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1 Basic probability: warm-up question

1. This question revisits the Wumpus World, but now our valiant hero, having learned
the importance of probability by attending Machine Learning and Bayesian Inference, will
use probabilistic reasoning instead of the situation calculus.
Through careful consideration of the available knowledge on Wumpus caves, the ex-
plorer has established that each square contains a pit with probability 0.3, and pits
are independent of one-another. Let Pit𝑖 , 𝑗 be a Boolean random variable (RV) having
values in {⊤,⊥} and denoting the presence of a pit at row 𝑖, column 𝑗. So for all (𝑖 , 𝑗)

Pr
(
Pit𝑖 , 𝑗 = ⊤

)
= 0.3

Pr
(
Pit𝑖 , 𝑗 = ⊥

)
= 0.7.

In addition, after some careful exploration of the current cave, the explorer has discov-
ered the following:
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Pit1,1 = ⊥

Pit1,2 = ⊥

Pit1,3 = ⊥

Pit2,3 = ⊥

𝐵 denotes squares where a breeze is perceived. Let Breeze𝑖 , 𝑗 be a Boolean RV denoting
the presence of a breeze at (𝑖 , 𝑗)

Breeze1,2 = Breeze2,3 = ⊤
Breeze1,1 = Breeze1,3 = ⊥.

He is considering whether to explore the square at (2, 4). He will do so if the probability
that it contains a pit is less than 0.4. Should he?
Hint: The RVs involved are Breeze1,2 , Breeze2,3 , Breeze1,1 , Breeze1,3 and Pit𝑖 , 𝑗 for all
the (𝑖 , 𝑗). You need to calculate

Pr
(
Pit2,4 |all the evidence you have so far

)
.
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2 Maximum likelihood and MAP

1. Several exercises in the problem sheet for Artificial Intelligence I are relevant to the initial
lectures of this course. It is worth attempting them now.

2. Lecture notes slide 49: Complete the derivation of the MAP learning algorithm for
regression

wopt = argmin
w

[
1

2𝜎2

𝑚∑
𝑖=1

(
(𝑦𝑖 − ℎw(x𝑖))2

)
+ 𝜆

2
| |w| |2

]
.

3. Lecture notes slide 56: Derive the maximum likelihood and MAP algorithms for
classification.

3 Linear regression and classification

1. Show that if A ∈ R𝑛×𝑛 is symmetric then

𝜕x𝑇Ax

𝜕x
= 2Ax.

What is the corresponding result when A is not symmetric?

2. Lecture notes slide 81: Show that the optimum weight vector for ridge regression is

wopt = (𝚽𝑇𝚽 + 𝜆I)−1𝚽𝑇y.

3. Show that if A ∈ R𝑛×𝑛 then

A𝑇


𝑏1 0 · · · 0
0 𝑏2 · · · 0
...

...
. . .

...

0 0 · · · 𝑏𝑛

 A = C

where

𝑐𝑖 𝑗 =

𝑛∑
𝑘=1

𝑏𝑘𝑎𝑘𝑖𝑎𝑘 𝑗 .

4. Lecture notes slide 88: Show that the Hessian matrix for iterative re-weighted least
squares is

H(w) = 𝚽𝑇Z𝚽.

Hint: you’ll need the previous result.
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4 Support vector machines

1. Slide 105 provides an alternative formulation of the maximum margin classifier based
on maximizing 𝛾 directly with suitable constraints.
Apply the KKT conditions to this version of the problem. What do they tell you about
the solution, and how does it differ from the version developed in the lectures?

2. Slide 116 states the dual optimization problem for the maximum margin classifier.
Provide a full derivation.

3. Slide 119 states the optimization problem that needs to be solved to train a support
vector machine

argmin
w,𝑤0 ,𝝃

1

2
| |w| |2 + 𝐶

∑
𝑖

𝜉𝑖 such that 𝑦𝑖 𝑓w,𝑤0(x𝑖) ≥ 1 − 𝜉𝑖 and 𝜉𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑚.

Apply the KKT conditions to this version of the problem. What do they tell you about
the solution?

5 Machine learning methods

1. Slide 146 uses the following estimate for the variance of a random variable:

𝜎2 ≃ 𝜎̂2 =
1

𝑛 − 1

[
𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋̂𝑛)2
]
.

Show that this estimate is unbiased; that is,

E
[
𝜎̂2

]
= 𝜎2.

2. Show that if a random variable has zero mean then dividing it by its standard deviation
𝜎 results in a new random variable having zero mean and variance 1. Show that in
general multiplying a random variable having mean 𝜇 and variance 𝜎2 by

√
𝑐 alters its

mean to
√
𝑐𝜇 and its variance to 𝑐𝜎2.

3. Verify the expression in point 4 on slide 149.

6 Making it all work

Probably the best way to get a feel for this material is to write some code that implements it.
In particular, can you reproduce something like the hyperparameter search graph?
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In order to do this I don’t suggest you attempt to implement SVMs from scratch—having
said that, if you can find a suitable, general constrained optimization library it’s not too hard.
A quicker approach initially is to find a good SVM library in a system such as Matlab or R.
You will need to generate the spiral data set and implement a search using cross-validation
to assess possible hyperparameter values.

7 The Bayesian approach to neural networks

1. Slide 176. Show that
∇∇1

2
| |w| |2 = I.

2. Slide 179. Show that
𝑍 = (2𝜋)𝑊/2 |A|−1/2 exp(−𝑆(wMAP)).

3. For the next question we’re going to need something known variously as the matrix
inversion lemma, the Woodbury formula and the Sherman-Morrison formula, depending on
the precise form used. In order to derive this we’ll first need to know how to derive the
formulae stated on slide 205 for inverting a block matrix.

(a) We want to invert the block matrix

𝚺 =

[
𝚺11 𝚺12

𝚺21 𝚺22

]
(1)

to get

𝚺−1 =

[
𝚲11 𝚲12

𝚲21 𝚲22

]
. (2)
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Show that

𝚲11 = (𝚺11 − 𝚺12𝚺−1
22𝚺21)−1

𝚲12 = −𝚺−1
11𝚺12𝚲22

𝚲21 = −𝚺−1
22𝚺21𝚲11

𝚲22 = (𝚺22 − 𝚺21𝚺−1
11𝚺12)−1

(Hint: write 𝚺𝚺−1 = I and solve the resulting equations. Note that these are
different to the ones on slide 205, but you can re-arrange one version into the
other.)

(b) Now do the same thing again, this time solving 𝚺−1𝚺 = I. Show that

𝚲12 = −𝚲11𝚺12𝚺−1
22

𝚲21 = −𝚲22𝚺21𝚺−1
11 .

(c) The two expressions for 𝚲21 must be equal. Equate them to show that

(𝚺11 − 𝚺12𝚺−1
22𝚺21)−1 = 𝚺−1

21𝚺22(𝚺22 − 𝚺21𝚺−1
11𝚺12)−1𝚺21𝚺−1

11 .

You may assume that 𝚺21 has an inverse1.
Now write 𝚺−1

21𝚺22 as

𝚺−1
21𝚺22 = 𝚺−1

21 (𝚺22 − 𝚺21𝚺−1
11𝚺12) + 𝚺−1

11𝚺12

and show that

(𝚺11 − 𝚺12𝚺−1
22𝚺21)−1 = 𝚺−1

11 + 𝚺−1
11𝚺12(𝚺22 − 𝚺21𝚺−1

11𝚺12)−1𝚺21𝚺−1
11 .

This is the full version of the formula. Note that it is a method for updating an
existing inverse: provided we know the inverse of 𝚺11, it tells us how to update
that inverse when −𝚺12𝚺−1

22𝚺21 is added to 𝚺11. We have to be able to calculate a
different inverse, but crucially the new inverse might be much simpler to calculate.
We shall see the extreme version of this in the last part of the question.

(d) Use the special case where y and z are vectors and

𝚺 =

[
X −y
z𝑇 1

]
to show that

(X + yz𝑇)−1 = X−1 − X−1yz𝑇X−1

1 + z𝑇X−1y
.

This is what we’ll actually need in the next question.
1The formula we are deriving is correct even for non-square 𝚺21. However a derivation that shows this is

somewhat more involved.
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4. Use the standard Gaussian integral to derive the final equation for Bayesian regression

𝑝(𝑌 |y; x,X) = 1√
2𝜋𝜎2

𝑌

exp

(
−(𝑌 − ℎwMAP(x))2

2𝜎2
𝑌

)
where

𝜎2
𝑌 =

1

𝛽
+ g𝑇A−1g

given on slide 181. You might want to break this into steps:

(a) Write down the integral that needs to be evaluated. How does this compare to the
standard integral result presented in the lectures? Can you make an immediate
simplification? (Hint: the integral is over the whole of the space R𝑊 where 𝑊 is
the number of weights. What happens to the value of an integral over all of R
in 1 dimension if you just shift the integrand a bit to the left? If you can’t see a
simplification at this point you should still be able to complete the question, but it
might be more complex.)

(b) Use the integral identity from the lectures to evaluate the integral.
(c) Does the expression you now have for 𝑝(𝑌 |y; x,X) look familiar? You should

find that it looks like a Gaussian density. Extract expressions for the mean and
variance.

(d) Use the matrix inversion lemma derived above to simplify the expression for the
variance to give the final result presented in the lectures.

5. This question asks you to produce a version of the graph on slide 183, using the
Metropolis algorithm. Any programming language is fine, although Matlab is probably
the most straightforward.
The data is simple artificial data for a one-input regression problem. Use the target
function

𝑓 (𝑥) =
(
𝑥3 − 1

2
𝑥2 − 7

2
𝑥 + 2

)
× 0.35

and generate 30 examples in each of two clusters, one uniform in [−2. − 1] and one
uniform in [0, 1]. Then label these examples

𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝑛

where 𝑛 is Gaussian noise of variance 0.1. You should have something like this:
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Let w be the weight vector and 𝑊 the total number of weights in w. You should use the
prior and likelihood from the lectures, so

𝑝(w) =
(
2𝜋
𝛼

)−𝑊/2
exp

(
−𝛼
2
| |w| |2

)
and

𝑝(y|w;X) =
(
2𝜋
𝛽

)−𝑚/2
exp

(
−𝛽

2

𝑚∑
𝑖=1

(𝑦𝑖 − ℎw(𝑥𝑖))2
)

where 𝑚 is the number of examples and ℎw(𝑥) is the function computed by a suitable
neural network with weights w. Note that we are assuming that hyperparameters 𝛼
and 𝛽 are known; the values used to produce the lecture material were 𝛼 = 1 and
𝛽 = 10.
Complete the following steps:

(a) Write the code required to compute the prior and likelihood functions.
(b) Implement a multilayer perceptron with a single hidden layer, a basic feedforward

structure as illustrated in the AI I lectures, and a single output node. The network
should use sigmoid activation functions for the hidden units and a linear activation
function for its output. (The lecture material was produced using 5 hidden units.)

(c) Starting with a weight vector chosen at random, use the Metropolis algorithm
to sample the posterior distribution 𝑝(w|y;X). You should generate a sequence
w1 ,w2 , . . . ,w𝑁 of 𝑁 weight vectors. The lecture material used 𝑁 = 500, 000.
However, note that you will probably find some degree of experimentation is
required here, and it may be a good idea to start with a much smaller 𝑁 while you
explore parameter settings.
For example, you may find that an initial starting value for w1 is inappropriate,
and you will find that the algorithm behaves differently for different step sizes
taken when updating w𝑖 to w𝑖+1—try varying it and seeing how the proportion
of steps accepted is affected. (The lecture material was produced using a step
variance of 0.25.)

(d) Plot the function ℎw𝑖
(𝑥) computed by the neural network for a few of the weight

vectors obtained. You may see a surprising amount of variation in areas where
there was no training data. (To see this it helps to take vectors from different areas
in the sequence.)
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(e) It takes a while for the Markov chain to settle in. Discard an initial chunk of the
vectors generated. Using the remaining 𝑀, calculate the mean and variance of the
corresponding functions using

mean(𝑥) = 1

𝑀

∑
𝑖

ℎw𝑖
(𝑥)

and a similar expression to estimate the variance. Plot the mean function along
with error bars at ±2𝜎𝑌 .
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Typical behaviour of the Bayesian solution

8 Gaussian processes

1. Slide 201: Show that when Gaussian noise is added as described

𝑝(y) = 𝒩(0,K + 𝜎2I).

2. Slide 202, note 2: what difference is made by the inclusion or otherwise of 𝜎2 in 𝑘?

3. Slide 206: provide the derivation for the final result

𝑝(𝑦′ |y) = 𝒩(k𝑇L−1y, 𝑘 − k𝑇L−1k).

9 Unsupervised learning and the EM algorithm

We’re going to need to enter a world of matrix calculus. We’ve already seen derivatives
of scalars by vectors, but now we need derivatives of scalars by matrices, and matrices by
scalars. These have the obvious interpretation: if 𝑥 is a scalar and X is an 𝑛 by 𝑚 matrix then

𝜕𝑥

𝜕X
=


𝜕𝑥

𝜕X1,1

𝜕𝑥
𝜕X1,2

· · · 𝜕𝑥
𝜕X1,𝑚

𝜕𝑥
𝜕X2,1

𝜕𝑥
𝜕X2,2

· · · 𝜕𝑥
𝜕X2,𝑚

...
... · · · ...

𝜕𝑥
𝜕X𝑛,1

𝜕𝑥
𝜕X𝑛,2

· · · 𝜕𝑥
𝜕X𝑛,𝑚


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so (
𝜕𝑥

𝜕X

)
𝑖 , 𝑗

=
𝜕𝑥

𝜕X𝑖 , 𝑗

and similarly (
𝜕X

𝜕𝑥

)
𝑖 , 𝑗

=
𝜕X𝑖 , 𝑗

𝜕𝑥
.

You can easily verify that the usual rules apply. For example

𝜕XY

𝜕𝑥
= X

𝜕Y

𝜕𝑥
+ 𝜕X

𝜕𝑥
Y. (3)

We’re specifically going to need derivatives involving inverses. To get started, note that
using (3) and the fact that XX−1 = X−1X = I we have

𝜕XX−1

𝜕𝑥
= X

𝜕X−1

𝜕𝑥
+ 𝜕X

𝜕𝑥
X−1 = 0

which can be re-arranged to get

𝜕X−1

𝜕𝑥
= −X−1 𝜕X

𝜕𝑥
X−1.

1. Let J(𝑘, 𝑙) be an 𝑛 by 𝑛 matrix where

J(𝑘, 𝑙)𝑖 , 𝑗 =
{
1 if 𝑖 = 𝑘 and 𝑗 = 𝑙

0 otherwise
.

(In other words, it has all zero elements except at row 𝑘, column 𝑙, which is 1.) Let K
be an 𝑛 by 𝑛 matrix. Show that

(KJ(𝑘, 𝑙)K)𝑖 , 𝑗 = K𝑖 ,𝑘K𝑙 , 𝑗 .

2. Show that (
𝜕X−1

𝜕X𝑘,𝑙

)
𝑖 , 𝑗

= −X−1
𝑖 ,𝑘X

−1
𝑙 , 𝑗 .

3. Let y and z be 𝑛 by 1 vectors. Show that

𝜕y𝑇X−1z

𝜕X
= −X−𝑇yz𝑇X−𝑇 .

4. Show that
𝜕 log |X|

𝜕X
= X−𝑇 .

(Hint: you might want to remind yourself of the full definition of |X|.)

5. Complete the derivation of the EM-based clustering algorithm based on a mixture of
Gaussians.

6. Implement the EM algorithm for clustering based on a mixture of Gaussians.
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10 Bayesian networks

1. Prove that the two definitions for conditional independence given in the lectures are
equivalent.

2. Continuing with the running example of the roof-climber alarm...
The porter in lodge 1 has left and been replaced by a somewhat more relaxed sort of
chap, who doesn’t really care about roof-climbers and therefore acts according to the
probabilities

Pr (𝑙1|𝑎) = 0.3 Pr (¬𝑙1|𝑎) = 0.7
Pr (𝑙1|¬𝑎) = 0.001 Pr (¬𝑙1|¬𝑎) = 0.999

.

Your intrepid roof-climbing buddy is on the roof. What is the probability that lodge 1
will report him? Use the variable elimination algorithm to obtain the relevant proba-
bility. Do you learn anything interesting about the variable 𝐿2 in the process?

3. In designing a Bayesian network you wish to include a node representing the value
reported by a sensor. The quantity being sensed is real-valued, and if the sensor is
working correctly it provides a value close to the correct value, but with some noise
present. The correct value is provided by its first parent. A second parent is a Boolean
random variable that indicates whether the sensor is faulty. When faulty, the sensor
flips between providing the correct value, although with increased noise, and a known,
fixed incorrect value, again with some added noise. Suggest a conditional distribution
that could be used for this node.

11 Old exam questions

Bayes decision rule:

• 2025, paper 9, question 8.

• 2020, paper 8, question 10.

Support vector machines and Gaussian processes:

• 2024, paper 9, question 8.

• 2022, paper 9, question 8.

• 2018, paper 7, question 10.

Maximum likelihood, MAP, linear regression and classification: although this is a new
course it has some level of overlap with its predecessor Artificial Intelligence II. In particular
it might be worth attempting 2010, paper 8, question 2. Also, some old exam questions for
Artificial Intelligence I are usable warm-ups for the start of this course, so you may like to
attempt:
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• 2023, paper 9, question 8.

• 2021, paper 8, question 10.

• 2019, paper 8, question 9.

• 2015, paper 4, question 1.

• 2013, paper 4, question 2.

• 2011, paper 4, question 1.

• 2007, paper 4, question 7.

Machine learning methods: most of the material here is quite new, so the only relevant past
question is:

• 2023, paper 8, question 8.

• 2020, paper 9, question 10.

• 2016, paper 8, question 2.

The EM algorithm:

• 2025, paper 8, question 8.

• 2022, paper 8, question 8.

• 2018, paper 8, question 8.

Bayesian Networks:

1. 2024, paper 8, question 8.

2. 2021, paper 9, question 10.

3. 2005, paper 8, question 2.

4. 2006, paper 8, question 9.

5. 2009, paper 8, question 1.

6. 2014, paper 7, question 2.

7. 2016, paper 7, question 3.

8. 2017, paper 7, question 3.
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