
OOP Examples Sheet

Robert Harle

Michaelmas 2025

These exercises follow the notes and are intended to provide material for supervisions. For
the majority of students this course has two challenges: the first is understanding the core OOP
concepts; the second is applying them correctly in Java. The former can be addressed through
traditional academic study; the latter requires a combination of knowledge and experience. To
get the most out of this course you will need to put in effort programming from scratch (not just
copy/pasting from StackOverflow..!). While these exercises will be useful, there is no substitute
for actually coding. In addition to these questions, you should aim to build small programs that
exercise your Java skills.

• Questions marked (W) are warm up questions. They mostly ask you to regurgitate the
notes just to check your core understanding.

• Questions marked (*) are intended to be more time consuming and/or challenging.

The lectures will proceed at roughly one section per lecture. Consult your supervisor for an
appropriate set for each supervision.

Section 1: Intro to Java

1.1. On your personal system, install and configure a JDK (OpenJDK recommended) and
an IDE (IntelliJ IDEA recommended). Make sure you can build a hello world application
and compile and run it in both a terminal and your IDE. Also locate the jshell program
and create a hello world (one line of code).

1.2. (W) Compare and contrast a typical functional language and a typical imperative
language.

1.3. (W) Identify the primitives, references, classes and objects in the following Java code:

double d = 5.0;
int i[] = {1, 2, 3, 4};
LinkedList <Double > l = new LinkedList <Double >();
Double k = new Double ();
Tree t;
float f;
Computer c = null;

1.4. (W) Naming Conventions. The lecture notes contrast Python’s snake_case and
Java’s CamelCase. Why is adhering to a language’s standard naming convention impor-
tant? Provide a Java class StudentReportGenerator with one static final constant
DEFAULT_YEAR set to 2025, one instance field reportTitle, and one method generateReport,
all following Java conventions.

1

1.5. (W)

(a) Write a class MathUtil with two overloaded methods named max. One should accept
two int parameters, and the other should accept two double parameters.

(b) Explain why you could not add a third method float max(int a, int b) to this
class while the int max(int a, int b) method already exists.

1.6. (W) Write Java code to test whether your Java environment performs tail-recursion
optimisations or not.

1.7. Write a static function lowestCommon that takes two long arguments and returns
the position of the first set bit in common, where position 0 is the LSB. If there is no
common bit, the function should return -1. For example lowestCommon(14,25) would be
3. Your solution should use at least one break statement.

1.8. For this questions, you should write procedurally (i.e. use static functions, no need
to make custom classes

(a) Write a Java function that creates an array-of-arrays to represent an n×n matrix of floats.
The matrix should be initialised to be a unit matrix.

(b) Write another Java function that transposes such an array-of-arrays matrix. Your function
should be in-place i.e. use O(1) space.

1.9. (W) Explain why this code prints 0 rather than 7.

public class Test {
public int x = 0;
public void Test() {

x = 7;
}
public static void main(String [] args) {

Test t = new Test();
System.out.println(t.x);

}
}

Section 2: Class Design and Encapsulation

2.1. (W) Explain why we should use private state in conjunction with public getter
and setter methods.

2.2. (W) Python does not offer a private access modifier making everything public. In-
stead, programmers should follow the convention that a variable name should be prefixed
with an underscore ("_") to signal it should not be accessed or edited externally. Discuss
the advantages and disadvantages of this approach compared to Java.

2.3. This question considers representing a 2D vector in Java.

(a) Develop a mutable class Vector2D to embody the notion of a 2D vector based on floats
(do not use Generics). At a minimum your class should support addition of two vectors;
scalar product; normalisation and magnitude.

2

(b) What changes would be needed to make it immutable?

(c) Contrast the following prototypes for the addition method for both the (i) mutable, and
(ii) immutable versions.

• public void add (Vector2D v)

• public Vector2D add (Vector2D v)

• public Vector2D add (Vector2D v1, Vector2D v2)

• public static Vector2D add (Vector2D v1, Vector2D v2)

(d) How can you convey to a user of your class that it is immutable?

2.4. You met the idea of linked lists in FoCS.

(a) Write a class OOPLinkedList that encapsulates a linked list of integers. Your class should
support the addition and removal of elements from the head, querying of the head element,
obtaining the nth element and computing the length of the list. You may find it useful to
first define a class OOPLinkedListElement to represent a single list element. Do not use
Generics.

(b) Give the UML class diagram for your code.

2.5. (W) Single Responsibility Principle (SRP) The lecture notes discuss the Single Re-
sponsibility Principle (SRP). The following Report class violates SRP. Explain why, and
refactor it into separate classes that better adhere to SRP and exhibit high cohesion.

public class Report {
private String data;

public void fetchDataFromDatabase () {
System.out.println("Fetching data ...");
this.data = "raw data";

}

public void parseXMLData () {
System.out.println("Parsing data as XML ...");
// logic to parse this.data

}

public void printToConsole () {
System.out.println("--- REPORT ---");
System.out.println(this.data);
System.out.println("--- END ---");

}
}

2.6. Immutability and Records. The lecture notes introduce the record keyword (Java
16+) as a concise way to create immutable classes.

(a) Create an immutable class StudentRecord containing name, age and college without
using record. Provide the class with a print() method that prints the details to
the screen.

(b) Re-implement StudentRecord as a record.

3

(c) The notes mention that a record automatically generates equals(), hashCode(),
and toString(). Why is it critical that an immutable class used as a data car-
rier provides a correct, value-based implementation of equals() and hashCode()?
(Hint: consider its use in a HashSet or as a key in a HashMap).

2.7. (*) In mathematics, a set of integers refers to a collection of integers that contains
no duplicates. You typically want to insert numbers into a set and query whether the set
contains numbers. One approach is to store the numbers in a binary search tree.

(a) The text below describes a design for a set of integers. Draw out the UML diagram.

SearchSet

• -numElements: int
• +SearchSet()
• +insert(int): void
• +getNumElements(): int
• +contains(int): boolean
• (relationship) -head (0..1) → BinaryTreeNode

BinaryTreeNode

• -value: int
• +BinaryTreeNode(int)
• +getValue(): int
• +setValue(int): void
• +getLeft(): BinaryTreeNode
• +getRight(): BinaryTreeNode
• +setRight(BinaryTreeNode): void
• +setLeft(BinaryTreeNode): void
• (relationship) -right (0..1) → BinaryTreeNode
• (relationship) -left (0..1) → BinaryTreeNode

(b) Implement this in Java, using the names of entities to decide what they should do. Make
your main method test that the code works.

(c) The BinaryTreeNode class can be reused for other solutions. Create a class FunctionalArray
that uses BinaryTreeNode to cretae a functional array of ints. Your class should have a
constructor that creates a tree of a given size (passed as an argument); a void set(int
index, int value) method; and a int get(int index) method. You should make the
functional array zero-indexed to match java’s normal arrays (i.e. the first element has index
0). Requests for indices outside the limits should result in an exception.

Section 3: Pointers, References and Memory

3.1. (W) Pointers are problematic because they might not point to anything useful.
A null reference doesn’t point to anything useful. So what is the advantage of using
references over pointers?

3.2. (W) Draw some simple diagrams to illustrate what happens with each step of the
following Java code in memory:

4

Person p = null;
Person p2 = new Person ();
p = p2;
p2 = new Person ();
p = null;

3.3. (W) Explain the result of the following code.

public static void add(int[] xy , int dx, int dy) {
xy[0] += dx;
xy[1] += dy;

}

public static void add(int x, int y, int dx , int dy) {
x = x + dx;
y = y + dy;

}

public static void main(String [] args) {
int xypair [] = {1, 1};
add(xypair [0], xypair [1], 1, 1);
System.out.println(xypair [0] + " " + xypair [1]);
add(xypair , 1, 1);
System.out.println(xypair [0] + " " + xypair [1]);

}

3.4. The notes mention the confusion over passing by value and reference. Write Java
code to demonstrates that the variable declared by the code int[] test can be viewed
as a reference that gets copied when passed as an argument.

3.5. A programmer proposes a new imperative language whereby all variables are passed
by reference (even those of primitive type). Discuss the advantages and disadvantages of
this design.

Section 4: Inheritance

4.1. (W) A student wishes to create a class for a 3D vector and chooses to derive from
the Vector2D class (i.e. public void Vector3D extends Vector2D). The argument is
that a 3D vector is a "2D vector with some stuff added". Explain the conceptual misun-
derstanding here.

4.2. (W) If you don’t specify an access modifier when you declare a member field of a
class, what does Java assign it? Demonstrate your answer by providing minimal Java
examples that will and will not compile, as appropriate.

5

4.3. (W) Write a small Java program that demonstrates constructor chaining using a
hierarchy of three classes as follows: A is the parent of B which is the parent of C. Modify
your definition of A so that it has exactly one constructor that takes an argument, and
show how B and/or C must be changed to work with it.

4.4. (W) Suggest UML class diagrams that could be used to represent the following.
Think careully about the directions of and multiplicities on your arrows.

(a) A shop is composed of a series of departments, each with its own manager. There is also
a store manager and many shop assistants. Each item sold has a price and a tax rate.

(b) Vehicles are either motor-driven (cars, trucks, motorbikes, electric bikes) or human-powered
(bikes, skateboards, scooters). All cars have 3 or 4 wheels and all bikes have two wheels.
Every vehicle has an owner. Some vehicles must have road tax.

4.5. Consider the Java class below:

package questions;
public class X {

MODIFIER int value = 3;
};

Another class Y attempts to access the field value in an object of type X. Describe what happens
at compilation and/or runtime for the range of MODIFIER possibilities (i.e. public, protected,
private and unspecified) under the following circumstances:

(a) Y subclasses X and is in the same package;

(b) Y subclasses X and is in a different package;

(c) Y does not subclass X and is in the same package;

(d) Y does not subclass X and is in a different package.

4.6. Consider the following class hierarchy. Explain what will be printed by the main
method. Why does a.value behave differently from a.printValue(), even though a
holds a Sub object?

public class Super {
public String value = "Super";

public void printValue () {
System.out.println("Super.printValue: " + value);

}
}

public class Sub extends Super {
public String value = "Sub"; // Field Shadowing

@Override
public void printValue () {

System.out.println("Sub.printValue: " + value);
}

}

public class TestShadowing {

6

public static void main(String [] args) {
Super a = new Sub();
System.out.println("a.value = " + a.value); a.printValue ();

}
}

4.7. Create a class OOPSortedLinkedList that derives from OOPLinkedList but keeps
the list elements in ascending order.

4.8. (*) Create a class OOPLazySortedLinkedList that derives from OOPSortedLinkedList
but avoids performing any sorting until data are expressly requested from it, whereupon
it first sorts its contents and then returns the result.

Section 5: Polymorphism

5.1. (W) Explain the differences between a class, an abstract class and an interface in
Java.

5.2. (W) Explain what is meant by (dynamic) polymorphism in OOP and explain why it
is useful, illustrating your answer with an example.

5.3. (W) A programming language designer proposes adding ’selective inheritance’ whereby
a programmer manually specifies which methods or fields are inherited by any subclasses.
Comment on this idea.

5.4. (W) A Computer Science department keeps track of its CS students using some
custom software. Each student is represented by a Student object that features a pass()
method that returns true if and only if the student has all 20 ticks to pass the year. The
department suddenly starts teaching NS students, who only need 10 ticks to pass. Using
inheritance and polymorphism, show how the software can continue to keep all Student
objects in one list in code without having to change any classes other than Student.

5.5. In the second of the shape drawing examples in lectures, we relied on the existence
of an instanceof operator that allowed us to check which class the object really was.
The built-in ability to do this is called reflection. However, not all OOP languages supprt
reflection. Show how we could modify the shape classes to allow us to determine the true
type without using relection.

5.6. An alternative implementation of a list uses an array as the underlying data structure
rather than a linked list.

(a) Write down the asymptotic complexities of the array-based list methods.

(b) Abstract your implementation of OOPLinkedList to extract an appropriate OOPList inter-
face.

(c) Implement OOPArrayList (which should make use of your interface).

(d) When adding items to an array-based list, rather than expanding the array by one each
time, the array size is often doubled whenever expansion is required. Analyse this approach
to get the asymptotic complexities associated with an insertion.

5.7. (*)

(a) Create a Java interface for a standard queue (i.e. FIFO).

7

(b) Implement OOPListQueue, which should use two OOPLinkedList objects as per the queues
you constructed in your FoCS course. You may need to implement a method to reverse
lists.

(c) Implement OOPArrayQueue. Use integer indices to keep track of the head and the tail
position.

(d) State the asymptotic complexities of the two approaches.

5.8. Imagine you have two classes: Employee (which embodies being an employee) and
Ninja (which embodies being a Ninja). You need to represent an employee who is also
a ninja (a common problem in the real world). By creating only one interface and only
one class (NinjaEmployee), show how you can do this without having to copy method
implementation code from either of the original classes.

Section 6: Object lifecycle, Garbage Collection and Copying Ob-
jects

6.1. The lectures described the main mechanism to mark objects that can be deleted
(or to mark objects that cannot be deleted), but not the deletion process. Compare and
contrast the following approaches in terms of performance. Your answer should consider
the costs associated with marking and deleting.

(a) The mark-sweep schemes delete the marked objects, leaving their memory available. A list
of free memory chunks is maintained.

(b) The mark-sweep-compact schemes delete the objects and then compact the momory by
moving surviving objects to be adjacent to each other (i.e. no free memory between them).

(c) The mark-copy schemes maintain two memory regions, one of which is active. During
the marking process, surviving objects are copied into the other region. Once marking is
complete, references are upated to the second region, which becomes active, and the first
region is deleted.

6.2. It is often recommended that we make classes immutable wherever possible. How
would you expect this to impact garbage collection?

6.3. (W) Adapt your OOPLinkedList class to be cloneable.

6.4. (W) Explain the purpose of marker interfaces.

6.5. A student forgets to use super.clone() in their clone() method:

public class SomeClass extends SomeOtherClass implements Cloneable {
private int[] mData;

public Object clone () {
SomeClass sc = new SomeClass ();
sc.mData = mData.clone ();
return sc;

}
}

Explain what could go wrong, illustrating your answer with an example.

8

6.6. Consider the following code:

public class MyClass {
private String mName;
private int[] mData;

// Copy constructor
public MyClass (MyClass toCopy) {

this.mName = toCopy.mName;
// TODO

}
}

(a) Complete the copy constructor.

(b) Make MyClass clone()-able (you should do a deep copy).

(c) Why might the Java designers have disliked copy constructors?

(d) Under what circumstances is a copy constructor unambiguously a good solution?

6.7. Consider the class below. What difficulty is there in providing a deep clone()
method for it?

public class CloneTest {
private final int[] mData = new int [100];

}

Section 7: Collections, Comparison

7.1. (W) Using the Java API documentation or otherwise, compare the Java classes
Vector, LinkedList, ArrayList and TreeSet.

7.2. (W) Write an immutable class that represents a 3D point (x, y, z). Give it a natural
order such that values are sorted in ascending order by z, then y, then x

7.3. Write a Java class that can store a series of student names and their corresponding
marks (percentages) for the year. Your class should use at least one Map and should be
able to output a List of all students (sorted alphabetically); a List containing the names
of the top P% of the year as well; and the median mark.

7.4. You need to implement a RecentFiles list for an application. This list will store
the paths to the 10 most recently opened files. Every time a new file is opened, its path
is added to the start of the list, and if the list is now over 10 items, the last item is
removed. Which implementation of List — ArrayList or LinkedList —– would be the
more performant choice for this specific task, and why?

7.5. (W) Explain why the following code excerpts behave differently when compiled and
run (may need some research):

String s1 = new String("Hi");
String s2 = new String("Hi");

9

System.out.println(s1 == s2);

String s3 = "Hi";
String s4 = "Hi";
System.out.println(s3 == s4);

7.6. The user of the class Car below wishes to maintain a collection of Car objects such
that they can be iterated over in some specific order.

public class Car {
private String manufacturer;
private int age;

}

(a) Show how to keep the collection sorted alphabetically by the manufacturer without writing
a Comparator.

(b) Using a Comparator, show how to keep the collection sorted by (manufacturer, age). i.e.
sort first by manufacturer, and sub-sort by age.

7.7. (*) Write a Java program that reads in a text file that contains two integers on each
line, separated by a comma (i.e. two columns in a comma-separated file). Your program
should print out the same set of numbers, but sorted by the first column and subsorted
by the second.

Section 8: Generics

8.1. (W) Explain in detail why Java’s Generics not support the use of primitive types
as the parameterised type? Why can you not instantiate objects of the template type in
generics (i.e. why is new T() forbidden?)

8.2. (W) Rewrite your OOPList interface and OOPLinkedList class to support lists of
types other than integers using Generics. e.g. OOPLinkedList<Double>.

8.3. (W) Explain the notion of wildcards in Java Generics.

8.4. (*)The following code will not compile. It is intended to take a list of Doubles and
add them to a list of Numbers

.

import java.util.List;
import java.util.ArrayList;

public class Example {
public static void main(String [] args) {

List <Double > doubles = List.of(1.1, 2.2, 3.3); List <Number >
numbers = new ArrayList <>();

// This call fails to compile
addItems(doubles , numbers);
System.out.println(numbers);

}

10

// This method signature is too restrictive
public static <T> void addItems(List <T> src , List <T> dest) {

for (T t : src) {
dest.add(t);

}
}

}

1. Explain why the call addItems(doubles, numbers) fails to compile.

2. Fix the signature of the addItems method using bounded wildcards so that the main
method compiles and runs correctly.

8.5. (*) Java provides the List interface and an abstract class that implements much of
it called AbstractList. The intention is that you can extend AbstractList and just fill
in a few implementation details to have a Collections-compatible structure. Write a new
class CollectionArrayList that implements a mutable Collections-compatible Generics
array-based list using this technique. Comment on any difficulties you encounter.

Section 9: Coupling, Errors and Exceptions

9.1. (W) The following code captures errors using return values. Rewrite it to use
exceptions.

public class RetValTest {
public static String sEmail = "";

public static int extractCamEmail (String sentence) {
if (sentence == null || sentence.length () == 0)

return -1; // Error sentence empty

String tokens [] = sentence.split(" "); // split into tokens
for (int i = 0; i < tokens.length; i++) {

if (tokens[i]. endsWith("@cam.ac.uk")) {
sEmail = tokens[i];
return 0; // success

}
}
return 2; // Error no cam email found

}

public static void main(String [] args) {
int ret = RetValTest.extractCamEmail("My email is rkh23@cam.ac.

uk");
if (ret == 0) System.out.println("Success: " + RetValTest.sEmail

);
else if (ret == -1) System.out.println("Supplied string empty");
else System.out.println("No @cam address in supplied string");

}
}

9.2. (W) You are writing a method for a banking application void withdraw(double
amount) that withdraws money from an account. If the amount is larger than the account’s
balance, the withdrawal should fail.

11

(a) Should you create an InsufficientFundsException that is checked (i.e., extends
Exception) or unchecked (i.e., extends RuntimeException)?

(b) Justify your choice, referring to the lecture notes on how clients are expected to
handle each type.

9.3. Write a Java function that computes the square root of a double number using the
Newton-Raphson method. Your function should make appropriate use of exceptions and
assertions.

9.4. Comment on the following implementation of pow, which computes the power of a
number:

public class Answer extends Exception {
private int mAns;
public Answer (int a) { mAns = a; }
public int getAns () { return mAns; }

}

public class ExceptionTest {
private void powaux(int x, int v, int n) throws Answer {

if (n == 0) throw new Answer(v);
else powaux(x, v * x, n - 1);

}

public int pow(int x, int n) {
try { powaux(x, 1, n); }
catch (Answer a) { return a.getAns (); }
return 0;

}
}

9.5. (*) In Java try...finally blocks can be applied to any code no catch is needed.
The code in the finally block is guaranteed to run after that in the try block. Suggest
how you could make use of this to emulate the behaviour of a destructor (which is called
immediately when indicate we are finished with the object, not at some indeterminate
time later).

9.6. By experimentation or otherwise, work out what happens when the following method
is executed.

public static int x() {
try { return 6; }
finally { ... }

}

12

Section 10: Design Patterns

10.1. (W) Explain the difference between the State pattern and the Strategy pattern.

10.2. In lectures the examples for the State pattern used academic rank.

(a) Explain the problems with the first solution of using direct inheritance of Lecturer and
Professor from Academic rather than the State pattern.

(b) Explain why a call to getRank() could not simply return the mRank object.

(c) Alternatives are to return a separate rank indicator (e.g. an int); to return a copy of the
rank object; or return an immutable version of the object. Using an appropriate design
pattern, which you should identify, show how to achieve the immutable version, and identify
any problems that might occur

10.3. A drawing program has an abstract Shape class. Each Shape object supports
a draw() method that draws the relevant shape on the screen (as per the example
in lectures). There are a series of concrete subclasses of Shape, including Circle and
Rectangle. The drawing program keeps a list of all shapes in a List<Shape> object.

(a) Should draw() be an abstract method?

(b) Write Java code for the method called by the main application to draw all the shapes on
each screen refresh.

(c) Show how to use the Composite pattern to allow sets of shapes to be grouped together and
treated as a single entity.

(d) Which design pattern would you use if you wanted to extend the program to draw frames
around some of the shapes? Show how this would work.

10.4. For some applications the Decorator pattern has the weakness that decorated objects
can be decorated. For example, wrapped shop items should not be wrapped again! Show
how to prevent a wrapped item from being wrapped. It is easy to solve at runtime using
a flag try to solve it at compile time (so the compiler won’t allow it rather than the JVM
throwing an exception).

Section 11: Lambdas, Method References and Streams

11.1. Refactor the following code to use method references instead of explicit lambdas.

public class StringUtils {
public static void main(String [] args) {

List <String > words = List.of("Apple", "Banana", "
Cherry");

// 1. Print each word
words.forEach(s -> System.out.println(s));

// 2. Get list of lengths
List <Integer > lengths = words.stream ()

.map(s -> s.length ())

.toList ();

13

// 3. Create new String objects
List <String > copies = words.stream ()

.map(s -> new String(s))

.toList ();
}

}

11.2. Using Streams.You have a List<Book>:

public record Book(String title , String author , int pages) {}

List <Book > library = List.of(
new Book("Moby Dick", "Herman Melville", 720),
new Book("1984", "George Orwell", 328),
new Book("Ulysses", "James Joyce", 730),
new Book("War and Peace", "Leo Tolstoy", 1225)
);

Write a single Java stream pipeline that returns a List<String> containing only the titles of
the books that have more than 500 pages, sorted alphabetically by title.

14

