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1 Introduction

These notes provide a reminder of some simple manipulations that turn up a great deal
when dealing with probabilities. The material in this handout—assuming you know it
well—should suffice for getting you through most of the Al material on uncertain reasoning.
In particular, the boxed results are the really important ones.

Random variables (RVs) are by convention given capital letters. Say we have the RVs
X1,..., Xy Their values are given using lower case. So for example X; might be a binary RV
taking values true and false, and X» might be the outcome of rolling a die and therefore
taking values {(J, 3, (3, €3, (.63}

The use of probability in Al essentially reduces to representing in some usable way the
joint distribution Pr (X, ..., X,) of all the RVs our agent is interested in, because if we can
do that then in principle we can compute any probability that might be of interest. (This is
explained in full below.)

To be clear, the joint distribution is talking about the conjunction of the RVs. We'll stick to
the convention that a comma-separated list of RVs (or a set of RVs) represents a conjunction.
Also, the notation

Z (oxi...)

x;€X;
denotes the sum over all values of a random variable. So for example if X; is binary then
D" Pr(x1, Xs) = Pr(true, X5) + Pr (false, X5)). (1)
x1€X1

This sum can itself take on multiple values, one for each value of X5. This all extends to
summing over sefs of RVs. Let’s define

X= {Xl,...,Xn}
and the subset
X' ={X{,..., X} € X.

Then for any sets X and X’ C X of RVs define X\X’ to be the set X with the elements of X’
removed
X\X'={X e X|X ¢ X'}.

We’ll always be assuming that X’ C X. Finally

(R < A
x’eX’

DU D ),

’ 7 ’ ’ ’ ’
x]€X] xLEXS X €Xoy

and is itself a function of the RVs in X\X'.

means



2 Standard trick number 1: marginalising

Marginalising is the process of getting rid of RVs that we don’t want to have to think about—
although in some cases it’s used the other way around to introduce RVs. In general, say we
want to ignore X;. Then

Pr(X\{Xi}) = ) Pr(X).

x;€X;

So for example with X = {X;, X5}, equation 1 is actually telling us that
Pr(X2) = Pr(X\{X1})
= Z Pr (x 1, Xg)

x1€X1

= Pr(true, X3) + Pr(false, X»).

This can obviously be iterated for as many RVs as we like, so if X’ is the set of random
variables we’re not interested in then

Pr(X\X') = Z Pr(X).

x’eX’

These notes assume for the most part that RVs are discrete. Everything still applies when
continuous RVs are involved!, but sums are then replaced by integrals. For example, we can
marginalise the two-dimensional Gaussian density

1 1
p(x1, %) = o~ exp (—5 (x7 + xg))

as follows
1 & 1
plr) = 5 [oo exp (—5 (x7 + x%)) dxs.

(And it turns out that this is itself Gaussian, as we shall see in the lectures.)

3 Standard trick number 2: you can treat a conjunction of RVs as
an RV

When we consider events such as X; = true and X, = (3, the conjunction of the events is also
an event. This goes for any number of events, and any number of RVs as well. Why is that
interesting? Well, Bayes” theorem usually looks like this

Pr (Y|X)Pr(X)

Pr(X|Y) = —— 5

1A word of caution here. If one wishes to be fully rigorous in dealing with probabilities then care is required in
referring to a probability distribution or density, whether certain items are measurable and so on. In most machine
learning material, such things tend to be taken for granted without incident.



However as a conjunction of RVs can be treated as an RV we can also write things like

Pr(Xs, X3, X10|X1, X5) Pr (X1, X5)
Pr(X», X3, X10)

Pr (X1, X5|Xa, X3, X10) =

and Bayes’ theorem still works.

4 Standard trick number 3: conditional distributions are still dis-
tributions

This is perhaps the point I want to make that’s most often missed: a conditional probability
distribution is still a probability distribution. Consequently the first two tricks extend to them
without any extra work—you simply apply them while leaving the conditioning RVs (the
ones on the right hand side of the | in Pr(...|...)) alone. So, for instance, we can write

Pr(X1|X3) = Z Pr (X1, X2|X3)

x2€Xso

or in general for sets of RVs

Pr(X|Z) = ZPr(X,YlZ).
yeY

Quite often this trick is used to introduce extra RVs in Y rather than eliminate them. The
reason for this is that you can then try to re-arrange the contents of the sum to get something
useful. In particular you can often use the following further tricks.

Just as marginalisation still works for conditional distributions, so do Bayes’ theorem and
related ideas. For example, the definition of a conditional distribution looks like this

Pr(X,Y)

PrXIY) = 5

(2)

SO
Pr(X,Y)=Pr(X|Y)Pr(Y).

As the left-hand side of this equation is a joint probability distribution, and conjunctions of
RVs act like RVs, we can extend this to arbitrary numbers of RVs to get, for example

Pr(Xy, X2, X3) = Pr(X1|X2, X3) Pr(Xs, X3)
=Pr (X1 |X2, Xg) Pr (X2|X3) Pr (Xg) .

What’s more useful however is to note that Bayes’ theorem is obtained from equation 2 and
its twin

Pr(X,Y)

Pr(X)

by a simple re-arrangement. How might this work if we have conjunctions of random
variables? Consider

Pr(Y]X) =

Pr(X,Y,Z)

Pr(X|Y,Z) = —5 5



and its twin
Pr(X,Y,Z)

Pr(X,2Z)
both of which follow from the definition of conditional probability. Re-arranging to eliminate
the Pr (X, Y, Z) gives

Pr(Y|X,Z) =

Pr(Y|X,Z)Pr (X, Z)
Pr(Y,Z7) )
We now have two smaller joint distributions Pr (Y, Z) and Pr (X, Z) which we can split to give
Pr(Y|X,Z)Pr(X|Z)Pr(Z)
Pr(Y|Z)Pr(Z)
_ Pr(Y|X,Z)Pr(X|2)
B Pr(Y|Z)

Pr(X|Y,Z) =

Pr(X|Y,Z) =

or in general, with sets of RVs

Pr(Y|X, Z) Pr (X|Z)

Pr(X|Y,Z) = 3
F(XIY,2) = =5 s )
A word of warning. As conditional distributions are still distributions, it must always be
the case that
Zﬁmwp1
xeX
regardless of the value of Y. It is not however necessarily the case that
mem:L
yeyY

Do not get this the wrong way around!

5 How to (in principle) compute absolutely anything

Say you want to compute a conditional probability Pr (X|Z). By definition
Pr (X, Z)

Pr(Z)
and if the complete collection of all the RVs our agent is interested in is {X, Y, Z} then both
the numerator and the denominator can be computed by marginalising the joint distribution
Pr(X,Y,Z). In fact as the denominator serves essentially just to make the left hand side sum
to 1 (when we sum over X) so that it’s a proper probability distribution, we often treat it just
as a constant and write

Pr(X|Z) =

1
mmm:zmeJ@.
yeY

The quantity Z is called the partition function if you're a physicist or evidence if you're a
computer scientist, for reasons that will become clear during the lectures. Clearly

Z:Elmmmm.

xeX,yeY

4



6 Further tricks

We now look at some further simple manipulations that are needed to understand the
application of Bayes’ theorem to supervised learning. Once again, random variables are
assumed to be discrete, but all the following results still hold for continuous random variables,
with sums replaced by integrals where necessary.

6.1 Some (slightly) unconventional notation

In the machine learning literature there is a common notation intended to make it easy to
keep track of which random variables and which distributions are relevant in an expression.
While this notation is common within the field, it’s rarely if ever seen elsewhere; it is however
very useful.

A statistician would define the expected value of the random variable X as

E[X] = Z xPr (x)
xeX
or when we’re interested in the expected value of a function of a random variable
E[f(X)] =) fx)Pr(x)
xeX

where f is some function defined on X. Here, it is implicit that the RV X has some probability
distribution, which we will denote by P(X). With complex expressions involving combina-
tions of functions defined on random variables with multiple underlying distributions it can
be more tricky to keep track of which distributions are relevant. Thus the notation

Exvpix) [f(X)]

is intended to indicate explicitly that the distribution of X is P(X), in situations where we
don’t write out the full definition

Ey-pe) [F(X)] = ) f(x)Pr (x)

xeX

to make it clear. The same notation is also often applied to statements about probabilities
rather than expected values.
6.2 Expected value and conditional expected value

The standard definition of the expected value of a function f of a random variable X is

Erpx) [F(X)] = ) f(X)Pr (x)

xeX

as already noted. We can also define the conditional expected value of f(X) givenY as



Ey-pexiy) [FX)IY] = ) F(x)Pr(x]Y).

xeX

Now here’s an important point: the value of this expression depends on the value of Y. Thus, the
conditional expected value is itself a function of the random variable Y. What is its expected
value? Well

Ey-p(y) [Br-pixin [FCONY]] = D Beopixin [FX)IY]Pr (y)
yey

= > D f@Pr(xly) Pr(y)

yeY xeX

= > D f@Pr(x,y)

yeY xeX

= > f@) Y Pr(x,y)

xeX yeYy

= > f@Pr(x)

xeX
= Ex-px) [ (X)]

or in the more usual notation

C E[E[f(OIY]] = E[f(0)]. D

6.3 Expected value of the indicator function

For any b € {true, false} the indicator function I is defined as

I[p] = 1 %fb:true .
0 ifb =false

Let f be a Boolean-valued function on a random variable X. Then

4 )

Ey-px) [LF )] = ) TIF(x)]Pr (x)
xeX
= ), If@IPr@+ D, If@IPr()
xeX, f(x)is true xeX, f(x)is false X

Z Pr(x)

xeX, f(x)is true

- = Prop) [f(x) = true] y

In other words, the probability of an event is equal to the expected value of its indicator function.
This provides a standard method for calculating probabilities by evaluating expected values.



So for example if we roll a fair die and consider f(X) to be true if and only if the outcome is
even then
Pr (outcome is even) = E [[[f(X)]] =1/6+1/6+1/6 =1/2

as expected.



