const char* filename = "example.txt"; perror ("Error reading from
FILE* file = fopen(filename, "r"); file");
if (file == NULL) { fclose(file) ;
perror ("Error opening file"); return EXIT FAILURE;
return EXIT FAILURE; }
}
char buffer[100]; if (fclose(file) '= 0) {
while (fgets (buffer, perror ("Error closing file");
sizeof (buffer), file) !'= NULL) { return EXIT FAILURE;
if (ferror(file)) { }

perror ("Error reading from
file");
return EXIT SUCCESS; }
fclose(file) ;

return EXIT FAILURE;

}
printf("%s", buffer);

Deferred Error Handling

A similar idea (with the same issues) is to set some state in the
system that needs to be checked for errors.

C++ does this for streams:

ifstream file("test.txt");
if (file.good())
{

cout << "An error occurred opening the file" << endl;

}

= An exception is an event, which occurs during the execution of a

program, that disrupts the normal flow of the program'’s
instructions.

= An exception is an object that can be thrown or raised by a method
when an error occurs and caught orhandled by the calling code

= Example usage:

try {
double z = divide(x,y);

}
catch(DivideByZeroException d) {
// Handle error here

}

Flow Control During Exceptions

= When an exception is thrown, any code left to run in the try
block is skipped

double z=0.0;

boolean failed=false;

try {
z = divide(5,0);
z=1.0;

}

catch(DivideByZeroException d) {
failed=true;

}

z=3.0;

System.out.printin(z+” “+failed);

Throwing Exceptions in Java

= An exception is an object that has Exception as an
ancestor

= S0 you need to create it (with new) before throwing

double divide(double x, double y) throws DivideByZeroException {
if (y==0.0) throw new DivideByZeroException();
else return x/y;

}

Multiple Handlers

= Atry block can result in a range of different exceptions. We
test them in sequence

try {
FileReader fr = new FileReader(“somefile”);

int r = fr.read();
}
catch(FileNotFound fnf) {
// handle file not found by the FileReader
}
catch(IOException d) {
// handle read() failed

}

Union catch blocks

= You can catch multiple in the same block

try {
FileReader fr = new FileReader(“somefile”);

int r = fr.read();

}

catch(FileNotFound fnf | SomeOtherException e) {
// handle the same way

}

catch(Exception d) {
// handle anything else

}

finally

With resources in particular we often want to ensure that
they are closed whatever happens

An use a finally block that will always run (after any
handler)

static String readFirstLineFromFile(String path) throws IOException {
BufferedReader br = new BufferedReader(new FileReader(path));

try {
return br.readLine();

} finally {
if (br 1= null) br.close();

}
}

Try-with-resources

Still easy to forget the finally block

Try-with-resources in java does it for us

try (BufferedReader br = new BufferedReader (new FileReader (path)))
{

return br.readLine() ;

The objects we create in the try brackets must implement

AutoCloseable so that the compiler can insert a finally block that
does the close for us

Creating Exceptions

Just extend Exception (or RuntimeException if you need
it to be unchecked - see later). Good form to add a detail
message in the constructor but not required.

public class DivideByZero extends Exception {}

public class ComputationFailed extends Exception {
public ComputationFailed(String msg) {
super(msg);
}
}

You can also add more data to the exception class to provide
more info on what happened (e.q. store the numerator and
denominator of a failed division)

Exception Inheritance Hierarchies

You can use inheritance hierarchies

public class MathException extends Exception {...}
public class InfiniteResult extends MathException {...}
public class DivByZero extends MathException {...}

And catch parent classes

try {

}...

catch(InfiniteResult ir) {

// handle an infinite result in a special way
}
catch(MathException me) {

// handle any MathException or DivByZero

}

Exception Benefits in Java

1. Documentation: The language supports exceptions as part of method
signatures

2. Type safety: The type system figures out whether you are handling the
exceptional flow

3. Separation of concern: business logic and exception recovery are
separated out with a try and catch block

Throwable

Unchecked Checked

Error Exception

RuntimeException

Error is intended for things completely outside of the programmer’s control;
Exceptions are for problems ultimately caused by the programmer in some way

Java’s Error Hierarchy

Throwable
v v
Error Exception
|
v v v v
LinkageError AssertionError ThreadDeath VirtualMachineError
> BootstrapMethodError | —1 i o | diclcioiiu |
—D{ ClassCircularityError] Arhodmet I il il l
o e I HlegalAccessError StackOverflowError |
mstondoNcalTor UnknownError]
UnsupportesClassVersionError I PRI
—i{ ExceptionininitiolizerError I NoSuchMethodError
L NoClassDefFoundError |
> unsatisfiedLinkerror |
— Verify€rror |
I0Exception ReflectiveOperationException RuntimeException CloneNotSupportedException InterruptedException
|
FileNotFoundException | |—»{ ClassNotFoundException | | e | b RS l
SocketException | —|___WegolAccessexception | L,/ ArrayStoreException | F—#{ indexoutorBoundsexception |
L’l Covention | [+ tonsationtcepten | | ClassCastException | L —
UnknownHostException | —_imocmionTorgeieception | L5 ConcurrentModificationException | StragindeonotBoundstxception |
g | [—»] enumc ion | 5| NegotivearraySizeException |
— (8 on_| | lllegalArgumentException | S, NullPointerException |
IBegalThrecdStoteException] —hl SecurityException l
NumberFormatException l _..I TypeNotPresentException l
|

-

IllegaiMonitorStateException I

= Checked: must be handled or passed up.

= Client must take a recovery action (e.g. display a message or
retry)

= Java requires you to declare checked exceptions that your
method throws

= Java requires you to catch the exception when you call the
function

= Unchecked: not expected to be handled.
= Programming error (e.g. null or wrong pattern / format)
= There’s nothing the client could do (e.g. system error)
= Extends RuntimeException
= Good example is NullPointerException

Guidelines for Exception use

1. Never ignore an exception

If no handling mechanism, re-throw unchecked (“Exception translation”)

catch (WeirdException e) {
// TODO. I’1ll deal with this later. Maybe..
}
VS.
try {
callToAPI() ;
} catch (WeirdException exception) {

throw new RuntimeException (exception) ;

2. Do not catch Exception...

...that would swallow up Runtime exception too

catch (Exception e) { /* TODO (yeah right) */}

VS.
catch (WeirdException e) {

}

Catch specific exceptions to improve readability and provide more specific exception
handling

3. Document exceptions at the API level

Java supports specially formatted comments on classes and methods that are used
to produce pretty APl webpages (“Javadoc”).

Use this facility fully to describe when exceptions would occur in the context of the
method

/**

Parses a CSV settings file into an AppSettings object

*
*
* @param filename Full path to file

* @return the parsed settings as an Appsettings object

* @throws NoSuchfileexception if the filename supplied is invalid
* @throws Badinput if the settings file is corrupt.

**/

public AppSettings loadSettings (String filename) {

4. Avoid implementation-specific exceptions

If your exception describes what’s going on under the hood, you are
breaking encapsulation E.g.

public String read(Source source) throws
SQLException

Clearly relates to an implementation detail (it's using SQL), which is
not helpful to a user or your class/API.

public String read(Source source) throws
ResourceNotFoundException

Is much more useful

5. Never use exceptions for control flow

try {
while (true) {

System.out.println(iterator.next()) ;

}

catch (NoSuchElementException e) {

// All done

It's just evil

Asserfions

Assertions

= Assertions are a form of error checking designed for debugging
(only). We met them in the Bootcamp.

= They are a simple statement that evaluates a boolean: if it's true
nothing happens, if it's false, the program ends.

= |n Java:

assert (x>0);

// or

assert (a==0) : “Some error message here”;

Assertions are NOT for Production Code!

= Assertions are there to help you check the logic of your code is
correct i.e. when you're trying to get an algorithm working

= They should be switched OFF for code that gets released
(“production code”)

= |n Java, the JVM takes a parameter that enables (-ea) or disables
(-da) assertions. The default is for them to be disabled.

> java -ea SomecClass

> java -da SomecClass

As Oracle Puts It

“Assertions are meant to require that the program be
consistent with itself, not that the user be consistent
with the program”

Great for Postconditions

= Postconditions are things that must be true at the end of an
algorithm/function if it is functioning correctly

= E.Q.

public float sqrt(float x) {
float result=....

// blah
assert(result>=0.f);

}

Sometimes for Preconditions

= Preconditions are things that are assumed true at the start of an
algorithm/function

= E.Q.

private void method(SomeObiject so) {
assert (so!=null);

/...
}

= BUT you shouldn't use assertions to check for public
preconditions

public float method(float x) {
assert (x>=0);

/...
}

= (you should use exceptions for this)

Sqgrt Example

public float method(float x) throws InvalidinputException {
.// Input sanitisation (precondition)
if (x<0.f) throw new InvalidinputException();

float result=0.f;
// compute sqgrt and store in result

// Postcondition
assert (result>=0);

return result;

Assertions can be slow if you Like

public int[] sort(int[] arr) {
Int[] result = ...

// blah
assert(isSorted(result));

}

= Here, isSorted() is presumably quite costly (at least O(n)).

= That's OK for debugging (it's checking the sort algorithm is
working, so you can accept the slowdown)

= And will be turned off for production so that's OK

(but your assertion shouldn't have side effects)

NOT for Checking your Compiler/Computer

public void method() {
Int a=10;
assert (a==10);
//...

}

= |f this isn't working, there is something much bigger wrong with
your system!

= |t's pointless putting in things like this

OOP Michaelmas 2025 Prof. Robert Harle

Design Patterns

Design Patterns

= A Design Pattern is a general reusable solution to @
commonly occurring problem in software design

= Coined by Erich Gamma in his 1991 Ph.D. thesis

= Qriginally 23 patterns, now many more. Useful to
look at because they illustrate some of the power of
OOP (and also some of the pitfalls)

= We will only consider a subset

The Open-Closed Principle

» Classes should be open for extension
but closed for modification

= |.e. we would like to be able to modity
the behaviour without fouching its
source code

= This rule-of-thumb leads to more
reliable large software and will help us
to evaluate the various design patterns

= Abstract problem: How can we treat
a group of objects as a single object?

= Example problem: Representing a DVD
box-set as well as the individual films
without duplicating info and with @
10% discount

Composite in General

x = The composite pattern

Component 1<~ lets us treat objects and
toperation() groups of objects
I uniformly
0
Leaf . Composite
+operation() #children
+operation(y

]
for (Component c : children)Ew

c.operation();

Decorator

= Abbstract problem: How can we add
state or methods at runtimee

= Example problem: How can we
efficiently support gift-wrapped books
IN an online bookstoree

Decorator in General

= The decorator pattern
adds state and/or

Componene func’riopali’ry to an object
— parationl) dynamically
ConcreteComponent Decorator |, | tents
+operation() +operation(d-{----

‘?; contents.operation();b1

StateDecorator FunctionDecorator

#eXt rastate +operation()o- -------- - :
+operation() +extraBehaviour() super.operation();

extraBehaviour();

= Abstract problem: How can we let an
object alter its behaviour when its
Infernal state changese

= Example problem: Representing
academics as they progress through
the rank

State In Generdl

= The state pattern allows

an object to cleanly alter
Context> >|State its behaviour when
A internal state changes

Statel| | State2

Strategy

= Abstract problem: How can we select
an algorithm implementation at
runtimee

= Example problem: We have many
possible change-making
Implementations. How do we cleanly
change between themye

Strategy in General

= The strategy pattern allows us to cleanly interchange
between algorithm implementations

Strate
Context > oy

+algorithm()

A

ConcreteStrategyA ConcreteStrategyB

+algorithm() +algorithm()

= Abstract problem: How can we ensure
only one instance of an object s
created by developers using our
codev

= Example problem: You have a class
that encapsulates accessing a
database over a network. When
Instantiated, the object will create a
connection and send the query.
Unfor’runu’rely you are only allowed

AAAAAAAAAAA I Y

Singleton in General

= The singleton pattern
ensures a class has only one

Singleton instance and provides
-instance: static global access to it
+getInstance(): static
#Singleton() ?

if (instance==null) instance=new Singleton();
return instance;

Observer

= Abstract problem: When an object
changes state, how can any
INnferested parties knowe

= Example problem: How can we write
phone apps that react to accelerator
eventse

Observer in General

= The observer pattern allows an object to have multiple
dependents and propagates updates to the dependents

automatically.

Subject P tERE
*
e > Observer
#observers —
state
+attach(0bserver)a 2
+detach(Observer) |*. #subject
+getState() K +update (9
+notify() ‘s, ,
Q . : N

state=subject.getState();

-~
-
‘

e == m--

AN

observers.add(observer)

for (Observef 0 : observers)
o.update();

= We covered the following patterns:
Singleton

Decorator

Composite

State

Strategy

Observer

O O O O O O

Bonus: Optional<T>

= Not an official design Pattern, but worth us talking about

= Using null as a way to indicate the lack of an object is
rather risky: you've all seen NullPointerExceptions!

= In general null has three problems:
o Error-pone checking
o Verbose checking
o No useful semantic meaning

Bonus: Optional<T>

= java.util.Optional<T> encapsulates an optional value

= You can view Optional as a single-value container that
either contains a value or doesn't

Optional<Car> Optional<Car>

Contains an object

of type car An Empty Optional

Bonus: Optional<T>

e More comprehensible model where it's immediately
understandable whether to expect an optional value —
better maintainability

e You need to actively unwrap an Optional to deal with
the absence of a value — fewer errors

String name = "hello";
Optional<String> opt = Optional.of (name) ;
1f (opt.isPresent()) {

// code here

}

OOP Michaelmas 2025 Prof. Robert Harle

Lambdas, Method References, Streams

Lambdas

public class Apple {
private String colour;
private double weight;

public String getColour() { return colour; }
public double getWeight() { return weight; }

// Constructors etc.

You have a List<Apple> and you need to filter
It by colour and weight. How do you do it¢

Option 1

public static List<Apple> filterApplesByColour(List<Apple> apples,
String colour) {

List<Apple> result = new ArrayList<>();
for (Apple apple: apples) {
if (apple.getColour().equals(colour))) {
result.add(apple); }
}

return result;

}

List<Apple> greenApples = filterApplesByColor(inventory, "green");

Quite a lot of code for such as simple thing. Even uglier if
we extend to filter by weight too

Option 2: Strategy Pattern?

Apple

- : ' : encapsulates a
'i' " selecting an

AppleColorPredicate § AAppleWeightPredicate

public interface ApplePredicate {
boolean test (Apple apple);

)

Option 2: Strategy Pattern?

Create specific predicates for what we want:

public class AppleWeightPredicate implements ApplePredicate {
public boolean test(Apple apple){
return apple.getWeight() > 150;

}
}

public class AppleGreenPredicate implements ApplePredicate {
public boolean test(Apple apple){
return "green".equals(apple.getColour());

}
}

Option 2: Strategy Pattern?

Now filter:

public static List<Apple> filter(List<Apple> inventory, ApplePredicate p) {
List<Apple> result = new ArrayList<>();
for(Apple apple: inventory){
if(p.test(apple)) result.add(apple);
}

return result;

}

List<Apple> greenApples = filter(inventory, new AppleGreenPredicate());
List<Apple> greenLightApples = filter(greenApples, new
AppleWeightPredicate());

s this good?

Option 2: Strategy Pattern?

Pros:

e Increased code flexibility. Easy-ish to write new
predicates

e filter code is universal

Cons:

e A lot of code, with an annoying overhead of a class
for every new predicate. Especially annoying if it's @
one-off filter we won’'t reuse

e We've got a good abstraction, but we have poor
concision

Option 3: Anonymous Classes

To partly address these issues, Java allows you to define an
‘anonymous class’ inline in your code

List<Apple> result = filter (inventory,
new ApplePredicate() ({
public boolean test (Apple apple) {

return '"red'".equals (apple.getColor())
}

) ;

Helps with the one-off issue, and is generally a bit more concise

Still feels verbose, however.

Option 4: Lamdas!

List<Apple> result = filter (inventory,
(Apple apple) -> "red".equals (apple.getColour()))

Flexible and concisel!ll The lambda defines a function without all
the boilerplate using the syntax

(parameters) -> expression
or
(parameters) -> { statementl; statement2; ..}

But wait: how does it know how to create an ApplePredicate
object from just thate?

Option 4: Lamdas!

The trick is ApplePredicate is an interface with exactly one method:

public interface ApplePredicate ({
boolean test (Apple apple) ;

}

When the compiler sees

(Apple apple) -> "red".equals (apple.getColour())

it knows it must be defining precisely test (because there's nothing
else to define). It checks the argument list matches test (it does)
and generates the rest for us.

This would not be possible if ApplePredicate had more than one
function...

Functional Interfaces

This trick requires strict one-method-only interfaces to work and is
very powerful as we've seen

We name such inferfaces Functional Interfaces

What is a Lambda®?

e q kind of anonymous function

e that can be passed around (OCaML, anyone?)

e it doesn’'t have a name, but it has a list of parameters, a body, a
return type, and also possibly a list of exceptions that can be

thrown.

(parameters) -> expression
or

(parameters) -> { statements; }

Abstracting further

Our filter function could be even more generic, and not be limited to
Apples by using Generics:
public static <T> List<T> filter (List<T> list,
Predicate<T> p) {
List<T> result = new ArrayList<>();
for (T e: list) {
if (p.test(e)) {
result.add (e) ;

}

return result;

Abstracting further

Now it's flexible and really concise:

List<String> result =

filter(strings, (String s) -> s.endsWith(".json"));

List<Integer> result =

[o)

filter (numbers, (Integer i) -> 1 % 2 == 0);

List<Apple> result =

filter (inventory, (Apple a) -> apple.getWeight() >
150) ;

A ‘real’ example

Before
inventory.sort (new Comparator<Apple>() ({
public int compare (Apple al, Apple a2) {

return al.getWeight () .compareTo (a2.getWeight()) ;

});

After

inventory.sort ((Apple al, Apple a2) ->
al.getWeight () .compareTo (a2.getWeight ())

) ;

A ‘real’ example

Before
button.setOnAction (new EventHandler<ActionEvent> () {
public void handle (ActionEvent event) ({

label.setText("Sent!!") ;

}) s
After

button.setOnAction ((ActionEvent event) ->
label.setText ("Sent!!"));

Built-in Functional Interfaces

Functional interface Lambda signature

Predicate<T> T -> boolean
Consumer<T> T -> void
Function<T, R> T->R
Supplier<T> ()->T
UnaryOperator<T> T->T
BinaryOperator<T> (T, T)>T
BiFunction<T, U, R> (T, U)->R

* Havealookin java.util.function.*
e Primitive specialisations exist including ToIntFunction, DoubleUnaryOperator etc

Method References

Method References

e Method references let you reuse existing method definitions
and pass them just like lambdas.
e “First-class” functions (yay!)

Before: (2pple a) -> a.getWeight ()
After: Apple::getWeight

Before: (String str, int i) -> str.substring(i)
After: String::substring

List<String> str =
Arrays . aSLiSt ("a", "b", "A", "B") ;

Before
str.sort ((String sl, String s2) ->
sl.compareToIgnoreCase (s2));

After

str.sort (String: :compareToIgnoreCase) ;

A full example

Example: Classic

public class AppleComparator implements
Comparator<Apple> {

public int compare (Apple al, Apple a2) {
return

al.getWeight () .compareTo (a2.getWeight()) ;

inventory.sort (new AppleComparator());

Example: Anon classes

inventory.sort (new Comparator<Apple>() ({
public int compare (Apple al, Apple a2) {

return al.getWeight () .compareTo (a2.getWeight()) ;

})

Example: Lambdas

inventory.sort (
(Apple al, Apple a2) ->
al.getWeight () .compareTo (a2.getWeight()))

Example: Library help

Comparator<Apple> byWeight =

Comparator.comparing ((Apple apple) -> apple.getWeight()) ;

inventory.sort (byWeight) ;

Example: Library help

Comparator<Apple> byWeight =

Comparator.comparing (Apple: :getWeight) ;

inventory.sort (byWeight) ;

Example: Tidy up

inventory.sort (Comparator.comparing (Apple: :getWeight)) ;

Streams

External Iteration

int count = 0;
for (Student student: students) {

if (student.isFrom("Cambridge")) count++;

Application Code Collections Code

[teration

hasNext ()

hasNext

next ()

- element

Internal Iteration

students.stream()
.filter (student -> student.isFrom("Cambridge"))

.count () ;

Application Code Collections Code

lteration

Build
Operation

result

Informally: A fancy iterator with database-like
operations

More formally: A sequence of elements from a source
that supports aggregate operations

Allows Pipelining

lambda lambda integer

dishes 2 2 . g collect

Intermediate Operations Terminal Operation

Intermediate: refurns a Stream and can be “connected”

Terminal: returns a non-Stream value (e.g. int, String,...)

Stream Operations

filter
distinct
skip

limit

map
flatMap
sorted
anyMatch
noneMatch
allMatch
findAny
findFirst
max/min
forEach
collect
reduce
reduce

count

intermediate
intermediate
intermediate
intermediate
intermediate
intermediate
intermediate
terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal
terminal

terminal

Predicate<T>

long

long

Function<T, R>
Function<T, Stream<R>>
Comparator<T>
Predicate<T>
Predicate<T>

Predicate<T>

Comparator<T>
Consumer<T>
Collector<T, A, R>
BinaryOperator<T>

(T, BinaryOperator<T>)

T -> boolean

T->R

T -> Stream<R>

(T, T) ->int
T -> boolean
T -> boolean

T -> boolean

(T, T) ->int

T -> void

(TT)->T
(T, T)>T

Stream<T>
Stream<T>
Stream<T>
Stream<T>
Stream<R>
Stream<R>
Stream<T>
boolean
boolean
boolean
Optional<T>
Optional<T>
Optional<T>
void

R
Optional<T>
T

long

List<Dish> lowCaloricDishes = new ArrayList<>();

for (Dish d: dishes) {
if (d.getCalories () < 400) {

lowCaloricDishes.add(d) ;

}

Collections.sort (lowCaloricDishes,
new Comparator<Dish>() {
public int compare (Dish dl1, Dish d2) {

return Integer.compare (dl.getCalories (), d2.getCalories());

})
List<String> lowCaloricDishesName = new ArrayList<>();
for (Dish d: lowCaloricDishes) {

lowCaloricDishesName.add (d.getName()) ;

filter low calories

sorting by calories

extract names

List<String> lowCaloricDishesName =
dishes.stream()
.filter(dish -> dish.getCalories() < 400)
.sorted (comparing (Dish: :getCalories))
.map (Dish: :getName)
.collect (toList()) ;

Key advantages

Concise: makes readable code

Short-circuiting: Can stop as soon as the result is known, and not process the
entire collection

Lazy evaluation: Only evaluate an expression when we need the result. |.e.
only when you connect a terminal block do the intermediates get evaluated.

Aaaannnd...

..we're donel

