
OOP Michaelmas 2025 Prof. Robert Harle

Object Oriented Programming
Prof. Robert Harle

IA CST, Michaelmas 2025

The OOP Course
1. Intro to Java
2. Class Design and Encapsulation
3. Memory
4. Inheritance
5. Polymorphism
6. Object Lifecycle, Garbage Collection and Copying
7. Collections, Comparisons
8. Generics
9. Coupling, Errors and Exceptions

10. Design Patterns, Lambdas, Method References and
Streams

Books and Resources I
▪ OOP Concepts

▪ Look for books for those learning to first program in an OOP language (Java,
C++, Python)

▪ Java: How to Program by Deitel & Deitel (also C++)
▪ Thinking in Java by Eckels
▪ Java in a Nutshell (O' Reilly) if you already know another OOP language
▪ Java specification book: http://java.sun.com/docs/books/jls/

▪ Lots of good resources on the web

▪ Design Patterns
▪ Design Patterns by Gamma et al.
▪ Lots of good resources on the web

Books and Resources II

http://www.cl.cam.ac.uk/teaching/current/OOProg/

(Links out to moodle site)

Books and Resources III

Chat GPT?

Gemini?

(Other generative AIs are available. Your home
may be repossessed if you do not keep up
repayments on your mortgage. Etc etc)

OOP Michaelmas 2025 Prof. Robert Harle

Motivations, Languages, OOP Intro

Motivating OOP

Large software gets complicated fast

It became clear it was hard to write this code

but also it was really hard to maintain it

In the 1960s they were searching for ways to

tame this complexity

Battling Complexity

Maintainability Wishlist

● Simple to locate code responsible for a particular feature

● Simple to understand what the code does

● Simple to add or remove a new feature

● Simple to change existing behaviour

● Make it (more) difficult to introduce new bugs

Types of Languages

▪ Declarative - specify what to do, not how to do it.
▪ Functional - functions at the core
▪ Logic - reason about facts and rules
▪ Reactive - reason about streams of data and events
▪ E.g. HTML describes what should appear on a web page, and not how it

should be drawn to the screen

▪ E.g. SQL statements such as “select * from table” tell a program to get
information from a database, but not how to do so

▪ Imperative – specify both what and how
▪ Procedural - group code into procedures
▪ OOP - group procedures and data together
▪ E.g. “double x“ might be a declarative instruction that you want the

variable x doubled somehow. Imperatively we could have “x=x*2” or
“x=x+x”

OCaML

▪ OCaML is a functional language and therefore
declarative
▪ It may appear that you tell it how to do everything,

but you should think of it as providing an explicit
example of what should happen
▪ The compiler may optimise i.e. replace your

implementation with something entirely different
but 100% equivalent.

What is OOP?
Object-oriented programming (OOP) is a programming paradigm
based on the concept of "objects", which can contain data and
code: data in the form of fields, and code, in the form of procedures
(often known as methods). Objects are usually defined by classes
that group fields and methods together.

Procedural
code
monster

OOP objects
interact to achieve
same result

These objects
are easier to
reason about
and maintain

Characteristics of OOP

1. Encapsulation

2. Abstraction

3. Inheritance

4. (Subtype) Polymorphism

We will cover these concepts in the rest of the course and see how
they help develop software that can cope for changing
requirements as well as improve maintainability of code (when
done properly).

Warning #1: Languages are rarely ‘pure’

A given language is like a ‘pick n mix’ of concepts that
the language creator needed for their task, or which
other developers have requested
Either languages:

▪ become very niche/specialist (in which case they
may be ‘pure’)

▪ grow to be general purpose (in which case they
become behemoth jack-of-all-trades).

Java, C++, ...

Warning #2: OOP isn’t always appropriate
● Poor choice for smaller programs where

abstractions are not needed

● May not be as intuitive for reasoning / mathematical
types of problems

● Often involves more boilerplate code and memory
footprint in exchange for abstractions

● Requires thinking about stateful objects

● Can introduce coupling without care (e.g. bad
inheritance, more dependencies). We’ll explore this
later.

OOP Michaelmas 2025 Prof. Robert Harle

Intro to Java

Why Java?

Java was designed as an OOP language

It remains widely used — www.tiobe.com/tiobe-index/

It is quite forgiving for beginners since it does not
require manual memory management

Java’s Virtual Machine
▪ Java was intended as an early language to connect different

devices (1990s) and was thus well placed when the web
came along.
▪ But many architectures were attached to the internet –

how do you write one program for them all?
▪ And how do you keep the size of the program small (for

quick download)?

▪ Could use an interpreter (→ Javascript). But:
▪ High level languages not very space-efficient
▪ The source code would implicitly be there for anyone to

see, which hinders commercial viability.

▪ Went for a clever hybrid interpreter/compiler

Traditional Model

Source
code

Machine
code for

OS1

OS1
Compiler Run on

OS1
computer

Machine
code for

OS2

OS2
Compiler Run on

OS2
computer

(Might also need to adapt the source code to work with each architecture)

Binary file

Binary file

Java Model

Source
code Bytecode

Java
Compiler Run on

OS1 JVM

The JVM (Java Virtual Machine) is a piece of software that converts Java
bytecode (an architecture agnostic machine code) to local machine code

Run on
OS2 JVM

Pros/cons

▪ + Bytecode is compiled so not easy to reverse engineer
▪ + The JVM ships with tons of libraries which makes the

bytecode you distribute small
▪ + The toughest part of the compile (from

human-readable to computer readable) is done by the
compiler, leaving the computer-readable bytecode to be
translated by the JVM (→ easier job → faster job)

▪ - Still a performance hit compared to fully compiled
(“native”) code (although the gap closes all the time)

BTW Python also does this

Although it’s less explicit than with Java, python will generate .pyc files that are
the Python bytecode for your program

(note Java bytecode and Python bytecode are not the same)

In both cases you explicitly invoke the virtual machine to run your program

java YourProgram

python your_program.py

public class HelloWorld {

public static void main {
System.out.print(“Hello world”);

}
}

Java Hello world
In HelloWorld.java:

In terminal:
> javac HelloWorld.java
> java HelloWorld

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”);

}
}

Java Hello world
In HelloWorld.java:

In terminal:
> javac HelloWorld.java
> java HelloWorld

There is one class (unit of code) per
file

The class name and the filename
must match (capitals and all)

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”);

}
}

Java Hello world
In HelloWorld.java:

In terminal:
> javac HelloWorld.java
> java HelloWorld

Scoping (of functions, of loops, etc)
is handled by explicit braces

In python this is done with
whitespace

In Java you can butcher the
whitespace and get away with it (but
don’t)

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”);

}
}

Java Hello world
In HelloWorld.java:

In terminal:
> javac HelloWorld.java
> java HelloWorld

main is function that Java knows to
execute automatically

It takes an array of Strings that are
the arguments (if any) given on the
command line when running

It returns void (think None in python)

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”);

}
}

Java Hello world
In HelloWorld.java:

In terminal:
> javac HelloWorld.java
> java HelloWorld

Java has grouping of classes called
packages

Here, there is a package System. It
contains a subpackage out. It
contains a function println which
prints a supplied line to screen.
“Hello world” is the supplied line

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”);

}
}

Java Hello world
In HelloWorld.java:

In terminal:
> javac HelloWorld.java
> java HelloWorld

Every statement ends with an
explicit semi-colon

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”);

}
}

Java Hello world
In HelloWorld.java:

In terminal:
> javac HelloWorld.java
> java HelloWorld

This compiles the Java bytecode
and stores it in a file
HelloWorld.class

public class HelloWorld {

public static void main(String[] args) {
System.out.println(“Hello world”);

}
}

Java Hello world
In HelloWorld.java:

In terminal:
> javac HelloWorld.java
> java HelloWorld

This executes the bytecode on the
JVM (the java program)

Note we specify the class name to
run and not the .class or .java files

Java will look in HelloWorld.class to
see if there is a main method to
execute. If not it will fail.

Practicalities

Java Developer’s Kit (JDK)
- Contains javac and other useful tools you need
- Download and install the latest openJDK on your

system

 Integrated Dev Environment
- With built-in debugger to explore what is happening
- I recommend IntelliJ IDEA

(Note there is also the JRE — Java Runtime Enironment — this is a subset of the
JDK that contains the JVM but not the compile tools like javac

When you download the Java JDK you get jshell for free

This is a REPL (Read-Eval-Print Loop) like you’ve used with Python

Great to start out with but not the ‘normal’ way to interact with Java

jshell

Representing State (Data)

State

Modelling interaction requires a notion of states that
can be observed and changed.

For example:
Watching movies on netflix (state of your user account)
Making bank transactions (state of your bank balance)
Eating food (state of your body)

For keeping track of state we have variables…

Values (data) are stored in memory and are referred to using
variables in code

int myVar = 10; creates an integer value 10 named myVar

Java is strongly typed — you have to explicitly assign types to
variables*. Those types may be built-in primitive types or
reference types (more on this later):

double amount; // declare 'amount' as a double
int count = 0; // variable of primitive type
String courseName = "OOP"; // courseName refers to

// String reference type

* subject to the var discussion in a few slides

Variables in Java

In Python we use snake_case
● course_name = ‘OOP’
● num_lectures = 10
● assign_marks()

In Java, we use CamelCase
● String courseName = “OOP”;
● int numLectures = 10;
● void assignMarks() {...}

Aside: Naming conventions

Primitive Types in Java

“Primitive” types are the built in ones. They are building blocks for
more complicated types that we will be looking at soon.

▪ boolean – 1 bit (true, false)

▪ char – 16 bits as an unsigned integer (0 to 65,535)

▪ byte – 8 bits as a signed integer (-128 to 127)

▪ short – 16 bits as a signed integer

▪ int – 32 bits as a signed integer

▪ long – 64 bits as a signed integer

▪ float – 32 bits as a floating point number

▪ double – 64 bits as a floating point number

Reference Types in Java

Any type that isn’t a primitive is a reference type

▪ boolean – 1 bit (true, false)

▪ char – 16 bits as an unsigned integer (0 to 65,535)

▪ byte – 8 bits as a signed integer (-128 to 127)

▪ short – 16 bits as a signed integer

▪ int – 32 bits as a signed integer

▪ long – 64 bits as a signed integer

▪ float – 32 bits as a floating point number

▪ double – 64 bits as a floating point number

Immutable to Mutable State

- val x=5;
> val x = 5 : int
- x=7;
> val it = false : bool
- val x=9;
> val x = 9 : int

int x=5; // Create variable and assign value
x=7; // (Re) assign value

int x=9; // Compile fail - attempt
 // to redeclare x

Java

ML

Variables of one type can be promoted or narrowed to another
type, where it is appropriate to do so.

For example:

If you do arithmetic on different types, Java implicitly promotes one
argument to the widest range.
E.g. 2.0 * 3 results in 6.0 as a double

You can also explicitly narrow the type through a cast (could be
dangerous)
E.g. (int) 6.4 results in 6

Type conversion

A recent addition to Java is the ability to infer types on local
variables:

var courseName = "Java";
var data = getData();
var data = new ArrayList<Map<String, Integer>>();

Can make code more readable when used correctly. But use good
judgement - some things aren’t helped:

var x = 7; // Is this an int? short? char?

Local variable type inference

Arrays
// Both of these are valid
byte[] arraydemo = new byte[6];
byte arraydemo2[] = new byte[6];

0x1AC594

0x1AC595

0x1AC596

0x1AC597

0x1AC598

0x1AC599

0x1AC5A0

0x1AC5A1

0x1AC5A2

jshell> int f, g[], h;
f ==> 0
g ==> null
h ==> 0

jshell> int[] f,g,h;
f ==> null
g ==> null
h ==> null

Naming variables

You tend to write code once but read the same code many more
times.

Optimise for maintenance and readability.

Java convention: use Camel Case with an initial lowercase letter

E.g. fontColour, age, xComponent but not variableToHoldAge, etc.

Representing Behaviour (Functions)

Function Prototypes

▪ Functions are made up of a prototype and
a body
▪ Prototype specifies the function name,

arguments and possibly return type
▪ Body is the actual function code

fun myfun(a,b) = …;

int myfun(int a, int b) {...}

Actually procedures

▪ More correctly, functions are like mathematical
functions: they take inputs and provide an output

▪ Now we have procedures: these can manipulate
state outside of the function (a ‘side effect’), and
may have no return type at all

int x = 1;

void demo() {
x = x+1;

}

demo(); // x is 2
demo(); // x is 3

int x = 1;

int demo(int a) {
x = x+1;
return a+x;

}
demo(1); // returns 3
demo(1); // returns 4

Overloading Functions

▪ Same function name
▪ Different arguments
▪ Possibly different return type

▪ But not just a different return type

int myfun(int a, int b) {…}
float myfun(float a, float b) {…}
double myfun(double a, double b) {...}

int myfun(int a, int b) {…}
float myfun(int a, int b) {…} x

Objects and Classes
(Behaviour and state grouped together)

Objects
▪ An object is a bundle of state and behaviour
▪ The state of an object is defined through its fields
▪ The behaviours of an object is defined through its

methods (OOP speak for function/procedure)
▪ “Invoking a method” means executing the

associated behaviour of a specific object

Classes
▪ A class is a blueprint/template for a specific type of

object
▪ A class defines both type and implementation

○ Type: where can the object be used
○ Implementation: how the object does things

▪ The methods of a class can be seen as an API

In Java, all source code is contained in classes (this
isn’t a requirement of OOP, although it’s common)

Java Class Structure

import java.util.ArrayList; // 0. import statements

public class Vector2D { // start of the class definition

// 1. constants

// 2. fields

// 3. constructors

// 4. methods

} // end of the definition

// no code allowed here!

Every class must be in its
own file, called
<classname>.java

Loose Terminology

Behaviour
Functions
Methods

Procedures

State
Fields

Instance Variables
Properties
Variables
Members

Naming Classes

Class names are often nouns, and use camel case with a
capital letter at the start

E.g. Vector2D, ScreenWriter, …

Declaring fields

public class Vector2D {

 public double x;
 public double y;

}

Access modifier

Declaring a constructor

public class Vector2D {

 public double x;
 public double y;

 public Vector2D(double x, double y) {
 this.x = x; // the this keyword

 // refers to the object itself
 this.y = y;
 }
}

If you don’t give any constructor, Java creates an empty
constructor for you that does the minimum. It would be
equivalent to:

public Vector2D() { }

Note!

 public Vector2D(double x, double y) {
 …
 }

1. Constructors don’t return anything, not even void. (Why?)

2. Constructors have the same name as the class

Creating Objects

We use the new keyword plus a constructor to create an object

Vector2D myVector = new Vector2D(3, 7);

new Vector2D(3, 7) Java creates object in
memory (on the heap)

Initialise state of the object
by invoking constructor

public Vector2D(double x,
double y) {
 this.x = x; // 3
 this.y = y; // 7
}

Overloading Constructors

public class Vector2D {

 public double x;
 public double y;

 public Vector2D(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public Vector2D() {
 this.x = 0;
 this.y = 0;
 }
}

Vector2D vector1 = new Vector2D(3, 7);
Vector2D vector2 = new Vector2D();

As long as the
signatures differ, you
can have as many
constructors as you
like

Parameterised Classes

▪ ML's polymorphism allowed us to specify functions that
could be applied to multiple types

▪ In Java, we can achieve something similar through

Generics; C++ through templates
▪ Classes are defined with placeholders (see later

lectures)
▪ We fill them in when we create objects using them

> fun self(x)=x;
val self = fn : 'a -> 'a

LinkedList<Integer> = new LinkedList<Integer>()

LinkedList<Double> = new LinkedList<Double>()

public class Vector2D<T> {

public T x;
public T y;

 public T getX() {
return x;

}

// etc
}

You can create those too…

We’ll have lots
more to say on
these later

Using static in your classes

Static fields
▪ A static field is created only once in the program's execution, despite

being declared as part of a class

public class ShopItem {
 private float mVATRate;
 private static float sVATRate;

}

One of these created every
time a new ShopItem is
instantiated. Nothing keeps
them all in sync.

Only one of these created ever. Every
ShopItem object references it.

Static fields
Only one instance of the field is
created and every object uses
that one instance

▪ Pros:
○ Auto synchronised

across instances
○ Space efficient

▪ Cons:
○ Makes code harder to

understand (best for
final constants)

public class Whatever {
public float x = 2;
public static float y = 7;

}

Object 1

Object 2

Object 3

y=7

x=2

x=2

x=2

Static Methods

Methods that don’t ‘belong’ to an object, but make sense
in the class

public class Maths {
 public float sqrt(float x) {…}
 public double sin(float x)
{…}
 public double cos(float x)
{…}
}…
Maths mathobject = new Math();
mathobject.sqrt(9.0);
…

public class Maths {
 public static float sqrt(float x)
{…}
 public static float sin(float x) {…}
 public static float cos(float x)
{…}
}…
Maths.sqrt(9.0);
...

vs

Static Methods

Static Methods

Instance Methods
(member methods)

Instance fields
(member fields)

Static fields

Can access

Can
 ac

ce
ss

Can access
C

an
 a

cc
es

s

Static Methods

▪ Easier to debug (only depends on static state)
▪ Self documenting
▪ Groups related methods in a Class without requiring an object
▪ The compiler can produce more efficient code since no

specific object is involved
▪ Enables a readable factory method pattern

○ LocalDate.now()
○ List.of()

OOP Michaelmas 2025 Prof. Robert Harle

Class Design and Encapsulation

OK, you can make classes. But how do you
decide what goes in a given class?

Rookie error: God/Monster class

Just have one class for each project you do

Correct Classes

▪ We want our class to be a grouping of
conceptually-related state and behaviour

▪ One popular way to group is using grammar
▪ Noun → Object
▪ Verb → Method

▪ “A simulation of the Earth's orbit around the

Sun”

Correct Classes

▪ We want our class to be a grouping of
conceptually-related state and behaviour

▪ One popular way to group is using grammar
▪ Noun → Object
▪ Verb → Method

▪ “A simulation of the Earth's orbit around the

Sun”

UML: Representing a Class Graphically

MyFancyClass

- age : int

+ setAge(age: int) : void
Behaviour
(methods)

State
(fields)

“+” means
public access

“-” means
private access

The has-a Association

College Student1 0...*

▪ Arrow going left to right says “a College has zero or more
students”

▪ Arrow going right to left says “a Student has exactly 1
College”

▪ What it means in real terms is that the College class will
contain a variable that somehow links to a set of Student
objects, and a Student will have a variable that
references a College object.

▪ Note that we are only linking classes: we don't start
drawing arrows between or to primitive types.

Example from code

+ name; String
+ coord: Vector2D

Location

+ x: double
+ y: double

Vector2D1

+ Location(
name:String,
coord:Vector2D)

+ Location(
name:String, x:double,
y:double)

+ Vector2D(x: double,
y:double)

+ add(v::Vector2D)

SRP and Cohesion

Modularity and Code reuse

- You've long been taught to break down complex problems into
more tractable sub-problems.

- Each class represents a sub-unit of code that (if written well)
can be developed, tested and updated independently from
the rest of the code.

- Indeed, two classes that achieve the same thing (but perhaps
do it in different ways) can be swapped in the code

- Properly developed classes can be used in other programs
without modification.

- Java also has the notion of packages to group together classes
that are conceptually linked

How do we maximise the chance our classes are reused?

Single Responsibility Principle (SRP)

A class has responsibility over a single functionality.

There is only one single reason for a class to change

SRP Violation

public class CompanyIncomeStatement {

 public GUI gui;

 void drawSummaryOnScreen() {

 }

 double calculateOperatingIncome() {

 }

}

❌ Combines Model
concern (operating income)
and View concern (draw on
screen)

I may want the functionality around income in my program, but
have no interest in using the graphical display of it. So either I
import loads of dead code or i don’t use your class…

Aside: Model-View-Controller

A lot of interactive programs are designed around the
Model-View-Controller (MVC) concept

The idea is you keep very clear boundaries between:

Model: The code that stores and manipulates the underlying
state/data

View: The code that deals with how to draw the state to screen

Controller: The code that sequences everything together,
handling input such as clicks, updating the view code when it
needs to be updated.

SRP Benefits

1. The class is easier to understand because there’s only
a small number of self explanatory methods and fields

2. The class is easier to maintain because changes are
isolated

3. Easier to re-use because it doesn’t contain
unnecessary responsibilities

Cohesion

● How to reason about the quality of your code?
● Cohesion measures how strongly grouped the responsibilities

of a class are
● Code easier for others to locate, understand and use

In other words, how related are the methods compared to the
intention of the class?

Good Ways to Get Cohesion

● Functional

○ methods are grouped because solving a defined task

○ e.g. CSV parsing

● Informational

○ methods are grouped because worked on a same domain object

○ e.g. maths libraries

● Sequential

○ outputs of methods becomes input of other methods

○ e.g. text processing pipeline

Less Good Ways to Get Cohesion

● Logical
○ grouping functionalities that sound like it fits in a similar category but

are different (e.g. grouping XML and JSON parsing)

● Utility classes
○ multiple different concerns

● Temporal/Procedural
○ parts of a module are grouped because follow an execution

pattern/particular time (e.g. data validation, data storage, notification)

Cohesion Summary

Level of Cohesion Pro Con

Functional (high cohesion) Easy to understand Can lead to overly simplistic classes

Informational (medium cohesion) Easy to maintain Can lead to unnecessary
dependencies

Sequential (medium cohesion) Easy to locate related operations Encourage violation of SRP

Logical (medium cohesion) Provide a form of high level
categorisation

Encourage violation of SRP

Utility (low cohesion) Simple to put in place Harder to reason about the
responsibility of the class

Temporal (low cohesion) - Harder to understand and use
individual operations

OOP Principle 1: Encapsulation

Core Idea

We want to provide an appropriate API to the object
that only exposes what it needs to

Supporting encapsulation means supporting tools to
hide things away that a user of the class shouldn’t need
to even know about

Encapsulation Example

public class Student {
 public int age;

 public static void main(String[] args) {
 Student s = new Student();
 s.age = 21;

 Student s2 = new Student();
 s2.age=-1;

 Student s3 = new Student();
 s3.age=10055;
 }
}

By exposing the age
field, we can’t stop
something stupid
being set there

Encapsulation Example
public class Student {
 private int age;

 public boolean setAge(int a) {
 if (a>=0 && a<130) {

age=a;
return true;

 }
 return false;
 }

 public int getAge() {return age;}

 public static void main(String[] args) {
 Student s = new Student();
 s.setAge(21);
 }
}

By hiding the age away
(making it private), we
prevent this problem

To make it useful we
provide a method to set
age that incorporates
sanity checks

Encapsulation

class Location {
 private float x;
 private float y;

 float getX() {return x;}
 float getY() {return y;}

 void setX(float nx) {x=nx;}
 void setY(float ny) {y=ny;}
}

class Location {

 private Vector2D v;

 float getX() {return v.getX();}
 float getY() {return v.getY();}

 void setX(float nx) {v.setX(nx);}
 void setY(float ny) {v.setY(ny);}
}

Encapsulation allows us to decouple the API (set of
methods an object supports) from the underlying state so
we can e.g. change that implementation

Access Modifiers

Can be accessed by

Modifier Class Package Subclass Everyone

public ✅ ✅ ✅ ✅
protected ✅ ✅ ✅ ❌
no modifier ✅ ✅ ❌ ❌
private ✅ ❌ ❌ ❌

Aka Information Hiding

Another name for encapsulation is information hiding or even
implementation hiding in some texts.

Idea: Classes expose a clean interface that allows full
interaction with it, but which exposes nothing about its internal
state or how it manipulates it.

Remember, you can always make a private member public, but
not vice-versa!

Immutability

Immutability

Mutable objects (i.e. those where their state can be
changed during execution) can be very powerful,, but
they also increase complexity and can be a common
source of bugs

Our access modifiers give us a way to make an
immutable class, whereby you can set the internal data
on initialisation but not change it…

Immutable class definition
private means no one using the
class can directly get at the data

final says the value can’t be
changed once it has been set (it’s a
belt-and-braces thing here)

Not providing any setters means
anyone using the class can’t set
anything

The constructor allows the values to
be set

public class Vector2D {
 private final int x;
 private final int y;

 public Vector2D(int x,
int y) {

 this.x = x;
 this.y = y;
 }

 public int getX() {
return x;}

 public int getY() {
return y;}

}

(You can also make the class final: this signals intent and prevents a world
where you subclass and provide access through the subclass)

From this:

(actually, it generates more for you: equals(), hashcode(), etc. We just haven’t
got to that yet)

Although…
Java 16 introduced a record type which generates this:

public class Vector2D {
 private final int x;
 private final int y;

 public Vector2D(int x, int y) {
 this.x = x;
 this.y = y;
 }

 public int getX() {return x;}

 public int getY() {return y;}
}

public record Vector2D(int x, int y) {}

Creating an immutable class

● Make all fields final, avoid setXXX methods

● Or, in Java 16+, use record types

● Optionally, provide change-factory methods
Common but not universal to use withXXX names
for these. E.g

String.toUpper(),LocalDate.withYear(2022)

Immutable benefits

1. Reduce the scope for bugs

2. Can be thread-safe (more on this next year!)

3. Easier to reason about

Immutable classes are everywhere in the JDK

● Integer, Double, BigDecimal...

● String

● LocalDate, LocalTime ...

● UUID

● Optional

● Enums (usually & idiomatically)

○ Enums can compare with == instead of .equals()

OOP Michaelmas 2025 Prof. Robert Harle

Memory, pointers, references

Primitives, References and Memory

Primitives

What is the value of a variable?

For primitive types (int etc) it may seem obvious: the value is whatever
it is e.g. 1, 2.0, etc

In memory, primitives are stored directly (we’ll see how shortly)

int amount = 100

100

Objects

What is the value of a variable?

For an object (a custom types, Vector2D etc) the value of the
associated variable is a memory address for where to find all the data
associated with that object.

We say that the value of the variable is a reference

We’ll see why shortly, but this gives some interesting results…

Vector2D vec = new Vector2D();

#00120364758

Vector2D
object

Reference

Values are copied on assignment

int amount = 100;

int amountCopy = amount;

100

100

Values are either primitives or references. They are copied on
assignment.

Values are copied on assignment

int amount = 100;

int amountCopy = amount;

amountCopy = 200;

100

200

Values are either primitives or references. They are copied on
assignment.

Values are copied on assignment

Values that are references also copy BUT NOT THEREFORE THE
OBJECTS

Vector2D v = new Vector2D(1,2);

#00120364758
(1,2)

Values are copied on assignment

Values that are references also copy BUT NOT THEREFORE THE
OBJECTS

Vector2D v = new Vector2D(1,2);

Vector2D vCopy = v;

#00120364758
(1,2)

#00120364758

Values are copied on assignment

Values that are references also copy BUT NOT THEREFORE THE
OBJECTS

Vector2D v = new Vector2D(1,2);

Vector2D vCopy = v;

vCopy.setX(3);

#00120364758
(3,2)

#00120364758

Example

Where stuff goes: The stack and heap
abstractions

Memory

How do we organise all the code and data for our program in
memory?

This is actually really complex (and covered in Operating
Systems) but there is an intermediate abstraction that gives
programmers a mental model that is widely used (beyond Java)

Let’s look at what happens when you call a
function/method/procedure/…

Simple visualisation of a function’s data

When we call a function/method, we need to store three things:

Any local variables
created by the
function

Any arguments
that the function
was called with

A memory address
for where to jump
to when we’re
done with the
function (return
address)

The Call Stack

Stack pointer

Frames are
Last-In-First-Out
(LIFO) i.e. a stack

Stack frames
(one for each
function call

The Call Stack: Example
1 int twice(int d) return 2*d;
2 int triple(int d) return 3*d;
3 int a = 50;
4 int b = twice(a);
5 int c = triple(a);
6 ...

0 0

a=50

0

a=50

d=50

5

100

0

a=50

b=100

0

a=50

b=100

d=50

6

150

0

a=50

b=100

c=150

Nested Functions

0 0

a=50

0

a=50

d=50

5

0

a=50

d=50

5

d=50

3

150

0

a=50

d=50

5

d=150

3

500

0

a=50

d=50

5

300

0

a=50
b=300

1 int twice(int d) { return 2*d }
2 int triple(int d) {return 3*d;}
3 int sextuple(int d) {return twice(triple(d));
4 int a=50;
5 int b = sextuple(a);
6 ...

0

a=50

d=50

5

150

Recursive Functions
1 int pow (int x, int y) {
2 if (y==0) return 1;
3 int p = pow(x,y-1);
4 return x*p;
5 }
6 int s=pow(2,7);
7 ...

0

y=7
4

x=2

0

y=7
4

x=2

0

y=6
4

x=2

y=7
4

x=2

0

y=6
4

x=2

y=7
4

x=2

0

y=6
4

x=2

...

y=5
4

x=2
y=5

4

x=2

y=4
4

x=2

y=7
4

x=2

0

y=6
4

x=2

y=5
4

x=2

p=16

y=7
4

x=2

0

y=6
4

x=2

p=32

...

0
s=128

Tail-Recursive Functions I
1 int pow (int x, int y, int t) {
2 if (y==0) return t;
3 return pow(x,y-1, t*x);
4 }
5 int s = pow(2,7,1);
6 ...

0

y=7

3

x=2

0

...

128

t=1
y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

128

128

0
s=128

Tail-Recursive Functions II
1 int pow (int x, int y, int t) {
2 if (y==0) return t;
3 return pow(x,y-1, t*x);
4 }
5 int s = pow(2,7,1);
6 ...

0

y=7

3

x=2

0

t=1

0 0

y=5

3

x=2

t=4

0
s=128

y=6

3

x=2

t=2
y=4

3

x=2

0

t=8

0 0

y=2

3

x=2

t=32
y=3

3

x=2

t=16

0

y=1

3

x=2

t=64

Scope

Note that when a stack frame is ‘popped’ (the function has finished), all
the variables it created will be deleted.

We talk about those variables having ‘local scope’.

Static variables have global scope

Member variables/fields have the scope defined by their owning object

Objects aren’t primitives

So the call stack keeps track of our function calls and variables and it
does so efficiently (no wasted space)

But what happens if something on the stack changes size? This would
mess things up considerably (you’d have to move everything and
update return addresses…yuk)

Primitives are good here: no size changes possible.

For objects, we store references on the stack (which are just memory
addresses which are known size numbers) and make them point to a
different section of memory…

The Heap
int[] x = new int[3];
public void resize(int size) {
 int tmp=x;
 x=new int[size];
 for (int=0; i<3; i++)
 x[i]=tmp[i];
}
resize(5);

0

x

size=3

0

x

size=3
5 7 9

5 7 9 0

x

size=5

Heap

Stack

The Heap

The heap is (as its name suggests) more of a mess. There will be gaps
between objects.

But it gives us the flexibility to do what we need to do

Pointers vs References

Pointers

You may have come across pointers in other languages
(e.g. C, C++, etc). They are variables that hold integer
values that are interpreted as memory addresses.

Thus these are the same concept as a reference, but are a
bit more ‘raw’...

Manipulating memory directly allows us to write fast,
efficient code, but also exposes us to bigger risks

▪ Get it wrong and the program 'crashes' .

Pointers: Box and Arrow Model

▪ A pointer is just the memory address of the first memory slot
used by the variable

▪ The pointer type tells the compiler how many slots the whole
object uses

xptr2

xxptr1// C++
int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;

Example: Representing Strings I
▪ A single character is fine, but a text string is of variable length – how

can we cope with that?
▪ We simply store the start of the string in memory and require it to

finish with a special character (the NULL or terminating character,
aka '\0')

▪ So now we need to be able to store memory addresses → use
pointers

▪ We think of there being an array of characters (single letters) in

memory, with the string pointer pointing to the first element of that
array

C S R U L E S

11

\0

11 12 13 14 15 16 177 8 9 10 18

Example: Representing Strings II

stringPointer

h e l l o char letterArray[] = {'h','e','l','l','o','\0'};

 char *stringPointer = &(letterArray[0]);

 printf(“%s\n”,stringPointer);

 letterArray[3]='\0';

 printf(“%s\n”,stringPointer);

\0

References

▪ Pointers are useful but dangerous
▪ References can be thought of as restricted

pointers
▪ Still just a memory address
▪ But the compiler limits what we can do to it

▪ C, C++: pointers and references
▪ Java: references only
▪ ML: references only

References vs Pointers

Pointers References

Represents a memory
address

Yes Yes

Can be arbitrarily
assigned

Yes No

Can be assigned to
established object

Yes Yes

Can be tested for
validity

No Yes

References Example (Java)

{1,2,3,4}
ref2

ref1

{1,6,3,7}
ref2

ref1

int[] ref1 = null;
ref1 = new int[]{1,2,3,4};
int[] ref2 = ref1;

ref1[3]=7;
ref2[1]=6;

Why not have references to primitives?

A reference is just a memory address -
typically a long

If we referred to all primitives using
references, we’d be doubling our memory
usage (reference size ~= primitive size).
Object sizes are typically >> reference size

But there are cases where you might want to
reference a primitive directly…

Pass-by-value

When we call changeVal
with argument val, we copy
the value into the stack
frame.

We can change that copy’s
value, but it won’t affect the
original

This approach of copying is
known as pass-by-value,
and it’s all Java offers

void changeVal(int x) {

x = 2*x;

}

…

int val = 3;

changeVal(val);

// val is 3 still

Pass-by-value

0

val=3

x=3

5

0

val=3

0

val=3

x=6

5

0

val=3

x is a copy of val

Pass-by-value
Java applies pass by value to
references too, meaning it takes
the reference value (a memory
address) and copies it into the
stack frame. Thus v is a reference
to the same object as val.

Because v points to the same
object, you can make changes to
the object by accessing the
reference

Again, All Java offers is pass by
value (but for references the value
is a memory address)

void changeVal(vector2D v) {

v.setX(3);

}

…

Vector2D val = new

 Vector2D(1,2);

changeVal(val);

Pass-by-value

0

val

v

5

0

val

0

val=3

Vector2D
1, 2

Vector2D
1, 2

0

val

v

5

Vector2D
3, 2

0

val

Vector2D
3, 2

v is a copy of val
and therefore the
same memory
address

Pass-by-reference (not Java)
The example is C++, where the &
symbol means to get the memory
address (pointer) to the thing that
is offered

So in this example x is a reference
to val and the update actually
works

Java does not support this.

void changeVal(int &x) {

x = 2*x;

}

…

int val = 3;

changeVal(val);

// val is 6!

Pass-by-reference (not Java)

0

val=3

x

5

0

val=3

0

val=3

0

val=6

x

5

0

val=6

x is a reference
to val

Check...

A. “1 1”
B. “1 2”
C. “2 1”
D. “2 2”

public static void func(int x, int[] a) {
x=1;
x=x+1;
a = new int[]{1};
a[0]=a[0]+1;

}

public static void main(String[] arguments) {
int num=1;
int numarray[] = {1};

func(num, numarray);
System.out.println(num+" "+numarray[0]);

}

Explanation

0

val

a

5

0

numarray

0

val=3

{1} {1}

0

val

{1}

num=1 num=1

x=1

0

val

a

5

{1}

num=1

x=2

{2}

num=1

OOP Michaelmas 2025 Prof. Robert Harle

Inheritance

Inheritance I
class Student {
 public int age;
 public String name;
 public int grade;
}

class Lecturer {
 public int age;
 public String name;
 public int salary;
}

▪ There is a lot of duplication here
▪ Conceptually there is a hierarchy that we're

not really representing
▪ Both Lecturers and Students are people

(no, really).
▪ We can view each as a kind of

specialisation of a general person
▪ They have all the properties of a person
▪ But they also have some extra stuff

specific to them

(I should not have used public variables here, but I did it to keep things simple)

Inheritance II
class Person {
 public int age;
 public String name;
}

class Student extends Person {
 public int grade;
}

class Lecturer extends Person {
 public int salary;
}

▪ We create a base class (Person)
and add a new notion: classes can
inherit properties from it
▪ Both state and functionality

▪ In java the extends keyword is
used to inherit from a class

▪ We say:
▪ Person is the superclass of

Lecturer and Student
▪ Lecturer and Student subclass

Person

Loose terminology

Person

Parent class

Superclass

Base class

Student

Child class

Subclass

Derived class

What is Inheritance?

When a class inherits from another class it:

● It inherits its type. So Lecturer is-a Person.

● incorporates (“inherits”) all the attributes and behaviours
from that class.

● can directly access the public & protected members of that
class (but not the private)

● can redefine some inherited behaviour, or add new attributes
and behaviour.

What gets Inherited?

A subclass inherits from its parent classes:
● Type
● Fields
● Methods

private superclass fields cannot be accessed directly* by the
subclass

* this is worded carefully. Private superclass fields are within the subclass,
but they are not directly accessible. Most people consider this restriction to
mean they aren’t “inherited”. You can still get at them iff there are inherited
public/private methods that give you access to them

All classes inherit from Object in Java. i.e.

public class MyClass
→

public class MyClass extends Object

Because it’s always true, we never bother drawing it on UML
or writing it in code. But it’s there, and we’ll look at some of
the things it provides later.

The magic Object Class

Representing Inheritance Graphically

- exam_score

Student

- salary

Lecturer

- name
- age

Person Also known as an “is-a” relation

As in “Student is-a Person”
Sp

ecialise

G
en

er
al

is
e

To build an object of the Student class
- First you have to build the foundation (Object)
- Then the 1st subclass (Person)
- Then the 2nd subclass (Student)

Object Object

 Person Person

 Student

Object

Constructors and Inheritance

When you construct an object of a type with parent classes,
we call the constructors of all of the parents in sequence.
This is done implicitly - Java compiler inserts call to
super()

What if your classes have explicit constructors that take
arguments? You need to explicitly chain and use super()
in constructor code to invoke superclass constructor.

Constructor Chaining: super()

public class Person {
 protected String name;
 protected int age;

 public Person(String name, int age) {
 this.name = name;
 this.age = age;
 }
}

public class Student extends Person {
 private long studentId;

 public Student(String name, int age, long studentId)
{
 super(name, age); // means: Person(name, age)
 this.studentId = studentId;
 }
}

Constructor Chaining

Casting

▪ We know we can type cast between
numeric types

▪ With inheritance it is reasonable to type

cast an object within the inheritance tree...

int i = 7;
float f = (float) i; // f==7.0
double d = 3.2;
int i2 = (int) d; // i2==3

Widening

▪ Student is-a Person
▪ Hence we can use a Student object

anywhere we want a Person object
▪ Can perform widening conversions

(up the tree)

Person

Student

Student s = new Student();

Person p = (Person) s;

Explicit cast

public void print(Person p) {...}

Student s = new Student();
print(s);

Implicit cast

Narrowing

▪ Narrowing conversions move down
the tree (more specific)

▪ Need to take care...

Person

Student

Person p = new Person();

Student s = (Student) p;

FAILS. Not enough info
In the real object to represent
a Student

Student s = new Student();
Person p = (Person) s;
Students s2 = (Student) p;

OK because underlying object
really is a Student

Fields and Inheritance

class Person {
 public String mName;
 protected int mAge;
 private double mHeight;
}

class Student extends Person {

 public void do_something() {
 mName=”Bob”;
 mAge=70;
 mHeight=1.70;
 }

}

Student inherits this as a public
variable and so can access it

Student inherits this as a
protected variable and so can
access it directly

Student inherits this but as a
private variable and so cannot
access it directly (so this code
won’t compile)

Fields and Inheritance: Shadowing
class A { public int x; }

class B extends A {
 public int x;
}

class C extends B {
 public int x;

 public void action() {
 // Ways to set the x in C
 x = 10;
 this.x = 10;

 // Ways to set the x in B
 super.x = 10;
 ((B)this).x = 10;

 // Ways to set the x in A
 ((A)this.x = 10;
 }
}

Don’t write code like this.
Ever.
I mean it.

Methods and Inheritance: Overriding
▪ We might want to require that every Person can dance. But the way

a Lecturer dances is not likely to be the same as the way a Student
dances...

class Person {
 public void dance() {
 jiggle_a_bit();
 }
}

class Student extends Person {
 public void dance() {
 twerk();
 }
}

class Lecturer extends Person {
}

Person defines a 'default'
implementation of
dance()

Lecturer just inherits the
default implementation
and jiggles

Student overrides the
default

Use @Override
notation for code
clarity

Abstract Classes

Abstract Classes and Methods
▪ Sometimes we want to force a

subclass to implement a method
but there isn't a convenient
default behaviour to put in the
parent

▪ An abstract method is used in a
base class to do this

▪ It has no implementation
whatsoever

abstract class Person {
 public abstract void dance();
}

class Student extends Person {
 public void dance() {
 twerk();
 }
}

class Lecturer extends Person {
 public void dance() {
 jiggle_a_bit();
 }
}

Abstract Classes

▪ Note that I had to declare the class abstract too. This is
because it has a method without an implementation so
we can't directly instantiate a Person.

▪ All state and non-abstract methods are inherited as

normal by children of our abstract class
▪ Interestingly, Java allows a class to be declared abstract

even if it contains no abstract methods! (Why?)

public abstract class Person {
 public abstract void dance();
}

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the class
or method is abstract

Interfaces

Abstracting Further: Interfaces

▪ An interface is a contract that groups together required
methods

▪ [For now] It’s a collection of exclusively abstract
functions that force classes that inherit from them to
provide concrete implementations

▪ Interfaces are declared using interface rather than
class

▪ Interfaces are used via implements rather than
extends

Abstracting Further: Interfaces

<<interface>>
 Drivable

+ turn()
+ brake()

CarBicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()

interface Drivable {
 public void turn();
 public void brake();
}

class Bicycle implements Drivable {
 public void turn() {...}
 public void brake() {… }
}

class Car implements Drivable {
 public void turn() {...}
 public void brake() {… }

}

Type is inherited via extends and implements

interface Drivable {
 public void turn();
 public void brake();
}

abstract class Vehicle implements Drivable {
 public abstract void turn();
 public void brake() {… }
}

class Car extends Vehicle {
 public void turn() {...}
 public void brake() {… }

}

▪ Vehicle inherits the Drivable
type. i.e. Vehicle is-a Drivable

▪ Car inherits Vehicle’s types
i.e. Car is-a Vehicle and is-a
Drivable

▪ You can use instanceof to
check this if you want to
investigate

Abstract class or interface?

Feature Abstract Class Interface
(Abstract) Methods ✓ ✓

Behaviour ✓ ✓

Class can Implement Multiple × ✓

Instance Variables ✓ ×
Protected/Package Scoped
Methods

✓ ×

(Java 9) Private methods ✓ ✓

Static methods ✓ ✓

Inheritance gone wrong

When Inheritance goes wrong

When inheritance goes wrong, it’s usually because it’s being
used when there isn’t a good is-a relationship

A common error is to relate classes using inheritance (“is-a”)
when you should use composition (“has-a”) and vice versa

Surprisingly this mistake is easier to make than you might
think. Even the JDK has issues…

JDK Stack

class Stack extends Vector {

 public Object pop() { … }

 public void push(Object o) { }

}

Inheritance

This is bad because a Stack is not a Vector (which is the original ArrayList in
Java). The result is Stack suddenly has methods that don’t make sense - e.g.
add(int index, E element)

JDK Stack as it should have been

class Stack {

 private Vector internalContainer;

}

Composition

Here, we decide Stack has-a Vector. In this way we can use the
implementation in Vector without exposing methods that aren’t relevant

OOP Michaelmas 2025 Prof. Robert Harle

Polymorphism, Multiple Inheritance,
Coupling

(Subtype) Polymorphism

Polymorphism

Poly - morph = many forms

Polymorphism in OOP means that many kinds of objects can
provide the same method, and we can invoke that method without
knowing which kind of object will perform it. We typically refer to this
characteristic as subtyping polymorphism.

Other forms of polymorphism previously too:
- Parametric polymorphism (i.e. generics)
- Ad-hoc polymorphism (i.e. overloading)

Polymorphic Methods

▪ Assuming Person has a default
dance() method, what should
happen here??

Student s = new Student();
Person p = (Person)s;
p.dance();

▪ General problem: when we refer to an object via a parent
type and both types implement a particular method: which
method should it run?

Static Polymorphism

▪ Static polymorphism
▪ Decide at compile-time
▪ Since we don't know what the true type of the

object will be, we just run the parent method
▪ Type errors give compile errors

Student s = new Student();
Person p = (Person)s;
p.dance();

▪ Compiler says “p is of type Person”
▪ So p.dance() should do the default

dance() action in Person

Static Polymorphism

Person p = null;

if (inputParam == 1) p = (Person) new Student();
else p = (Person) new Lecturer();

p.dance(); // the implementation from Person class runs

Dynamic Polymorphism

▪ Dynamic polymorphism
▪ Run the method in the child
▪ Must be done at run-time since that's when we

know the child's type
▪ Type errors cause run-time faults (crashes!)

Student s = new Student();
Person p = (Person)s;
p.dance();

▪ Compiler looks in memory and finds
that the object is really a Student

▪ So p.dance() runs the dance() action
in Student

The Canonical Example I
▪ A drawing program that can draw circles,

squares, ovals and stars
▪ It would presumably keep a list of all the

drawing objects
▪ Option 1

▪ Keep a list of Circle objects, a list of
Square objects,...

▪ Iterate over each list drawing each
object in turn

▪ What has to change if we want to add
a new shape?

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example II
▪ Option 2

▪ Keep a single list of Shape references
▪ Figure out what each object really is,

narrow the reference and then draw()

▪ What if we want to add a new shape?

Shape

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList
 if (s is really a Circle)
 Circle c = (Circle)s;
 c.draw();
 else if (s is really a Square)
 Square sq = (Square)s;
 sq.draw();
 else if…

The Canonical Example III
▪ Option 3 (Polymorphic)

▪ Keep a single list of Shape references
▪ Let the compiler figure out what to do

with each Shape reference

▪ What if we want to add a new shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
 s.draw();

Implementations

▪ Java
▪ All methods are dynamic polymorphic.

▪ Python
▪ All methods are dynamic polymorphic.

▪ C++
▪ Only functions marked virtual are dynamic

polymorphic

▪ Polymorphism in OOP is an extremely important concept
that you need to make sure you understand...

Multiple Inheritance

Multiple Inheritance
▪ Imagine you work for a

construction firm and you have
software to track your
tradespeople.

▪ You already have an Electrician
class and a Plumber class

▪ You’ve been asked to deal with a
new employee who is qualified to
do both!

▪ Your solution: multiple
inheritance!

Electrician Plumber

(Health warning: Java doesn’t support this)

Multiple Inheritance
▪ Imagine you work for a

construction firm and you have
software to track your
tradespeople.

▪ You already have an Electrician
class and a Plumber class

▪ You’ve been asked to deal with a
new employee who is qualified to
do both!

▪ Your solution: multiple
inheritance!

Electrician Plumber

Plumbtrician

(Health warning: Java doesn’t support this)

Multiple Inheritance
Multiple inheritance of behaviour
● Introduces a new problem: name

clashes
● Which doJob() should

Plumbtrician inherit?
● There are various ways to

handle this. Generally it’s
fixable, but can add complexity
to your code

Electrician Plumber

Plumbtrician

(Health warning: Java doesn’t support this)

+ doJob() + doJob()

????

Multiple Inheritance
Multiple inheritance of state
● State is particularly problematic,

because you can end up
inheriting multiple states with the
same name

● Need nasty syntax like
Electrician::rate and
Plumber::rate → have to change
it everywhere in your code!

● Whatever you do your code
ends up being less readable and
might confuse and lead to bugs

Electrician Plumber

Plumbtrician

(Health warning: Java doesn’t support this)

rate: float rate: float

Diamond problem
● The ‘dreaded diamond’ is

particularly annoying, since it
guarantees loads of state and
behaviour name clashes

Electrician Plumber

Plumbtrician

(Health warning: Java doesn’t support this)

Employee

So is multiple inheritance just evil?

No (despite what the internet may tell you). It’s a tool that can be
useful.

But, like all tools, you need to know when to use it and what the
consequences might be

For the most part, multiple inheritance adds complexity and sometimes
ambiguity to your code. Sometimes it’s the result of not creating a
correct class hierarchy, sometimes (often) the same effect can be
achieved more neatly using other methods, and sometimes it’s the
neatest way to do it (in truth, rarely)

Java limits how far you can go with it…

Java's Take on it
▪ Classes can have at most one direct parent. Period.
▪ But we can allow multiple interfaces to be directly inherited

<<interface>>
 Drivable

+ turn()
+ brake()

Car

<<interface>>
 Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

interface Drivable {
 public void turn();
 public void brake();
}

interface Identifiable {
 public void getIdentifier();
}

class Bicycle implements Drivable {
 public void turn() {...}
 public void brake() {… }
}

class Car implements Drivable, Identifiable {
 public void turn() {...}
 public void brake() {… }
 public void getIdentifier() {...}
}

i.e.

▪ A given class can extend up to one direct parent but multiple
direct interfaces

▪ Name clashes in abstract functions is OK since there was no
implementation in the first place!

▪ There’s no state to have name clashes on! (caveat: see next few
slides)

public class Lecturer extends Person implements
 GeniusAbility, NinjaAbility, … { }

Just for fun…

interface Collection<E> extends Iterable<E>

abstract class AbstractCollection<E> implements Collection<E>

abstract class AbstractList<E> extends AbstractCollection<E>

 implements List<E>

public class ArrayList<E> extends AbstractList<E>

 implements List<E>,

 RandomAccess,

 Cloneable,

 Serializable

Except....

▪ Early Java had interfaces that were completely abstract, so this
multiple inheritance was solved by the previous rules

Except....

▪ Early Java had interfaces that were completely abstract, so this
multiple inheritance was solved by the previous rules

▪ But Java 8 added default methods to interfaces (Java 8)

▪ Why??!!

public interface SomeInterface {

 default void some method() {

 System.out.println(“Oh no…”)

 }

}

API evolution

Imagine having thousands of classes implementing your interface
(definitely true for the JDK interfaces).. What happens if you decide
that you want to add a new feature to the API?

If you just add it to the interface, you will break every class that
implements it

You could inherit from it and add a subinterface. But APIs do evolve
- having a huge inheritance hierarchy would really suck

Default methods solve this: you can add an implementation that the
The other classes will just inherit, and put the functionality you need
in your new class

Cool! But, it does give us multiple inheritance of behaviour
headaches (not state)…

Resolution Rules for Method Clashes

1. Classes always win

2. Otherwise, subinterfaces win. The method with the same signature
in most specific interface is selected

3. If the choice is still ambiguous, the class inheriting must override
the method and be explicit

(Note you have to know these resolution rules to know
what Java will actually do. That does not result in
readable, easily-maintained code :-/)

Principles for good OOP

Open-Closed Principle (OCP)

Make your classes open to extension but
closed to modification

Easy to add new
behaviour

Hard to change
existing behaviour

OCP example

// Original

public class Order {
 private List<Item> items;

 public Order(List<Item> items) {
 this.items = items;
 }

 public double calculateTotal() {
 // Compute
 }
}

Goal: add discount ability

// OCP Violation

public class Order {
 private List<Item> items;
 private double discount;

 public Order(List<Item> items, double discount) {
 this.items = items;
 this.discount = discount;
 }

 public double calculateTotal() {
 // Compute with discount
 }
}

OCP example

We modified the original
and this carries a high risk
of breaking things

// OCP Fixed

public interface Discount {
 double applyDiscount(double total);
}

public class DiscountedOrder extends Order {
 private Discount discount;

 public DiscountedOrder(List<Item> items, Discount discount) {
 super(items);
 this.discount = discount;
 }

 @Override
 public double calculateTotal() {
 // Compute wih discount
 }
}

OCP example

Inheritance used to
extend while original is
untouched

Liskov Substitution Principle

● Concerned with subtyping and inheritance
● Subtypes must be behaviourally substitutable for their

base types without negative side effects

● If don’t adhere to it, leads to clunky code and corner cases

public interface Persistable {

 void load();

 void save();

}

Example Violation

class ApplicationSettings implements Persistable { … }

class UserSettings implements Persistable { … }

class AdminSettings implements Persistable {

 void load() { … }

 void save() { throw new NotImplementedException(); }

}

You can’t use substitute a Persistable for an
AdminSettings without getting a negative effect
(an exception thrown)

Example Violation

static void saveAll(List<Persistable> resources) {

for(Persistable r: resources) {

 if (r instanceof AdminSettings) { continue; }

 r.persist();

}

This is nasty code that suggests we have the
wrong abstraction

Example Violation

public interface Loadable {

 void load();

}

public interface Persistable {

 void save();

}

This solves it

JDK LSP Violation!

public interface Iterator<E> {

 boolean hasNext();

 E next();

 default void remove() {

 throw new UnsupportedOperationException("remove");

 }

}

OOP Michaelmas 2025 Prof. Robert Harle

Object Life Cycle, Garbage Collection,
Copying

Creating objects

Object Creation

Initialisation

Deleting objects

Cleaning Up
▪ A typical program creates lots of objects, not all of which need

to stick around all the time

▪ Approach 1:
▪ Allow the programmer to specify when objects should be

deleted from memory
▪ Lots of control, but what if they forget to delete an object?

▪ A “memory leak”

▪ Approach 2:
▪ Delete the objects automatically (Garbage collection)
▪ But how do you know when an object will never be used

again and can be deleted??

Cleaning Up (Java) I
▪ Java reference counts. i.e. it keeps track of how many

references point to a given object. If there are none, the
programmer can't access that object ever again so it can be
deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Mark and Sweep

Stack Heap

Mark and Sweep

1

01

1

1

Stack Heap

0

Step 1: (Mark) Starting at each stack reference, follow
references of everything reachable. Mark each object you find

Mark and Sweep

1

01

1

1

Heap

0

Step 2: (Sweep) Traverse all objects on the heap. If they are marked,
unmark them. If they are not marked, queue them for deletion

Deletion and Compaction
Java supports multiple different GCs, which take different approaches to
the next phase.

Delete immediately. Simplest approach. But if there’s lots to delete,
can take a while. Unpredictable pauses.

Delete next time. Queue for deletion if we’ve already spent too long
deleting in this round.

Don’t delete. In some cases, we could decide not to delete (either
ever, or until we hit a critical point such as running out of memory).

After any deletion, the GC can also decide to compact: rearrange the
surviving objects in memory to reduce gaps. Means updating the
references too of course.

Compacting

Over time, heap
deletions and creations
leaves tiny chunks of
available memory →
inefficient use

Moving objects around
allows us to pool the
available memory. More
efficient but all the refs
need to be updated!

The Collector isn’t Free

The work the GC does is clearly work that takes away from the
main program you are running.

We have different strategies and GC algorithms for different
scenarios

Heap Division

Core observation: the majority of objects actually don’t last long

All objects are created in Eden
If they survive a few GCs, they are promoted to Survivors
If they survive a few more GCs, they are promoted to Tenured

The GC runs frequently on Eden, less so on Survivors and much
less so on Tenured

Eden Survivors Tenured
(Old)

Different GCs
You can actually select the GC you want. These are common:

Serial GC. A ‘stop-the-world’ GC where the program stops
executing entirely while the GC runs. Simple, but not great for
responsive programs (must tolerate short pauses). Tiny
implementation though, so gets used for embedded applications.

Parallel GC. Another ‘stop-the-world’ GC. But runs the collection
from multiple concurrent threads to be faster

Garbage first (G1). The modern default. The GC monitors
memory concurrently (while the app still runs), doing as much as
it can. Uses short stop-the-world events to do the deletions,
creating regions in memory and prioritising based on how much
needs to be done.

Epsilon GC. Don’t do anything at all (a no-op GC). Useful if you
know your program will use constant memory.

Destructors
▪ Most OO languages have a notion of a destructor too

▪ Gets run when the object is destroyed
▪ Allows us to release any resources (open files, etc) or memory

that we might have created especially for the object

class FileReader {
 public:

 // Constructor
 FileReader() {
 f = fopen(“myfile”,”r”);
 }

 // Destructor
 ~FileReader() {
 fclose(f);
 }

 private :
 FILE *file;
}

int main(int argc, char ** argv) {

 // Construct a FileReader Object
 FileReader *f = new FileReader();

 // Use object here
 ...

 // Destruct the object
 delete f;

}

C++

Java’s finalise()
▪ Java has a method finalize in Object that was meant to be a

destructor

▪ But it can only run when the GC actually deletes the object,
which may be never, or certainly isn’t easy to predict!

▪ Mostly became too problematic and it is now deprecated (i.e.
don’t use it).

▪ May be able to use try-with-resources (Lecture 10)

Copying objects

Object Copying
▪ Sometimes we really do want to copy an object

▪ Aka ‘cloning’

Person object
(name = “Bob”)

r

Person object
(name = “Bob”)

r

Person object
(name = “Bob”)

r_copy

Shallow and Deep Copies

public class MyClass {
 private MyOtherClass moc;
}

MyClass object Shallo
w

MyOtherClass
object

MyClass object

MyOtherClass
object

MyClass object

MyOtherClass
object

MyClass objectMyClass object

MyOtherClass
object

Deep

Copy Constructors

Most programmers prefer to define a copy constructor that
takes in an object of the same type and manually copies
the data

 public class Vehicle {
private int age;

 private double vx;
private double vy;

…

public Vehicle(Vehicle v) {
this.age=age;

 this.vx = vx;
this.vy = vy;

 }
}

Copy Constructors

▪ Now we can create copies by:

▪ This is a neat approach, but:

○ deep copying can be hard
○ inheritance makes it hard:

Vehicle v = new Vehicle(5, 0.f, 5.f);

Vehicle vcopy = new Vehicle(v);

Car c = new Car(5, 0.f, 5.f); // Copy constructor is not inherited

Vehicle v = (Vehicle)c; // If we need to copy this later, how do we
 // know to call new Car and not new Vehicle?

Java tried to solve this with clone()

▪ Every class in Java ultimately inherits from the Object
class
▪ This class contains a clone() method so we just call

this to clone an object, right?
▪ This can go horribly wrong if our object contains

reference types (objects, arrays, etc)

Health warning: most java programmers recommend against using
clone(), but it’s instructive to at least discuss it here

Java Cloning
▪ So do you want shallow or deep?

▪ The default implementation of clone() performs a shallow copy
▪ But Java developers were worried that this might not be

appropriate: they decided they wanted to know for sure that we'd
thought about whether this was appropriate

▪ Java has a Cloneable interface
▪ If you call clone on anything that doesn't extend this interface, it

fails

Clone Example I

 public class Velocity {
 public float vx;
 public float vy;
 public Velocity(float x, float y) {
 vx=x;
 vy=y;
 }
 };

 public class Vehicle {
 private int age;
 private Velocity vel;
 public Vehicle(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }
 };

Clone Example II

 public class Vehicle implements Cloneable {
 private int age;
 private Velocity vel;
 public Vehicle(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }

 @Override
 public Object clone() {
 return super.clone(); // shallow: won’t clone the vel object
 }

 };

Clone Example III
 public class Velocity implement Cloneable {

 public Object clone() {
 return super.clone();
 }
 };

 public class Vehicle implements Cloneable {
 private int age;
 private Velocity v;
 public Student(int a, float vx, float vy) {
 age=a;
 vel = new Velocity(vx,vy);
 }

 public Object clone() {
 Vehicle cloned = (Vehicle) super.clone(); // start with a shallow copy
 cloned.vel = (Velocity)vel.clone(); // add any deep copies you need
 return cloned;
 }
 };

Cloning Arrays

▪ Arrays have build in cloning but the
contents are only cloned shallowly

int intarray[] = new int[100];
Vector3D vecarray = new Vector3D[10];

...

int intarray2[] = intarray.clone();
Vector3D vecarray2 = vecarray.clone();

Overall

▪ Cloning is messy in Java

▪ When done right, it solves a lot of issues
with copy constructors

▪ But it often isn’t done right, and causes
confusion

Covariant Return Types

▪ The need to cast the clone return is annoying

▪ Recent versions of Java allow you to override a method

in a subclass and change its return type to a subclass of
the original's class

public Object clone() {
 Vehicle cloned = (Vehicle) super.clone();
 cloned.vel = (Velocity)vel.clone();
 return cloned;
 }

class A {}

class B extends A {}

class C {
 A mymethod() {}
}

class D extends C {
 B mymethod() {}
}

Marker Interfaces
▪ If you look at what's in the Cloneable interface, you'll find it's empty!!

What's going on?
▪ Well, the clone() method is already inherited from Object so it

doesn't need to specify it
▪ This is an example of a Marker Interface

▪ A marker interface is an empty interface that is used to label
classes

▪ This approach is found occasionally in the Java libraries

OOP Michaelmas 2025 Prof. Robert Harle

Collections, Comparisons

Collections

Java Class Library
▪ Java the platform contains around 4,000

classes/interfaces
▪ Data Structures
▪ Networking, Files
▪ Graphical User Interfaces
▪ Security and Encryption
▪ Image Processing
▪ Multimedia authoring/playback
▪ And more...

▪ All neatly(ish) arranged into packages (see API docs)

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

▪ Important chunk of the class library
▪ A Collection is some sort of grouping of

things (objects)
▪ Usually when we have some grouping we

want to go through it (“iterate over it”)

▪ The Collections framework has two main
interfaces: Iterable and Collection. They
define a set of operations that all classes in
the Collections framework support

▪ add(Object o), clear(), isEmpty(), etc.

Lists
▪ <<interface>> List

▪ An ordered collection of elements that may
contain duplicates

▪ LinkedLIst: linked list of elements
▪ ArrayList: array of elements (efficient access)
▪ Vector: legacy class, as ArrayList but

threadsafe

A

B

C

B

LinkedList<Double> ll = new LinkedList<Double>();
ll.add(1.0);
ll.add(0.5);
ll.add(3.7);
ll.add(0.5);
ll.get(1); // get element 2 (==3.7)

ArrayList vs LinkedList
▪ ArrayList

▪ Good general purpose implementation
▪ Use as default
▪ More CPU cache sympathetic

▪ LinkedList
▪ Worse performance for many read operations
▪ Use when adding elements at start
▪ Or when adding/remove a lot

A

B

C

B

get add contains remove

ArrayList O(1) O(1)
amortised

O(N) O(N)

LinkedList O(N) O(1) O(N) O(N)

Iteration

▪ for loop

▪ foreach loop

LinkedList<Integer> list = new LinkedList<Integer>();
...
for (int i=0; i<list.size(); i++) {
 Integer next = list.get(i);
}

LinkedList list = new LinkedList();
...
for (Integer i : list) {
 ...
}

Iterators

▪ What if our loop changes the structure?

▪ Java introduced the Iterator class

▪ Safe to modify structure

for (int i=0; i<list.size(); i++) {
 If (i==3) list.remove(i);
}

Iterator<Integer> it = list.iterator();

while(it.hasNext()) {Integer i = it.next();}

for (; it.hasNext();) {Integer i = it.next();}

while(it.hasNext()) {
 it.remove();
}

Queues
▪ <<interface>> Queue

▪ An ordered collection of elements that may contain
duplicates and supports removal of elements from the
head of the queue

▪ offer() to add to the back and poll() to take from the
front

▪ LinkedList: supports the necessary functionality
▪ PriorityQueue: adds a notion of priority to the queue so

more important stuff bubbles to the top

A

B

C

B

LinkedList<Double> ll = new LinkedList<Double>();
ll.offer(1.0);
ll.offer(0.5);
ll.poll(); // 1.0
ll.poll(); // 0.5

Maps
▪ <<interface>> Map

▪ Like dictionaries in ML
▪ Maps key objects to value objects
▪ Keys must be unique
▪ Values can be duplicated and

(sometimes) null.
▪ TreeMap: keys kept in order
▪ HashMap: Keys not in order, efficient

access (see Algorithms)

K1
A

B

C

K3 K2

TreeMap<String, Integer> tm = new TreeMap<String,Integer>();
tm.put(“A”,1);
tm.put(“B”,2);
tm.get(“A”); // returns 1
tm.get(“C”); // returns null
tm.contains(“G”); // false

Hashing
Idea: somehow boil everything in an Object down to a
single number in a chosen range, say 0 → 128. This number
is its hash, h

Assign the object to an array element a[h]. Then we have instant
lookup for it!

Problem: either we have enormous arrays or we have multiple
Objects going to the same slot

Solution: link-list the
objects with the same
hash

TreeMap vs HashMap

K1
A

B

C

K3 K2

put get

TreeMap O(lg n) O(lg n)

HashMap O(1) O(1)

Sets
▪ <<interface>> Set

▪ A collection of elements with no duplicates
that represents the mathematical notion of
a set

▪ TreeSet: objects stored in order
▪ HashSet: objects in unpredictable order but

fast to operate on (see Algorithms course)

A
B

C

TreeSet<Integer> ts = new TreeSet<Integer>();
ts.add(15);
ts.add(12);
ts.contains(7); // false
ts.contains(12); // true
ts.first(); // 12 (sorted)

TreeSet vs Hashset
▪ TreeSet

▪ Based on a TreeMap
▪ Asserts a consistent ordering

▪ HashSet
▪ Based on a HashMap

A
B

C

add remove contains

TreeSet O(lg n) O(lg n) O(lg n)

HashSet O(1) O(1) O(1)

Collections Methods

▪ The Collections class is packed with
handy static methods to do things like:

▪ Make an unmodifiable view

▪ Synchronized view (see Part IB)

ArrayList<Double> list = new ArrayList<>();
List<Double> imList = Collections.unmodifiableList(list);
list.add(6.0); // fine
imList.add(3.0); // exception

ArrayList<Double> list = new ArrayList<>();
ArrayList<Double> threadsafeList = Collections.synchronizedList(list);

Comparing Objects

Comparing Primitives
▪ > Greater Than
▪ >= Greater than or equal to
▪ == Equal to
▪ != Not equal to
▪ < Less than
▪ <= Less than or equal to

▪ Clearly compare the value of a primitive
▪ But what does (ref1==ref2) do??
▪ Test whether they point to the same object?
▪ Test whether the objects they point to have

the same state?

Reference Equality

▪ r1==r2, r1!=r2
▪ These test reference equality
▪ i.e. do the two references point ot the same chunk

of memory?

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

(p1==p1);

False (references differ)

True (references differ)

True

Value Equality
▪ Use the equals() method in Object
▪ Default implementation just uses reference equality

(==) so we have to override the method

public EqualsTest {
 public int x = 8;

 @Override
 public boolean equals(Object o) {
 EqualsTest e = (EqualsTest)o;
 return (this.x==e.x);
 }

 public static void main(String args[]) {
 EqualsTest t1 = new EqualsTest();
 EqualsTest t2 = new EqualsTest();
 System.out.println(t1==t2);
 System.out.println(t1.equals(t2));
 }
}

Back to hashCode()

▪ Java requires:

 if equals(o1, o2)
then
 o1.hashCode()==o2.hashCode()

Generating hashes

▪ Let your IDE do the heavy lifting
▪ Or use java.util.Objects.hash(...);
▪ Always use the same fields as equals()

Comparable<T> Interface I

▪ int compareTo(T obj);

▪ Part of the Collections Framework
▪ Doesn't just tell us true or false, but smaller, same, or

larger: useful for sorting.
▪ Returns an integer, r:

▪ r<0 This object is less than obj
▪ r==0 This object is equal to obj
▪ r>0 This object is greater than obj

Comparable<T> Interface II
public class Point implements Comparable<Point> {
 private final int mX;
 private final int mY;
 public Point (int, int y) { mX=x; mY=y; }

 // sort by y, then x
 public int compareTo(Point p) {
 if (mY>p.mY) return 1;
 else if (mY<p.mY) return -1;
 else {
 if (mX>p.mX) return 1;
 else if (mX<p.mX) return -1;
 else return 0.
 }
 }
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>();

Comparator<T> Interface I

▪ int compare(T obj1, T obj2)

▪ Also part of the Collections framework and
allows us to specify a specific ordering for a
particular job

▪ E.g. a Person might have natural ordering that
sorts by surname. A Comparator could be
written to sort by age instead...

Comparator<T> Interface II
public class Person implements Comparable<Person> {
 private String mSurname;
 private int mAge;
 public int compareTo(Person p) {
 return mSurname.compareTo(p.mSurname);
 }
}

public class AgeComparator implements Comparator<Person> {
 public int compare(Person p1, Person p2) {
 return (p1.mAge-p2.mAge);
 }
}

…
ArrayList<Person> plist = …;
…
Collections.sort(plist); // sorts by surname
Collections.sort(plist, new AgeComparator()); // sorts by age

Operator Overloading

▪ Some languages have a neat feature that
allows you to overload the comparison
operators. e.g. in C++

class Person {
 public:
 Int mAge
 bool operator==(Person &p) {
 return (p.mAge==mAge);
 };
 }

Person a, b;
b == a; // Test value equality

OOP Michaelmas 2025 Prof. Robert Harle

Generics

Reminder: Generics

Non-generics type: List

Generics: List<String>, List<Integer>

Why do we want types?

▪ Type systems assign types to key terms in our
source code

▪ There are logical rules that can be applied to
the types to ensure type safety and reduce the
chance of bugs

▪ Static type checking checks types at compile
(which is where we want to capture bugs!)

▪ Dynamic type checking checks type safety at
runtime

Why do we want Generics?

▪ Generics are part of a type system and they
aim to allow "a type or method to operate on
objects of various types while providing
compile-time type safety” [Wikipedia]

▪ Generics are aka Parametric Polymorphism

▪ In real terms it stops a specific type of error at
compile time…

Collections are a good motivator

▪ The original Collections framework just
dealt with collections of Objects
▪ Everything in Java “is-a” Object so

that way our collections framework
will apply to any class

▪ But this leads to:
▪ Constant casting of the result

(ugly)
▪ The need to know what the

return type is
▪ Accidental mixing of types in the

collection

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Collections are a good motivator

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
 Object o = it.next();
 Integer i = (Integer)o;
}

Going to fail for the
second element!
(But it will compile: the
error will be at runtime)

Generics lets us catch errors at compile

List<String> list = new ArrayList<>();
list.add("a");
list.add("b");
list.add(8); // compile error

(Note the shorthand of using <> instead of <String> on the
RHS: Java fills in the type from the LHS)

Declaring a Generic class

public class Box<T> {

 private T t;

 public Box(T t) {
 this.t = t;
 }

 public void set(T t) {
 this.t = t;
 }

 public T get() {
 return t;
 }
}

There’s nothing special about
‘T’ - you can use what you like

Bounded Parameters

public class Box<T extends Number> {

 private T t;

 public Box(T t) {
 this.t = t;
 }

 public void set(T t) {
 this.t = t;
 }

 public T get() {
 return t;
 }
}

Box<Integer> box1; // ok
Box<String> box2; // error
Box<BigInteger> box3; // ok
Box<Object> box4; // error
Box<Double> box5; // ok

Methods too!

public class GenericMethod {

 public static <T> void fillList(
List<T> list,
T val){

 for (int i=0; i<list.size(); i++)
 list.set(i, val);
 }
}

Java’s Generics Implementation

Add generics to its type safety system, retaining
backwards compatibility

Java’s goal

The generic class is treated as a template by the
compiler, which generates new classes from it
whenever you ask for something

E.g. If your code contains ArrayList<Integer> it
would generate a Java class for ArrayListInteger
or some such

Essentially you search/replace the template
param, T, with “Integer” to get a new class.
Repeat for any other types used in the code

C++ does this

Option 1: templates

Option 1: templates

class MyClass<T> {
 T membervar;
};

class MyClass_float {
 float membervar;
};

class MyClass_int {
 int membervar;
};
class MyClass_double {
 double membervar;
};
...

C++ does this

At compile time, do all the type checks you can.

Then delete the type information in the compiler
output.

I.e. ArrayList<Integer> is checked, and then
written to bytecode as plain ArrayList. The JVM will
never know and so dynamic checks aren’t
possible.

Java does this

Option 2: type erasure

Option 2: type erasure

LinkedList<Integer> ll =
 new LinkedList<Integer>();

…

for (Integer i : ll) {
 do_sthing(i);
}

LinkedList ll =
 new LinkedList();

…

for (Object i : ll) {
 do_sthing((Integer)i);
}

Pros/Cons of Type Erasure

Pros
● Bytecode unchanged: backwards compatible
● Compile time type checking reduces bugs
● Avoids bloat of templates (all those extra

classes)

Cons
● No runtime (dynamic) checking
● Has some unexpected consequences…

You can’t use primitive parameters

● The compiler replaces the template parameter
with Object

T memberVar → Object memberVar

● Obviously can’t work for primitives (which don’t
descend from Object)

Creation is tricky

T memberVar = new T();

Objects are created via new at runtime in the
JVM

But the JVM doesn’t know what T was (it’s been
erased after compile). So all it can do is:

Object memberVar = new Object();

Which isn’t particularly useful…

Method overloading is limited

void addAll(List<String> items) {...}

void addAll(List<Integer> items) {...}

While the raw code has distinguishable types in its
argument list, they will both erase to LinkedList so
you just can’t do this:

void addAll(List items) {...}

void addAll(List items) {...}

Generics, Inheritance and Covariance

Covariance

Covariance: If B is a subtype of A then I should be
able to use B everywhere I expect an A.

(Think Liskov substitution principle)

Java classes are covariant

Student s = new Student();
Person p = (Person) s; // fine

Covariance

// Object casting
Student s = new Student();
Person p = (Person) s;

// List casting
LinkedList<Person> pllist = new LinkedList<Person>();
List<Person> plist = (List<Person>) playlist;

<<interface>>
Collection
Student

<<interface>>
Collection
Person

<<interface>>
Collection

LinkedList<T>

<<interface>>
Collection
List<T>

A Student is-a Person

A LinkedList of Person is a List of Person

Java Arrays are covariant

Java arrays are also covariant

If B is a subtype of A then I should be able to use B[] everywhere I
expect an A[].

Student[] sarray= new Student[20];
Person[] parray = (Person[]) sarray; // fine

But is this right??

Student[] sarray= new Student[20];
Person[] parray = (Person[]) sarray; // fine

Is an array of students an array or persons?

But is this right??

Student[] sarray= new Student[20];
Person[] parray = (Person[]) sarray; // fine

Is an array of students an array or persons?

NO

But is this right??

Student[] sarray= new Student[20];
Person[] parray = (Person[]) sarray;

Parray[2] = new Lecturer(); // Eeek!!!

If you try this, it will compile, but you get a
nasty runtime error

Java Arrays are reified

So covariance in arrays opens up
the possibility of runtime errors

This is possible because arrays
know their type at runtime - they
are reified

What about Generics?

// This compiles
Student[] s = new Student[20];
Person[] p = (Person[])s;

// This doesn’t compile
List<Student> s = new LinkedList<Student>();
List<Person> s = (List<Person>)p;

<<interface>>
Collection
Student

<<interface>>
Collection

Generics are invariant: why the different approach?

Conceptual: making arrays coovariant was arguably wrong and
it led to runtime errors

Practical: Generic types are erased so even if they were
covariant, the runtime wouldn’t know if we did something bad
→ no runtime error, just nasty effects later in your program!!

Person

This presents a problem…

Imagine you wanted a function that can
be handed a list and will just print out
everything in it, regardless of type

public void printList(??)

Wildcards

We can use wildcards to do this

void printAll (List<?> list) {
for (Object o : list)

System.out.println(o);
}

You can call anything on list that returns
the underlying type e.g. list.get(3);

If you call anything that takes the type as
input, it won’t compile e.g.
list.add(“hi”);

Bounded Wildcard: Lower

<? extends A> matches anything that is type A or a
subtype of it (Covariance)

public void printNumberList (
List<? extends Number> list) {

for (Number n: list) {
System.out.println(n);

 }
}

Bounded Wildcard: Lower

List<? extends Number>

It’s safe to read Number types from this

It’s dangerous to write anything to this (you can’t tell if it’s
Double or Integer, etc)

Bounded Wildcard: Upper

<? super A> matches anything that is type A or a
supertype of it (contravariance)

List<? super Number>

It’s only safe to read Objects from this

It’s safe to write Number or its subclasses

Bounded Wildcard: Both

public static void copy(
List<? extends Number> src,
List<? super Number> dest) {

for(Number number : src)
dest.add(number);

}

OOP Michaelmas 2025 Prof. Robert Harle

Coupling, Errors and Exceptions

Coupling

● Degree to which different parts of a program depend on
each others

● High coupling: relying on internals/implementation details

● Loose coupling: relying on interface and defined
behaviour
○ No need to know how a smartwatch works to read the time
○ Changes to the watch’s internals (software) do not affect reading

the time

Coupling

Bad Coupling

● Relying on internal implementation details which may
change

● Accessing / updating poorly encapsulated fields

● Reckless use of inheritance introduces high coupling
between two classes because if the parent class changes
(fields, methods…) it could affect the children classes

Boxing

Boxing and Unboxing

● Java automatically converts between the primitive types and
their corresponding object wrapper classes to make life simpler.
This is called autoboxing.

● Boxing: turn an int into an Integer

● Unboxing: turn an Integer into an int

Note that boxed objects have more memory overhead!

An int takes up 4 bytes

An Integer ~16 bytes (special headers and flags to be an Object)

Auto-Boxing

public void something(Integer I) {

}

int i = 4;

something(i); // works: auto-boxing

Auto-Unboxing

public void other(int i) {

}

Integer i = 3;

other(i); // auto-unboxing

Auto-Unboxing Warning

public void other(int i) {

}

Integer i = null;

other(i); // auto unbox gives NPE!

(if you’d tried other(null) it would not have compiled…)

Errors

Return Codes

The traditional imperative way to handle errors is to return a
value that indicates success/failure/error

public int divide(double a, double b) {
 if (b==0.0) return -1; // error
 double result = a/b;
 return 0; // success
}

…

if (divide(x,y)<0) System.out.println(“Failure!!”);

Problems with Return Codes
Could (and often do) ignore the return value

Have to keep checking what the return values are meant to
signify, etc.

The actual result often can't be returned in the same way

Error handling code is mixed in with normal execution (makes
code harder to read and hence maintain)

Example
#include <stdio.h>
#include <stdlib.h>

int main() {

 const char* filename = "example.txt";

 FILE* file = fopen(filename, "r");

 if (file == NULL) {

 perror("Error opening file");

 return EXIT_FAILURE;

 }

 char buffer[100];

 while (fgets(buffer,

sizeof(buffer), file) != NULL) {

 // Check for read errors

 if (ferror(file)) {

 perror("Error reading from
file");

 fclose(file);

 return EXIT_FAILURE;

 }

 printf("%s", buffer);

 }

 if (ferror(file)) {

 perror("Error reading from
file");

 fclose(file);

 return EXIT_FAILURE;

 }

 // Close the file

 if (fclose(file) != 0) {

 perror("Error closing file");

 return EXIT_FAILURE;

 }

 return EXIT_SUCCESS; }

Example
#include <stdio.h>
#include <stdlib.h>

int main() {

 const char* filename = "example.txt";

 FILE* file = fopen(filename, "r");

 if (file == NULL) {

 perror("Error opening file");

 return EXIT_FAILURE;

 }

 char buffer[100];

 while (fgets(buffer,

sizeof(buffer), file) != NULL) {

 if (ferror(file)) {

 perror("Error reading from
file");

 fclose(file);

 return EXIT_FAILURE;

 }

 printf("%s", buffer);

 }

 if (ferror(file)) {

 perror("Error reading from
file");

 fclose(file);

 return EXIT_FAILURE;

 }

 if (fclose(file) != 0) {

 perror("Error closing file");

 return EXIT_FAILURE;

 }

 return EXIT_SUCCESS; }

Deferred Error Handling
A similar idea (with the same issues) is to set some state in the
system that needs to be checked for errors.

C++ does this for streams:

ifstream file("test.txt");
if (file.good())
{
 cout << "An error occurred opening the file" << endl;
}

Exceptions
▪ An exception is an event, which occurs during the execution of a

program, that disrupts the normal flow of the program's
instructions.

▪ An exception is an object that can be thrown or raised by a method
when an error occurs and caught orhandled by the calling code

▪ Example usage:

try {
 double z = divide(x,y);
}
catch(DivideByZeroException d) {
 // Handle error here
}

Flow Control During Exceptions
▪ When an exception is thrown, any code left to run in the try

block is skipped

double z=0.0;
boolean failed=false;
try {
 z = divide(5,0);
 z = 1.0;
}
catch(DivideByZeroException d) {
 failed=true;
}
z=3.0;
System.out.println(z+” “+failed);

Throwing Exceptions in Java

▪ An exception is an object that has Exception as an
ancestor

▪ So you need to create it (with new) before throwing

double divide(double x, double y) throws DivideByZeroException {
 if (y==0.0) throw new DivideByZeroException();
 else return x/y;
}

Multiple Handlers
▪ A try block can result in a range of different exceptions. We

test them in sequence

try {
 FileReader fr = new FileReader(“somefile”);
 int r = fr.read();
}
catch(FileNotFound fnf) {
 // handle file not found by the FileReader
}
catch(IOException d) {
 // handle read() failed
}

Union catch blocks
▪ You can catch multiple in the same block

try {
 FileReader fr = new FileReader(“somefile”);
 int r = fr.read();
}
catch(FileNotFound fnf | SomeOtherException e) {
 // handle the same way
}
catch(Exception d) {
 // handle anything else
}

finally

With resources in particular we often want to ensure that
they are closed whatever happens

An use a finally block that will always run (after any
handler)

static String readFirstLineFromFile(String path) throws IOException {
 BufferedReader br = new BufferedReader(new FileReader(path));
 try {
 return br.readLine();
 } finally {
 if (br != null) br.close();
 }
}

Try-with-resources
Still easy to forget the finally block

Try-with-resources in java does it for us

try (BufferedReader br = new BufferedReader(new FileReader(path)))
{

 return br.readLine();

}

The objects we create in the try brackets must implement
AutoCloseable so that the compiler can insert a finally block that
does the close for us

Creating Exceptions

public class DivideByZero extends Exception {}

public class ComputationFailed extends Exception {
 public ComputationFailed(String msg) {
 super(msg);
 }
}

Just extend Exception (or RuntimeException if you need
it to be unchecked - see later). Good form to add a detail
message in the constructor but not required.

You can also add more data to the exception class to provide
more info on what happened (e.g. store the numerator and
denominator of a failed division)

Exception Inheritance Hierarchies
You can use inheritance hierarchies

And catch parent classes

public class MathException extends Exception {...}
public class InfiniteResult extends MathException {…}
public class DivByZero extends MathException {…}

try {
 …
}
catch(InfiniteResult ir) {
 // handle an infinite result in a special way
}
catch(MathException me) {
 // handle any MathException or DivByZero
}

Exception Benefits in Java
1. Documentation: The language supports exceptions as part of method

signatures

2. Type safety: The type system figures out whether you are handling the
exceptional flow

3. Separation of concern: business logic and exception recovery are
separated out with a try and catch block

Java’s Error Hierarchy

CheckedUnchecked

<<interface>>
Collection

Exception

<<interface>>
Collection

Throwable

Error

<<interface>>
Collection

RuntimeException

Error is intended for things completely outside of the programmer’s control;
Exceptions are for problems ultimately caused by the programmer in some way

Java’s Error Hierarchy

Checked vs Unchecked Exceptions
▪ Checked: must be handled or passed up.

▪ Client must take a recovery action (e.g. display a message or
retry)

▪ Java requires you to declare checked exceptions that your
method throws

▪ Java requires you to catch the exception when you call the
function

▪ Unchecked: not expected to be handled.

▪ Programming error (e.g. null or wrong pattern / format)
▪ There’s nothing the client could do (e.g. system error)
▪ Extends RuntimeException
▪ Good example is NullPointerException

Guidelines for Exception use

1. Never ignore an exception
If no handling mechanism, re-throw unchecked (“Exception translation”)

catch (WeirdException e) {

// TODO. I’ll deal with this later. Maybe..

}

vs.

try {

 callToAPI();

} catch (WeirdException exception) {

 throw new RuntimeException(exception);

}

2. Do not catch Exception…
…that would swallow up Runtime exception too

catch (Exception e) { /* TODO (yeah right) */}

vs.
catch(WeirdException e) {

}

Catch specific exceptions to improve readability and provide more specific exception
handling

3. Document exceptions at the API level
Java supports specially formatted comments on classes and methods that are used
to produce pretty API webpages (“Javadoc”).

Use this facility fully to describe when exceptions would occur in the context of the
method

/**
 * Parses a CSV settings file into an AppSettings object
 *
 * @param filename Full path to file
 * @return the parsed settings as an Appsettings object
 * @throws NoSuchfileexception if the filename supplied is invalid
 * @throws Badinput if the settings file is corrupt.
 **/
public AppSettings loadSettings(String filename) {

 …

}

4. Avoid implementation-specific exceptions

If your exception describes what’s going on under the hood, you are
breaking encapsulation E.g.

public String read(Source source) throws
SQLException

Clearly relates to an implementation detail (it’s using SQL), which is
not helpful to a user or your class/API.

public String read(Source source) throws
ResourceNotFoundException

Is much more useful

5. Never use exceptions for control flow

try {

 while (true) {

 System.out.println(iterator.next());

 }

}

catch(NoSuchElementException e) {

 // All done

}

It’s just evil

Assertions

Assertions
▪ Assertions are a form of error checking designed for debugging

(only). We met them in the Bootcamp.

▪ They are a simple statement that evaluates a boolean: if it's true
nothing happens, if it's false, the program ends.

▪ In Java:

assert (x>0);

// or

assert (a==0) : “Some error message here”;

Assertions are NOT for Production Code!

▪ Assertions are there to help you check the logic of your code is
correct i.e. when you're trying to get an algorithm working

▪ They should be switched OFF for code that gets released
(“production code”)

▪ In Java, the JVM takes a parameter that enables (-ea) or disables
(-da) assertions. The default is for them to be disabled.

▪ > java -ea SomeClass

> java -da SomeClass

As Oracle Puts It

“Assertions are meant to require that the program be
consistent with itself, not that the user be consistent

with the program”

Great for Postconditions

▪ Postconditions are things that must be true at the end of an
algorithm/function if it is functioning correctly

▪ E.g.

public float sqrt(float x) {
 float result = ….
 // blah
 assert(result>=0.f);
}

Sometimes for Preconditions

▪ Preconditions are things that are assumed true at the start of an
algorithm/function

▪ E.g.

▪ BUT you shouldn't use assertions to check for public

preconditions

▪ (you should use exceptions for this)

private void method(SomeObject so) {
 assert (so!=null);
 //...
}

public float method(float x) {
 assert (x>=0);
 //...
}

Sqrt Example

public float method(float x) throws InvalidInputException {
 .// Input sanitisation (precondition)
 if (x<0.f) throw new InvalidInputException();

 float result=0.f;
 // compute sqrt and store in result

 // Postcondition
 assert (result>=0);

 return result;
}

Assertions can be slow if you Like

▪ Here, isSorted() is presumably quite costly (at least O(n)).
▪ That's OK for debugging (it's checking the sort algorithm is

working, so you can accept the slowdown)
▪ And will be turned off for production so that's OK

▪ (but your assertion shouldn't have side effects)

public int[] sort(int[] arr) {
 Int[] result = ...
 // blah
 assert(isSorted(result));
}

NOT for Checking your Compiler/Computer

▪ If this isn't working, there is something much bigger wrong with
your system!

▪ It's pointless putting in things like this

public void method() {
 Int a=10;
 assert (a==10);
 //...
}

OOP Michaelmas 2025 Prof. Robert Harle

Design Patterns

Design Patterns
▪ A Design Pattern is a general reusable solution to a

commonly occurring problem in software design
▪ Coined by Erich Gamma in his 1991 Ph.D. thesis
▪ Originally 23 patterns, now many more. Useful to

look at because they illustrate some of the power of
OOP (and also some of the pitfalls)

▪ We will only consider a subset

The Open-Closed Principle

▪ Classes should be open for extension
but closed for modification

▪ i.e. we would like to be able to modify
the behaviour without touching its
source code
▪ This rule-of-thumb leads to more

reliable large software and will help us
to evaluate the various design patterns

Composite

▪ Abstract problem: How can we treat
a group of objects as a single object?

▪ Example problem: Representing a DVD
box-set as well as the individual films
without duplicating info and with a
10% discount

Composite in General
▪ The composite pattern

lets us treat objects and
groups of objects
uniformly

Decorator

▪ Abstract problem: How can we add
state or methods at runtime?

▪ Example problem: How can we
efficiently support gift-wrapped books
in an online bookstore?

Decorator in General
▪ The decorator pattern

adds state and/or
functionality to an object
dynamically

State

▪ Abstract problem: How can we let an
object alter its behaviour when its
internal state changes?

▪ Example problem: Representing
academics as they progress through
the rank

State in General
▪ The state pattern allows

an object to cleanly alter
its behaviour when
internal state changes

Strategy

▪ Abstract problem: How can we select
an algorithm implementation at
runtime?

▪ Example problem: We have many
possible change-making
implementations. How do we cleanly
change between them?

Strategy in General
▪ The strategy pattern allows us to cleanly interchange

between algorithm implementations

Singleton

▪ Abstract problem: How can we ensure
only one instance of an object is
created by developers using our
code?

▪ Example problem: You have a class
that encapsulates accessing a
database over a network. When
instantiated, the object will create a
connection and send the query.
Unfortunately you are only allowed
one connection at a time.

Singleton in General
▪ The singleton pattern

ensures a class has only one
instance and provides
global access to it

Observer

▪ Abstract problem: When an object
changes state, how can any
interested parties know?

▪ Example problem: How can we write
phone apps that react to accelerator
events?

Observer in General
▪ The observer pattern allows an object to have multiple

dependents and propagates updates to the dependents
automatically.

Takeaways
▪ We covered the following patterns:

○ Singleton
○ Decorator
○ Composite
○ State
○ Strategy
○ Observer

Bonus: Optional<T>
▪ Not an official design Pattern, but worth us talking about

▪ Using null as a way to indicate the lack of an object is
rather risky: you’ve all seen NullPointerExceptions!

▪ In general null has three problems:
○ Error-pone checking
○ Verbose checking
○ No useful semantic meaning

Bonus: Optional<T>
▪ java.util.Optional<T> encapsulates an optional value

▪ You can view Optional as a single-value container that
either contains a value or doesn't

Bonus: Optional<T>
● More comprehensible model where it’s immediately

understandable whether to expect an optional value →
better maintainability

● You need to actively unwrap an Optional to deal with
the absence of a value → fewer errors

String name = "hello";
Optional<String> opt = Optional.of(name);
if (opt.isPresent()) {
 // code here
}

OOP Michaelmas 2025 Prof. Robert Harle

Lambdas, Method References, Streams

Lambdas

Task

You have a List<Apple> and you need to filter
it by colour and weight. How do you do it?

public class Apple {
private String colour;
private double weight;

public String getColour() { return colour; }
public double getWeight() { return weight; }

// Constructors etc.
}

Option 1

Quite a lot of code for such as simple thing. Even uglier if
we extend to filter by weight too

public static List<Apple> filterApplesByColour(List<Apple> apples,
String colour) {

 List<Apple> result = new ArrayList<>();
 for (Apple apple: apples) {
 if (apple.getColour().equals(colour))) {
 result.add(apple); }
 }
 return result;
}

List<Apple> greenApples = filterApplesByColor(inventory, "green");

Option 2: Strategy Pattern?

public interface ApplePredicate {
 boolean test (Apple apple);
}

Option 2: Strategy Pattern?

Create specific predicates for what we want:

public class AppleWeightPredicate implements ApplePredicate {
 public boolean test(Apple apple){
 return apple.getWeight() > 150;
 }
}
public class AppleGreenPredicate implements ApplePredicate {
 public boolean test(Apple apple){
 return "green".equals(apple.getColour());
 }
}

Option 2: Strategy Pattern?

Now filter:

Is this good?

public static List<Apple> filter(List<Apple> inventory, ApplePredicate p) {
 List<Apple> result = new ArrayList<>();
 for(Apple apple: inventory){
 if(p.test(apple)) result.add(apple);
 }
 return result;
}

List<Apple> greenApples = filter(inventory, new AppleGreenPredicate());
List<Apple> greenLightApples = filter(greenApples, new
AppleWeightPredicate());

Option 2: Strategy Pattern?

Pros:

● Increased code flexibility. Easy-ish to write new
predicates

● filter code is universal

Cons:

● A lot of code, with an annoying overhead of a class
for every new predicate. Especially annoying if it’s a
one-off filter we won’t reuse

● We’ve got a good abstraction, but we have poor
concision

Option 3: Anonymous Classes

To partly address these issues, Java allows you to define an
‘anonymous class’ inline in your code

List<Apple> result = filter(inventory,
new ApplePredicate() {

 public boolean test(Apple apple){
 return "red".equals(apple.getColor());
 }

}
);

Helps with the one-off issue, and is generally a bit more concise

Still feels verbose, however.

Option 4: Lamdas!

List<Apple> result = filter(inventory,
(Apple apple) -> "red".equals(apple.getColour()));

Flexible and concise!! The lambda defines a function without all
the boilerplate using the syntax

(parameters) -> expression

 or

(parameters) -> { statement1; statement2; …}

But wait: how does it know how to create an ApplePredicate
object from just that??

Option 4: Lamdas!

The trick is ApplePredicate is an interface with exactly one method:

When the compiler sees

(Apple apple) -> "red".equals(apple.getColour())

it knows it must be defining precisely test (because there’s nothing
else to define). It checks the argument list matches test (it does)
and generates the rest for us.

This would not be possible if ApplePredicate had more than one
function…

public interface ApplePredicate {
 boolean test (Apple apple);
}

Functional Interfaces

This trick requires strict one-method-only interfaces to work and is
very powerful as we’ve seen

We name such interfaces Functional Interfaces

What is a Lambda?

● a kind of anonymous function

● that can be passed around (OCaML, anyone?)

● it doesn’t have a name, but it has a list of parameters, a body, a

return type, and also possibly a list of exceptions that can be

thrown.

(parameters) -> expression

 or

(parameters) -> { statements; }

Abstracting further

Our filter function could be even more generic, and not be limited to
Apples by using Generics:

public static <T> List<T> filter (List<T> list,

Predicate<T> p) {

 List<T> result = new ArrayList<>();

 for(T e: list) {

 if(p.test(e)) {

 result.add(e);

 }

 }

 return result;

}

Abstracting further

Now it’s flexible and really concise:

List<String> result =

 filter(strings, (String s) -> s.endsWith(".json"));

List<Integer> result =

 filter(numbers, (Integer i) -> i % 2 == 0);

List<Apple> result =

 filter(inventory, (Apple a) -> apple.getWeight() >
150);

A ‘real’ example

Before
inventory.sort(new Comparator<Apple>() {

 public int compare(Apple a1, Apple a2){

 return a1.getWeight().compareTo(a2.getWeight());

 }

});

After

inventory.sort((Apple a1, Apple a2) ->
a1.getWeight().compareTo(a2.getWeight())

);

A ‘real’ example

Before

button.setOnAction(new EventHandler<ActionEvent>() {

 public void handle(ActionEvent event) {

 label.setText("Sent!!");

 }

});

After

button.setOnAction((ActionEvent event) ->
label.setText("Sent!!"));

Built-in Functional Interfaces

Functional interface Lambda signature

Predicate<T> T -> boolean

Consumer<T> T -> void

Function<T, R> T -> R

Supplier<T> () -> T

UnaryOperator<T> T -> T

BinaryOperator<T> (T, T) -> T

BiFunction<T, U, R> (T, U) -> R

• Have a look in java.util.function.*
• Primitive specialisations exist including ToIntFunction, DoubleUnaryOperator etc

Method References

Method References

● Method references let you reuse existing method definitions
and pass them just like lambdas.

● “First-class” functions (yay!)

Before: (Apple a) -> a.getWeight()
After: Apple::getWeight

Before: (String str, int i) -> str.substring(i)
After: String::substring

Example

List<String> str =
Arrays.asList("a","b","A","B");

Before

str.sort((String s1, String s2) ->

s1.compareToIgnoreCase(s2));

After

str.sort(String::compareToIgnoreCase);

A full example

Example: Classic
public class AppleComparator implements
Comparator<Apple> {

 public int compare(Apple a1, Apple a2) {

return

 a1.getWeight().compareTo(a2.getWeight());

 }

}

inventory.sort(new AppleComparator());

Example: Anon classes

inventory.sort(new Comparator<Apple>() {

 public int compare(Apple a1, Apple a2) {

 return a1.getWeight().compareTo(a2.getWeight());

 }

});

Example: Lambdas

inventory.sort(
(Apple a1, Apple a2) ->

a1.getWeight().compareTo(a2.getWeight()));

Example: Library help

Comparator<Apple> byWeight =

 Comparator.comparing((Apple apple) -> apple.getWeight());

inventory.sort(byWeight);

Example: Library help

Comparator<Apple> byWeight =

 Comparator.comparing(Apple::getWeight);

inventory.sort(byWeight);

Example: Tidy up

inventory.sort(Comparator.comparing(Apple::getWeight));

Streams

External Iteration

int count = 0;

for (Student student: students) {

 if (student.isFrom("Cambridge")) count++;

}

Internal Iteration

students.stream()

 .filter(student -> student.isFrom("Cambridge"))

 .count();

Streams

Informally: A fancy iterator with database-like
operations

More formally: A sequence of elements from a source
that supports aggregate operations

Allows Pipelining

Intermediate: returns a Stream and can be “connected”

Terminal: returns a non-Stream value (e.g. int, String,…)

Stream Operations
Operation Type Argument Type Argument function descriptor Result

filter intermediate Predicate<T> T -> boolean Stream<T>

distinct intermediate Stream<T>

skip intermediate long Stream<T>

limit intermediate long Stream<T>

map intermediate Function<T, R> T -> R Stream<R>

flatMap intermediate Function<T, Stream<R>> T -> Stream<R> Stream<R>

sorted intermediate Comparator<T> (T, T) -> int Stream<T>

anyMatch terminal Predicate<T> T -> boolean boolean

noneMatch terminal Predicate<T> T -> boolean boolean

allMatch terminal Predicate<T> T -> boolean boolean

findAny terminal Optional<T>

findFirst terminal Optional<T>

max/min terminal Comparator<T> (T, T) -> int Optional<T>

forEach terminal Consumer<T> T -> void void

collect terminal Collector<T, A, R> R

reduce terminal BinaryOperator<T> (T, T) -> T Optional<T>

reduce terminal (T, BinaryOperator<T>) (T , T) -> T T

count terminal long

Before
List<Dish> lowCaloricDishes = new ArrayList<>();

for(Dish d: dishes) {

 if(d.getCalories() < 400) {

 lowCaloricDishes.add(d);

 }

}

Collections.sort(lowCaloricDishes,

 new Comparator<Dish>() {

 public int compare(Dish d1, Dish d2){

 return Integer.compare(d1.getCalories(), d2.getCalories());

 }

});

List<String> lowCaloricDishesName = new ArrayList<>();

for(Dish d: lowCaloricDishes) {

 lowCaloricDishesName.add(d.getName());

}

sorting by calories

filter low calories

extract names

After

List<String> lowCaloricDishesName =

 dishes.stream()

 .filter(dish -> dish.getCalories() < 400)

 .sorted(comparing(Dish::getCalories))

 .map(Dish::getName)

 .collect(toList());

Key advantages

Concise: makes readable code

Short-circuiting: Can stop as soon as the result is known, and not process the
entire collection

Lazy evaluation: Only evaluate an expression when we need the result. I.e.
only when you connect a terminal block do the intermediates get evaluated.

Aaaannnd…

…we’re done!

