Proof Assistants

Thomas Bauereiss Leo Stefanesco

Department of Computer Science and Technology
University of Cambridge

Lent 2026

Part |

Isabelle

Material

® |sabelle part of this course based on book “Concrete
Semantics with Isabelle/HOL" (2014) by Tobias
Nipkow and Gerwin Klein

Material

Isabelle part of this course based on book “Concrete
Semantics with Isabelle/HOL" (2014) by Tobias
Nipkow and Gerwin Klein

Slides shamelessly copied from Tobias Nipkow
(errors are my own)

Chapter 1

Programming and Proving in

Isabelle/HOL

@ Overview of Isabelle/HOL

@® Type and function definitions

© Induction Heuristics

O Simplification

@ Overview of Isabelle/HOL

HOL = Higher-Order Logic

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
® recursive functions
® |ogical operators

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
® recursive functions
® |ogical operators
HOL is a programming language!

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
® recursive functions
® |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
® recursive functions
® |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
e Equalities (term = term)

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
® recursive functions
® |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
e Equalities (term = term), e.g. 1 +2 =14

HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
® recursive functions
® |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
e Equalities (term = term), e.g. 1 +2 =14
e |ater: A, V, —,V, ...

@ Overview of Isabelle/HOL
Types and terms

Types
Basic syntax:

T =

Types
Basic syntax:

T = (1)

Types
Basic syntax:

T = (1)
| bool | mat | int | ... base types

Types
Basic syntax:

= (1)
| bool | mat | int | ... base types
| e | b] type variables

T

Basic syntax:

T

(7)

bool | mat | int | ...
‘a | b | ...

T =T

Types

base types
type variables
functions

Basic syntax:

T

(7)

bool | mat | int | ...
‘a | b | ...

T =T

T X T

Types

base types
type variables
functions
pairs (ascii: *)

Basic syntax:

T

(7)

bool | mat | int | ...
‘a | b ...

T =T

T X T

T list

Types

base types
type variables
functions
pairs (ascii: *)
lists

Basic syntax:

T

(7)

bool | mat | int | ...
‘a | b ...

T =T

T X T

T list

T set

Types

base types
type variables
functions
pairs (ascii: *)
lists

sets

Basic syntax:

T

(7)

bool | mat | int | ...
‘a | b ...

T =T

T X T

T list

T set

Types

base types

type variables
functions

pairs (ascii: *)
lists

sets

user-defined types

Types

Basic syntax:

T = (1)
| bool | mat | int | ... base types
| e | b] type variables
| T=T functions
| T xT pairs (ascii: *)
|7 list lists
| T set sets
|

user-defined types

Convention: T = T9g = Ty = T1 = (72 = 7'3)

Terms can be formed as follows:

Terms

10

Terms can be formed as follows:
® Function application: ft

Terms

10

Terms

Terms can be formed as follows:

® Function application: ft
is the call of function f with argument ¢t.

10

Terms

Terms can be formed as follows:
® Function application: ft
is the call of function f with argument ¢t.
If f has more arguments: [t &y ...

10

Terms

Terms can be formed as follows:

® Function application: ft
is the call of function f with argument ¢t.
If f has more arguments: [t &y ...
Examples: sinm, plusxy

10

Terms

Terms can be formed as follows:

® Function application: ft
is the call of function f with argument ¢t.
If f has more arguments: [t &y ...
Examples: sinm, plusxy

® Function abstraction: A\x. t

10

Terms

Terms can be formed as follows:

® Function application: ft
is the call of function f with argument ¢t.
If f has more arguments: [t &y ...
Examples: sinm, plusxy

® function abstraction: Ax. t
is the function with parameter x and result ¢

10

Terms

Terms can be formed as follows:

® Function application: ft
is the call of function f with argument ¢t.
If f has more arguments: [t &y ...
Examples: sinm, plusxy

® Function abstraction: A\x. t
is the function with parameter x and result ¢,
ie. “x—t"

10

Terms

Terms can be formed as follows:

® Function application: ft
is the call of function f with argument ¢t.
If f has more arguments: [t &y ...
Examples: sinm, plusxy

® Function abstraction: Axz. t
is the function with parameter x and result ¢,
ie. “x—
Example: Az plus x x

10

Basic syntax:

t =

Terms

11

Basic syntax:

t o= (1)

Terms

11

Basic syntax:

Terms

constant or variable (identifier)

11

Basic syntax:

t o= (1)
Ht

Terms

constant or variable (identifier)
function application

11

Basic syntax:

(%)

t =
| a
|
|

tit
ATt

Terms

constant or variable (identifier)
function application
function abstraction

11

Basic syntax:

(%)

t =
|
|t
|
|

ATt

Terms

constant or variable (identifier)
function application

function abstraction

lots of syntactic sugar

11

Terms
Basic syntax:

t o= (1)
| a constant or variable (identifier)
|ttt function application
| Ax. ¢t function abstraction
|

lots of syntactic sugar

Examples: f(gz) y

11

Terms
Basic syntax:

t o= (1)
| a constant or variable (identifier)
|ttt function application
| Ax. ¢t function abstraction
|

lots of syntactic sugar

Examples: f(gx) y
h (Az. f (g 2))

11

Terms
Basic syntax:

t o= (1)
| a constant or variable (identifier)
|ttt function application
| Ax. ¢t function abstraction
|

lots of syntactic sugar

Examples: f(gz) y
h (Az. f (g ©))

Convention: ft thts = ((ft1) t2) t3

11

Terms
Basic syntax:

t o= (1)
| a constant or variable (identifier)
|ttt function application
| Axz.t function abstraction
|

lots of syntactic sugar

Examples: f(gz) y
h (Az. f (g ©))

Convention: ft bty = ((ft) t) 13

This language of terms is known as the \-calculus.

11

The computation rule of the A-calculus is the
replacement of formal by actual parameters:

(Az. 1) u = tlu/4a]

12

The computation rule of the A-calculus is the
replacement of formal by actual parameters:

(Az. 1) u = tlu/4a]

where t[u/2] is “t with u substituted for z".

12

The computation rule of the A-calculus is the
replacement of formal by actual parameters:

(Az. 1) u = tlu/4a]
where t[u/2] is “t with u substituted for z".

Example: (Az. 2 +5)3 = 3+5

12

The computation rule of the A-calculus is the
replacement of formal by actual parameters:

(Az. 1) u = tlu/4a]
where t[u/2] is “t with u substituted for z".

Example: (Az. 2 +5)3 = 3+5

® The step from (A\z. t) u to t[u/a] is called
[-reduction.

12

The computation rule of the A-calculus is the
replacement of formal by actual parameters:

(Az. 1) u = tlu/4a]
where t[u/2] is “t with u substituted for z".

Example: (Az. 2 +5)3 = 3+5

® The step from (A\z. t) u to t[u/a] is called
[-reduction.

® |sabelle performs [-reduction automatically.

12

Terms must be well-typed

13

Terms must be well-typed

(the argument of every function call must be of the right type)

13

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: 7 means “tis a well-typed term of type 7".

13

Terms must be well-typed

(the argument of every function call must be of the right type)
Notation:

t :: 7 means “tis a well-typed term of type 7".

t::7T1 = To U Ty
tu: 7o

13

Type inference

Isabelle automatically computes the type of each variable
in a term.

14

Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

14

Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

14

Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: f (z::nat)

14

Overview_Demo.thy

(including an example of how to define a simple
function and prove a lemma about it)

15

@ Overview of Isabelle/HOL

By example: types bool, nat and list

16

datatype bool = True | False

Type bool

17

Type bool

datatype bool = True | False

Predefined functions:
A, V, —>, ... 2 bool = bool = bool

17

Type bool

datatype bool = True | False

Predefined functions:
A, V, —>, ... 2 bool = bool = bool

A formula is a term of type bool

17

Type bool

datatype bool = True | False

Predefined functions:
A, V, —>, ... 2 bool = bool = bool

A formula is a term of type bool

if-and-only-if: = or +—

17

datatype nat = 0 | Suc nat

Type nat

18

Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc (Suc0), ...

18

Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc (Suc0), ...

Predefined functions: +, %, ... :: nat = nat = nat

18

Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc (Suc0), ...

Predefined functions: +, %, ... :: nat = nat = nat
|

+ Numbers and arithmetic operations are overloaded:
0,1,2,... 27, + = 'a="a="a

18

Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc (Suc0), ...
Predefined functions: +, %, ... :: nat = nat = nat

+ Numbers and arithmetic operations are overloaded:
0,1,2,... :’a, +: Ta='a="a

You need type annotations: 1 :: nat, = + (y::nat)

18

Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc (Suc0), ...

Predefined functions: +, %, ... :: nat = nat = nat
|

+ Numbers and arithmetic operations are overloaded:
0,1,2,... :’a, +: Ta='a="a

You need type annotations: 1 :: nat, = + (y::nat)
unless the context is unambiguous: Suc z

18

Nat_Demo.thy

19

Lemma add m 0 = m

An informal proof

20

An informal proof

Lemma add m 0 = m
Proof by induction on m.

20

An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

20

An informal proof

Lemma add m 0 = m
Proof by induction on m.
e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.
e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).

20

An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.

20

An informal proof

Lemma add m 0 = m
Proof by induction on m.
e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.
e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.
The proof is as follows:

20

An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.

The proof is as follows:
add (Suc m) 0 = Suc (add m 0) by def. of add

20

An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.

The proof is as follows:
add (Suc m) 0 = Suc (add m 0) by def. of add

= Sucm by IH

20

Induction on natural numbers

To prove P(n) for all natural numbers n, prove
e P(0) and
e for arbitrary but fixed n,
P(n) implies P(Suc(n)).

21

Induction on natural numbers

To prove P(n) for all natural numbers n, prove
e P(0) and
e for arbitrary but fixed n,
P(n) implies P(Suc(n)).

P(0) An. P(n) = P(Suc(n))
P(n)

21

Lists of elements of type 'a

Type 'a list

22

Lists of elements of type 'a

Type 'a list

datatype ’‘a list = Nil | Cons'a ('a list)

22

Lists of elements of type 'a

Type 'a list

datatype ’‘a list = Nil | Cons'a ('a list)

Some lists: Nil,

22

Lists of elements of type 'a

Type 'a list

datatype ’‘a list = Nil | Cons'a ('a list)

Some lists: Nil, Cons 1 Nil,

22

Type 'a list
Lists of elements of type 'a
datatype ’‘a list = Nil | Cons'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

22

Type 'a list
Lists of elements of type 'a

datatype ’‘a list = Nil | Cons'a ('a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
e [| = Nil: empty list

22

Type 'a list
Lists of elements of type 'a
datatype ’‘a list = Nil | Cons'a ('a list)
Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
e [| = Nil: empty list
o 1 # xs= Cons x zs:
list with first element z (“head”) and rest xs (“tail”)

22

Type 'a list
Lists of elements of type 'a
datatype ’‘a list = Nil | Cons'a ('a list)
Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
e [| = Nil: empty list
o 1 # xs= Cons x zs:
list with first element z (“head”) and rest xs (“tail”)

° [1’17 ...,Z’n]le#--- Tn # H

22

Structural Induction for lists

To prove that P(zs) for all lists xs, prove
o P(]) and

e for arbitrary but fixed z and s,
P(zs) implies P(z#1xs).

23

Structural Induction for lists

To prove that P(zs) for all lists xs, prove
o P(]) and

e for arbitrary but fixed z and s,
P(zs) implies P(z#1xs).

P([) Nz xs. P(xs) = P(a#xs)
P(zs)

23

List_Demo.thy

An informal proof
Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on s.
e Case Nil: app (app Nil ys) zs = app ys zs =
app Nil (app ys zs) holds by definition of app.
e Case Cons x xs: We assume app (app xs ys) zs =
app s (app ys zs) (IH), and we need to show
app (app (Cons x xs) ys) zs =
app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
= Cons z (app (app s ys) zs) by definition of app
= Cons z (app zs (app ys zs)) by IH
= app (Cons z xs) (app ys zs) by definition of app

Large library: HOL/List.thy

Included in Main.

26

Large library: HOL/List.thy

Included in Main.

Don't reinvent, reuse!

26

Large library: HOL/List.thy

Included in Main.
Don't reinvent, reuse!

Predefined: xs @ ys (append),

26

Large library: HOL/List.thy

Included in Main.
Don't reinvent, reuse!

Predefined: xs @ ys (append), length,

26

Large library: HOL/List.thy

Included in Main.
Don't reinvent, reuse!

Predefined: xs @ ys (append), length, and map

26

@® Type and function definitions

27

@® Type and function definitions
Type definitions

28

Type synonyms
type_synonym name = 71

Introduces a synonym name for type 7

29

Type synonyms
type_synonym name = 71
Introduces a synonym name for type 7
Examples

type_synonym string = char list

29

Type synonyms
type_synonym name = 71

Introduces a synonym name for type 7

Examples
type_synonym string = char list

type_synonym (‘a,'b)foo = 'a list x 'b list

29

Type synonyms
type_synonym name = 71

Introduces a synonym name for type 7

Examples
type_synonym string = char list

type_synonym (‘a,'b)foo = 'a list x 'b list

Type synonyms are expanded after parsing
and are not present in internal representation and output

29

datatype — the general case

datatype (Odl, Ce ,Oén)t Cl T1---T1,m

30

datatype — the general case

datatype (Odl, Ce ,Ckn)t Cl Tl Tim

30

datatype — the general case

datatype (o, ...,)t Ci Tig-. Tin

L Types: CZ DTl = = Ting = (041, .. .,Oén)t
e Distinctness: C; ... # C; ... ifi#]

30

datatype — the general case

datatype (o, ...,)t Ci Tig-. Tin

o Types: Cj::Tip = = Tin, = (Q1,...,0p)t
e Distinctness: C; ... # C; ... ifi#]
o Injectivity: (C; z1...2,, = C; 1...Yp,) =

(11 = A Ao, = Yn,)

30

datatype — the general case

datatype (Odl, Ce ,Ckn)t Cl Tl Tim

o Types: Cj::Tip = = Tin, = (Q1,...,0p)t
e Distinctness: C; ... # C; ... ifi#]
o Injectivity: (C; z1...2,, = C; 1...Yp,) =

(11 = A Ao, = Yn,)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

30

Case expressions
Datatype values can be taken apart with case:

(casexs of [| = ... | y#ys= ...y ... ys ..

)

31

Case expressions
Datatype values can be taken apart with case:

(casexs of [| = ... | y#ys= ...y ... ys...)

Wildcards: _
(case m of 0 = Suc0 | Suc__ = 0)

31

Case expressions
Datatype values can be taken apart with case:

(casexs of [| = ... | y#ys= ...y ... ys...)

Wildcards: _
(case m of 0 = Suc0 | Suc__ = 0)

Nested patterns:
(case zs of [0] = 0 | [Sucn]=n | _ = 2)

31

Case expressions
Datatype values can be taken apart with case:

(casexs of [| = ... | y#ys= ...y ... ys...)

Wildcards: _
(case m of 0 = Suc0 | Suc__ = 0)

Nested patterns:
(case zs of [0] = 0 | [Sucn]=n | _ = 2)

Complicated patterns mean complicated proofs!

31

Case expressions
Datatype values can be taken apart with case:

(casexs of [| = ... | y#ys= ...y ... ys...)

Wildcards: _
(case m of 0 = Suc0 | Suc__ = 0)

Nested patterns:
(case zs of [0] = 0 | [Sucn]=n | _ = 2)

Complicated patterns mean complicated proofs!

Need () in context

31

Tree Demo.thy

32

The option type

datatype 'a option = None | Some 'a

33

The option type

datatype 'a option = None | Some 'a

If ‘a has values aq, as, ...

then 'a option has values None, Some ay, Some ay, . ..

33

The option type

datatype 'a option = None | Some 'a

If ‘a has values aq, as, ...
then 'a option has values None, Some ay, Some ay, . ..

Typical application:
fun lookup :: (‘a x 'b) list = 'a = 'b option where

33

The option type

datatype 'a option = None | Some 'a

If ‘a has values aq, as, ...
then 'a option has values None, Some ay, Some ay, . ..

Typical application:

fun lookup :: (‘a x 'b) list = 'a = 'b option where
lookup [] = None |

33

The option type

datatype 'a option = None | Some 'a

If ‘a has values aq, as, ...
then 'a option has values None, Some ay, Some ay, . ..

Typical application:

fun lookup :: (‘a x 'b) list = 'a = 'b option where
lookup [] = None |
lookup ((a, b) # ps) © =

33

The option type

datatype 'a option = None | Some 'a

If ‘a has values aq, as, ...
then 'a option has values None, Some ay, Some ay, . ..

Typical application:

fun lookup :: (‘a x 'b) list = 'a = 'b option where
lookup [] = None |

lookup ((a, b) # ps) © =
(if a = z then Some b else lookup ps)

33

@® Type and function definitions

Function definitions

34

Non-recursive definitions

Example
definition sq :: nat = nat where sq n = nxn

35

Non-recursive definitions

Example
definition sq :: nat = nat where sq n = nxn

No pattern matching, just fz; ... z, =

35

The danger of nontermination

How about fz=faz+ 1 7

36

The danger of nontermination

How about fz=faz+ 1 7

Subtract f z on both sides.
— 0=1

36

The danger of nontermination

How about fz=faz+ 1 7

Subtract f z on both sides.
— 0=1

All functions in HOL must be total |

36

Key features of fun

e Pattern-matching over datatype constructors

37

Key features of fun

e Pattern-matching over datatype constructors

e Order of equations matters

37

Key features of fun

e Pattern-matching over datatype constructors
e Order of equations matters

® Termination must be provable automatically
by size measures

37

Key features of fun

Pattern-matching over datatype constructors
Order of equations matters

Termination must be provable automatically
by size measures

Proves customized induction schema

37

Example: separation

fun sep :: 'a = 'a list = 'a list where

sep a (cfyttes) = o # a # sep a (y#zs) |

Sep a rsS = IS

38

Example: Ackermann

fun ack :: nat = nat = nat where

ack 0 n = Sucn |

ack (Suc m) 0 = ack m (Suc 0) |

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

39

Example: Ackermann

fun ack :: nat = nat = nat where

ack 0 n = Sucn |

ack (Suc m) 0 = ack m (Suc 0) |

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Terminates because the arguments decrease
lexicographically with each recursive call:

e (Suc m, 0) > (m, Suc0)

e (Suc m, Suc n) > (Suc m, n)

e (Suc m, Suc n) > (m, _)

39

© Induction Heuristics

40

Basic induction heuristics

Theorems about recursive functions
are proved by induction

41

Basic induction heuristics

Theorems about recursive functions
are proved by induction

Induction on argument number 7 of f
if f is defined by recursion on argument number ¢

41

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev || =1 |
rev (z#xs) = rev xs Q [1]

42

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev || =1 |
rev (z#xs) = rev xs Q [1]

A tail recursive version:
fun itrev :: 'a list = 'a list = 'a list where

42

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev || =1 |
rev (z#xs) = rev xs Q [1]

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev |] ys = ys |

42

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev || =1 |
rev (z#xs) = rev xs Q [1]

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev |] ys = ys |
itrev (a#zs) ys =

42

A tail recursive reverse

Our initial reverse:

fun rev :: 'a list = 'a list where
rev] =1 |

rev (z#xs) = rev xs Q [1]

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev |] ys = ys |
itrev (z#xs) ys = itrev zs (x#ys)

42

A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev || =1 |
rev (z#xs) = rev xs Q [1]

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev |] ys = ys |
itrev (x#zs) ys = itrev xs (x#ys)

lemma itrev zs [| = rev zs

42

Induction_Demo.thy

Generalisation

43

Generalisation

® Replace constants by variables

44

Generalisation

® Replace constants by variables

® Generalize free variables

® by arbitrary in induction proof
® (or by universal quantifier in formula)

44

So far, all proofs were by structural induction

45

So far, all proofs were by structural induction
because all functions were primitive recursive.

45

So far, all proofs were by structural induction
because all functions were primitive recursive.

In each induction step, 1 constructor is added.

45

So far, all proofs were by structural induction
because all functions were primitive recursive.

In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.

45

So far, all proofs were by structural induction
because all functions were primitive recursive.

In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.

45

Computation Induction

Example

fun div2 :: nat = nat where
div2 0 =0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(din2 n)

46

Computation Induction

Example

fun div2 :: nat = nat where
di2 0 =0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(din2 n)

~~ induction rule div2. induct:

P(0) P(Suc0) P(n) = P(Suc(Suc n))

P(m)

46

Computation Induction

Example

fun div2 :: nat = nat where
di2 0 =0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(din2 n)

~~ induction rule div2. induct:

P(0) P(Suc0) An. P(n) = P(Suc(Suc n))

P(m)

46

Computation Induction

If f:: 7= 7 is defined by fun, a special induction
schema is provided to prove P(z) for all z :: 7:

47

Computation Induction
If f:: 7= 7 is defined by fun, a special induction

schema is provided to prove P(z) for all z :: 7:
for each defining equation

fle) = .. f(r)...f(m)...
prove P(e) assuming P(ry),..., P(ry).

47

Computation Induction
If f:: 7= 7 is defined by fun, a special induction

schema is provided to prove P(z) for all z :: 7:
for each defining equation

fle) = .. f(r)...f(m)...
prove P(e) assuming P(ry),..., P(ry).

Induction follows course of (terminating!) computation

47

Computation Induction
If f:: 7= 7 is defined by fun, a special induction

schema is provided to prove P(z) for all z :: 7:
for each defining equation

fle) = .. f(r)...f(m)...
prove P(e) assuming P(ry),..., P(ry).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct

47

How to apply f.induct

ffom=-=7m=>r1"

48

How to apply f.induct

ffom=-=7m=>r1"

(induction a1 ... a, rule: finduct)

48

How to apply f.induct

ffom=-=7m=>r1"

(induction a1 ... a, rule: finduct)

Heuristic:

® there should be acall fa; ...

a, in your goal

48

How to apply f.induct

ffom=-=7m=>r1"
(induction a1 ... a, rule: finduct)

Heuristic:
e there should be acall fa; ... a, in your goal
e ideally the a; should be variables.

48

Induction_Demo.thy

Computation Induction

49

O Simplification

50

Simplification means . ..

Using equations [= r from left to right

51

Simplification means . ..

Using equations [= r from left to right

As long as possible

51

Simplification means . ..

Using equations [= r from left to right

As long as possible

Terminology: equation ~» simplification rule

51

Simplification means . ..

Using equations [= r from left to right

As long as possible
Terminology: equation ~» simplification rule

Simplification = (Term) Rewriting

51

Equations:

O+mn
(Suc m) +n
(Suc m < Suc n)
(0 < m)

An example

n
Suc (m+ n)
(m < n)
True

52

Equations:

Rewriting:

An example

O+n = n
(Suc m)+n = Suc (m+n)
(Suc m < Sucn) = (m<n)
(0<m) = True

0+ SucO0 < Suc0—+=x

52

An example

O+n = n (1)
o (Suc m)+n = Suc (m+n) (2)
FAUBLONS (Sucm < Sucn) = (m<n) (3
(0<m) = True (4)
0+ SucO < SucO+x =
Suc 0 < SucO0+z

Rewriting:

52

Equations:

Rewriting:

O+mn

(Suc m) +n
(Suc m < Suc n)
(0 < m)

0+ Suc 0
Suc 0
Suc 0

<
<
<

An example

=n
= Suc (m+n
— (m<n)

= True

Suc 0+ x
Suc 0+
Suc (0 + x)

)

52

Equations:

Rewriting:

O+mn

(Suc m) +n
(Suc m < Suc n)
(0 < m)

0+ Suc 0
Suc 0
Suc 0

0

IAIA TN IA

An example

=n
= Suc (m+n)
— (m<n)

= True

Suc 0+ z =
Suc0+z =
Suc (0+2z) =
0+x

52

An example

~~
[\
~—

—
w
~—

—~
IS
N

O+n = n
. (Suc m)+mn = Suc (m+ n)
Equations. (Suc m < Sucn) = (m<n)
(0<m) = True
0+ SucO0 < Suc0—+=x (
Suc 0 < Suc0+zx
Rewriting: Suc 0 < Suc (0+ x)
0 < 0+z

True

—
~—

Conditional rewriting

Simplification rules can be conditional:

[Pi; .. P] = 1=

53

Conditional rewriting

Simplification rules can be conditional:
[Pi; .. P] = 1=

is applicable only if all P; can be proved first,
again by simplification.

53

Conditional rewriting
Simplification rules can be conditional:
[Pi; .. P] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) True

p(z) = f(z) = g(z)

53

Conditional rewriting

Simplification rules can be conditional:
[Pi; .. P] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Example

p(0) = True
p(z) = flz) = g(z)
We can simplify f(0) to ¢(0)

53

Conditional rewriting

Simplification rules can be conditional:
[Pi; .. P] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True

p(z) = flz) = g(z)
We can simplify f(0) to g(0) but
we cannot simplify f(1) because p(1) is not provable.

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

54

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(z)

54

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(=)
Principle:
[Py;...; Pk = 1l=r

is suitable as a simp-rule only
if ['is “bigger” than r and each P;

54

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(=)
Principle:
[Py;...; Pk = 1l=r

is suitable as a simp-rule only
if ['is “bigger” than r and each P;

n<m=(n< Suc m)= True
Suc n < m= (n< m) = True

54

Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(=)
Principle:
[Py;...; Pk = 1l=r

is suitable as a simp-rule only
if ['is “bigger” than r and each P;

n<m=(n< Sucm)= True YES
Suc n < m= (n< m)= True NO

54

Goal: 1. [Py;...;

apply(simp add: eq . ..

Proof method simp
P,]=C

eqn)

55

Proof method simp
Goal: 1.[Py;..;P,]=C

apply(simp add: eq; ... eqy)
Simplify P, ... P,, and C using
® |emmas with attribute simp

55

Proof method simp
Goal: 1.[Py;..;P,]=C

apply(simp add: eq; ... eqy)

Simplify P, ... P,, and C using
® |emmas with attribute simp
® rules from fun and datatype

55

Proof method simp
Goal: 1.[Py;..;P,]=C

apply(simp add: eq; ... eqy)
Simplify P, ... P,, and C using
® |emmas with attribute simp
® rules from fun and datatype
e additional lemmas eq; ... eq,

55

Proof method simp
Goal: 1.[Py;..;P,]=C

apply(simp add: eq; ... eqy)
Simplify P, ... P,, and C using
® |emmas with attribute simp
® rules from fun and datatype
e additional lemmas eq; ... eq,
® assumptions P ... P,

55

Proof method simp
Goal: 1.[Py;..;P,]=C

apply(simp add: eq; ... eqy)

Simplify P, ... P,, and C using
® |emmas with attribute simp
® rules from fun and datatype

® additional lemmas eq; ... egq,
® assumptions P ... P,
Variations:
® (simp ... del: ...) removes simp-lemmas

® add and del are optional

55

auto versus Simp

® quto acts on all subgoals
® simp acts only on subgoal 1

56

auto versus Simp

® quto acts on all subgoals
® simp acts only on subgoal 1

® quto applies simp and more

56

auto versus Simp

auto acts on all subgoals
simp acts only on subgoal 1

auto applies simp and more

auto can also be modified:
(auto simp add: ... simp del: ...)

56

Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: f def ...)

57

Rewriting with definitions

Definitions (definition) must be used explicitly:
(simp add: f def ...)

f is the function whose definition is to be unfolded.

57

Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))

58

Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) N (Vn. e = Sucn — P(b))

58

Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) N (Vn. e = Sucn — P(b))

Proof method: (simp split: nat.split)

58

Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) N (Vn. e = Sucn — P(b))

Proof method: (simp split: nat.split)
Or auto.

58

Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) N (Vn. e = Sucn — P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype ¢ t.split

58

Simp_Demo.thy

59

Chapter 2

Case Study: IMP Expressions

@ Case Study: IMP Expressions

61

@ Case Study: IMP Expressions

62

This section introduces
arithmetic and boolean expressions

of our imperative language IMP.

63

This section introduces
arithmetic and boolean expressions
of our imperative language IMP.

IMP commands are introduced later.

63

@ Case Study: IMP Expressions
Arithmetic Expressions

64

Concrete and abstract syntax

Concrete syntax: strings, eg "a+5%b"

65

Concrete and abstract syntax

Concrete syntax: strings, eg "a+5%b"

Abstract syntax: trees, eg +

65

Concrete and abstract syntax

Concrete syntax: strings, eg "a+5%b"

Abstract syntax: trees, eg +

Parser: function from strings to trees

65

Concrete and abstract syntax

Concrete syntax: strings, eg "a+5%b"

Abstract syntax: trees, eg +

Parser: function from strings to trees
Linear view of trees: terms, eg Plus a (Times 5 b)

65

Concrete and abstract syntax

Concrete syntax: strings, eg "a+5%b"

Abstract syntax: trees, eg +

Parser: function from strings to trees
Linear view of trees: terms, eg Plus a (Times 5 b)

Abstract syntax trees/terms are datatype values!

65

Concrete syntax is defined by a context-free grammar, eg
ax=nlz|(a)|at+alaxal...

where n can be any natural number and z any variable.

66

Concrete syntax is defined by a context-free grammar, eg
ax=nlz|(a)|at+alaxal...

where n can be any natural number and z any variable.

We focus on abstract syntax
which we introduce via datatypes.

66

Datatype aexp

Variable names are strings, values are integers:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

67

Datatype aexp

Variable names are strings, values are integers:
type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete \ Abstract
5 N5

67

Datatype aexp

Variable names are strings, values are integers:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete \ Abstract
5 N b
x V //a,,,//

67

Datatype aexp

Variable names are strings, values are integers:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete \ Abstract

5 NbH

x V //a,,,//

x+y Plus (V' "2") (V "y

67

Datatype aexp

Variable names are strings, values are integers:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete | Abstract

5 N5

x V //a,,,//

x+y Plus (V' "2") (V "y

2+ (z+3)

Plus (N 2) (Plus (V "2") (N 3))

67

Warning

This is syntax, not (yet) semantics!

68

Warning

This is syntax, not (yet) semantics!

NO # Plus (NO) (NO)

68

The (program) state

What is the value of x+17

69

The (program) state

What is the value of x+17

® The value of an expression
depends on the value of its variables.

69

The (program) state

What is the value of x+17

® The value of an expression
depends on the value of its variables.

® The value of all variables is recorded in the state.

69

The (program) state

What is the value of x+17

® The value of an expression
depends on the value of its variables.

® The value of all variables is recorded in the state.

® The state is a function from variable names to
values:

69

The (program) state

What is the value of x+17

® The value of an expression
depends on the value of its variables.

® The value of all variables is recorded in the state.

® The state is a function from variable names to
values:

type_synonym val = int
type_synonym state = vname = val

69

Function update notation

If f:: 71 = 79 and a :: 71 and b :: 75 then

70

Function update notation

If f:: 71 = 79 and a :: 71 and b :: 75 then

is the function that behaves like f
except that it returns b for argument a.

70

Function update notation

If f:: 71 = 79 and a :: 71 and b :: 75 then

is the function that behaves like f
except that it returns b for argument a.

fla:=0b) = (A\z. if £ = a then b else f)

70

Some states:
e \z. 0

How to write down a state

71

How to write down a state

Some states:
e \2. 0
e (A\z. 0)("a" := 3)

71

How to write down a state

Some states:
e \z. 0
* (\ 0)("a" =3)
(()\:U 0)(// !l . 5))(// /! — 3)

71

How to write down a state

Some states:
e \z. 0
* (\ 0)("a" =3)
(()\:U O)(// !l . 5))(// /! — 3)

Nicer notation defined in AExp.thy:

<//a/// - 5’ //a,,,// - 3’ //y// - 7>

71

How to write down a state

Some states:
e \z. 0
* (\ 0)("a" =3)
(()\ZE O)(// !l . 5))(// /! — 3)

Nicer notation defined in AExp.thy:
<//a// L 5 // "._ 3 // "o — 7>

Maps everything to 0, but "a” to 5, "z" to 3, etc.

71

AExp.thy

@ Case Study: IMP Expressions

Boolean Expressions

73

BExp.thy

This was easy.

75

This was easy.
Because evaluation of expressions always terminates.

75

This was easy.
Because evaluation of expressions always terminates.
But execution of programs may not terminate.

75

This was easy.

Because evaluation of expressions always terminates.
But execution of programs may not terminate.

Hence we cannot define it by a total recursive function.

75

This was easy.

Because evaluation of expressions always terminates.
But execution of programs may not terminate.
Hence we cannot define it by a total recursive function.

We need more logical machinery
to define program execution and reason about it.

75

Chapter 3

Logic and Proof
Beyond Equality

@ Logical Formulas

@ Proof Automation

@ Single Step Proofs

© Inductive Definitions

7

@ Logical Formulas

78

Syntax (in decreasing precedence):

form == (
| form A form | formV form
| Vz. form | Jz. form

orm) | term =term | —form

| form — form

79

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| V. form | Jz. form
Examples:

~AANBVC = (A ABVC

79

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| V. form | Jz. form
Examples:
~AANBVC = (A ABVC
s=tANC = (s=t)ANC

79

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| V. form | Jz. form
Examples:
~AANBVC = (A ABVC
s=tANC = (s=t)ANC
ANB=BANA = AN(B=B ANA

79

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| Vz. form | Jz. form
Examples:
~AANBVC = (A ABVC
s=tANC = (s=t)ANC
ANB=BANA = AN(B=B ANA
Ve. Pz AN Qz = Va. (Pz A Q)

79

Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| Vz. form | Jz. form
Examples:
~AABVC = (A ABVC
s=tANC = (s=t)ANC
ANB=BANA = AN(B=B ANA
Ve. Pz AN Qzr = Vx.(P:zt/\Qx)

Input syntax: «— (same precedence as —)

79

Variable binding convention:

Vey Pxy =

Vo.Vy Pxy

80

Variable binding convention:
Vey Pxy =

Similarly for 4 and \.

Vo.Vy Pxy

80

Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

' PAVZ Qz ~ PANz Q2) |

81

M <>Il>/l_l_l<i

Mathematical symbols

and their ascii representations

\<forall> ALL
\<exists> EX
\<lambda> %
-—>

<->

/\ &
\/ I
\<not> ~
\<noteqg> ~=

Sets over type ‘a
Yp

'a set

83

o {1 {e,... e}

Sets over type ‘a
Yp

'a set

83

o {1 {e,... e}
e cc A, ACRB

Sets over type ‘a
yp

'a set

83

Sets over type ‘a
yp

'a set

o {1 {e,... e}
e cc A, ACRB

e AUB, ANnB A-B -—-A

83

Sets over type 'a

'a set

{}, {e,....ent
ec A, ACB

AUuB AnNnB A-B —-A

83

{}, {e,. ..

Sets over type 'a

'a set

€n}

ec A, ACB
AUB ANB A-B -—-A

oOCINMm

\<in>
\<subseteq> <=
\<union> Un

\<inter> Int

83

Set comprehension

e {z. P} where zis a variable

84

Set comprehension

e {z. P} where zis a variable
e But not {t. P} where tis a proper term

84

Set comprehension

e {z. P} where zis a variable
e But not {t. P} where tis a proper term
® Instead: {t|zy z P}

84

Set comprehension

e {z. P} where zis a variable
e But not {t. P} where tis a proper term
® Instead: {t|zy z P}

is short for {v. 3z y 2 v=1tA P}
where z, y, z are the free variables in ¢

84

@ Proof Automation

85

stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

86

stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

e Show you where they got stuck

86

stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

e Show you where they got stuck
® highly incomplete

86

stmp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets
e Show you where they got stuck
® highly incomplete
e Extensible with new simp-rules

86

stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

e Show you where they got stuck

® highly incomplete

e Extensible with new simp-rules
Exception: auto acts on all subgoals

86

fastforce

® rewriting, logic, sets, relations and a bit of arithmetic.

87

fastforce

® rewriting, logic, sets, relations and a bit of arithmetic.
® incomplete but better than auto.

87

fastforce

® rewriting, logic, sets, relations and a bit of arithmetic.
® incomplete but better than auto.
® Succeeds or fails

87

fastforce

rewriting, logic, sets, relations and a bit of arithmetic.
incomplete but better than auto.

Succeeds or fails

Extensible with new simp-rules

87

blast

e A complete proof search procedure for FOL ...

88

blast

e A complete proof search procedure for FOL ...
e ... but (almost) without “="

88

blast

e A complete proof search procedure for FOL ...
e ... but (almost) without “="

e Covers logic, sets and relations

88

blast

A complete proof search procedure for FOL ...

... but (almost) without “="
Covers logic, sets and relations
Succeeds or fails

88

blast

A complete proof search procedure for FOL ...
... but (almost) without “="

Covers logic, sets and relations

Succeeds or fails

Extensible with new deduction rules

88

arith:

Automating arithmetic

89

Automating arithmetic

arith:

® proves linear formulas (no “x")

89

Automating arithmetic

arith;
® proves linear formulas (no “x")
e complete for quantifier-free real arithmetic

89

Automating arithmetic

arith;
® proves linear formulas (no “x")
e complete for quantifier-free real arithmetic

e complete for first-order theory of nat and int
(Presburger arithmetic)

89

Sledgehammer

Architecture:

L Automatic Theorem Provers

external
ATPs!

91

Architecture:

Goal
& filtered library

L Automatic Theorem Provers

external
ATPs!

91

Architecture:

Goal
& filtered library

L Automatic Theorem Provers

\L T Proof

external
ATPs!

91

Architecture:

Goal
& filtered library \L T Proof

external
ATPs!

Characteristics:
® Sometimes it works,

L Automatic Theorem Provers

91

Architecture:

Goal
& filtered library \L T Proof

external
ATPs!

Characteristics:
® Sometimes it works,
® sometimes it doesn't.

L Automatic Theorem Provers

91

Architecture:

Goal
& filtered library \L T Proof

external
ATPs!

Characteristics:
® Sometimes it works,
® sometimes it doesn't.

Do you feel lucky?

L Automatic Theorem Provers

91

by(proof-method)

~
~Y

apply(proof-method)
done

92

Auto Proof Demo.thy

93

@ Single Step Proofs

94

Step-by-step proofs can be necessary if automation fails
and you have to explore where and why it failed by
taking the goal apart.

95

What are these 7-variables 7

96

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

96

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; Q)] = ?P A Q)

96

What are these 7-variables ?
After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; Q)] = ?P A Q)

These 7-variables can later be instantiated:

96

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; Q)] = ?P A Q)

These 7-variables can later be instantiated:

e By hand:
conjI[of "a=b" "False"] ~»

96

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.

Example: theorem conjI: [?P; Q)] = ?P A Q)

These 7-variables can later be instantiated:

e By hand:
conjI[of "a=b" "False"] ~»
la = b; False] = a = b A False

96

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; Q)] = ?P A Q)

These ?-variables can later be instantiated:
e By hand:
conjI[of "a=b" "False"] ~»
la = b; False] = a = b A False
e By unification:
unifying 2P A ?2¢) with a=b A False

96

What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; Q)] = ?P A Q)

These ?-variables can later be instantiated:
e By hand:
conjI[of "a=b" "False"] ~»
la = b; False] = a = b A False
e By unification:
unifying 2P A ?2¢) with a=b A False
sets 7P to a=b and ?(Q) to Fulse.

96

Rule application

97

Example:

rule:

Rule application
[?P; 2Q] = ?P A 2Q

97

Example:

Rule application
rule: [7P; ?Q] = 7P A 7Q)
subgoal: 1. ... = A A B

97

Example:

Result:

1.
2.

rule:

subgoal: 1.

Rule application
[?P; 2Q] = ?P A 2Q
.= ANDB

.= A
. — B

97

Rule application
Example: rule: [9P; ?2Q] = 7P N ?2Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =B
The general case: applying rule [41; ... ; 4,] = A

to subgoal ... = (.

97

Rule application

Example: rule: [9P; ?2Q] = 7P N ?2Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... —= B

The general case: applying rule [Ay; ...
to subgoal ... = (.

e Unify A and C

A,] = A

97

Rule application
Example: rule: [9P; ?2Q] = 7P N ?2Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =B
The general case: applying rule [41; ... ; 4,] = A

to subgoal ... = (.
e Unify A and C
e Replace C'with n new subgoals A; ... A,

97

Rule application
Example: rule: [9P; ?2Q] = 7P N ?2Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =B
The general case: applying rule [41; ... ; 4,] = A

to subgoal ... = (.
e Unify A and C
e Replace C'with n new subgoals A; ... A,

apply(rule xyz)

97

Rule application
Example: rule: [9P; ?2Q] = 7P N ?2Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =B
The general case: applying rule [41; ... ; 4,] = A

to subgoal ... = (.
e Unify A and C
e Replace C'with n new subgoals A; ... A,

apply(rule xyz)
“Backchaining”

97

Typical backwards rules

2P ?Q)
P A ?Q?

conjl

98

Typical backwards rules

2P 2Q _
2P A 70 conjl
= 7Q

=y impl

98

Typical backwards rules

2P 2Q _
2P A 70 conjl
?P:> QQ I Nz. 7P x

P— 720" g opg !

98

Typical backwards rules

P ?Q _

2P A 70 conjl

?P:> QQ Nz. 7P x

P— 2Q impI Vi 9P 2 alll

P= ?Q 7Q = 7P
P = 720

iffI

98

Typical backwards rules

P ?Q _

2P A 70 conjl

?P:> QQ Nz. 7P x

P— 2Q impI Vi 9P 2 alll

P= ?Q 7Q = 7P
P = 720

iffI

They are known as introduction rules
because they introduce a particular connective.

98

Automating intro rules

99

Automating intro rules
If ris a theorem [Ay; ...; A,] = A then

(blast intro: r)

allows blast to backchain on 7 during proof search.

99

Automating intro rules
If ris a theorem [Ay; ...; A,] = A then

(blast intro: r)

allows blast to backchain on 7 during proof search.

Example:
theorem le_trans: | %2 < %y, 2y < 22 = %2 < 72

99

Automating intro rules
If ris a theorem [Ay; ...; A,] = A then

(blast intro: r)

allows blast to backchain on 7 during proof search.
Example:
theorem le_trans: | %2 < %y, 2y < 22 = %2 < 72
goal I.[a<bhb<c¢c<d]=a<d

99

Automating intro rules
If ris a theorem [Ay; ...; A,] = A then

(blast intro: r)

allows blast to backchain on 7 during proof search.
Example:
theorem le_trans: | %2 < %y, 2y < 22 = %2 < 72
goal I.[a<bhb<c¢c<d]=a<d
proof apply(blast intro: le__trans)

99

Automating intro rules
If ris a theorem [Ay; ...; A,] = A then

(blast intro: r)

allows blast to backchain on 7 during proof search.

Example:
theorem le_trans: | %2 < %y, 2y < 22 = %2 < 72
goal I.[a<bhb<c¢c<d]=a<d
proof apply(blast intro: le__trans)
Also works for auto and fastforce

99

Automating intro rules
If ris a theorem [Ay; ...; A,] = A then

(blast intro: r)

allows blast to backchain on 7 during proof search.
Example:
theorem le_trans: | %2 < %y, 2y < 22 = %2 < 72
goal I.[a<bhb<c¢c<d]=a<d
proof apply(blast intro: le__trans)
Also works for auto and fastforce

Can greatly increase the search space!

99

Forward proof: OF

If ris a theorem A — B

100

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A

100

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

r OF s

is the theorem obtained by proving A with s.

100

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

r OF s
is the theorem obtained by proving A with s.

Example: theorem refl: %t = ¢t

100

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

r OF s
is the theorem obtained by proving A with s.
Example: theorem refl: %t = ¢t

conjI[OF refl[of "a"]]

100

Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

r OF s
is the theorem obtained by proving A with s.
Example: theorem refl: %t = ¢t

conjI[OF refl[of "a"]]

~

0= a=aN ?Q

100

The general case:

If ris a theorem [Ay; ...; 4,] = A
and 7, ..., 1, (m<n) are theorems then
rOF ... 1)

is the theorem obtained
by proving Ay ... A, with r1 ... 7.

101

The general case:

If ris a theorem [Ay; ...; 4,] = A
and 7, ..., 1, (m<n) are theorems then
rOF ... 1)

is the theorem obtained
by proving Ay ... A, with r1 ... 7.

Example: theorem refl: %t = ¢t

101

The general case:

If ris a theorem [Ay; ...; 4,] = A
and 7, ..., 1, (m<n) are theorems then
rOF ... 1)

is the theorem obtained
by proving Ay ... A, with r1 ... 7.

Example: theorem refl: %t = ¢t

conjI[OF refllof "a"] refllof "b"]]

101

The general case:

If ris a theorem [Ay; ...; 4,] = A
and 7, ..., 1, (m<n) are theorems then
rOF ... 1)

is the theorem obtained
by proving Ay ... A, with r1 ... 7.

Example: theorem refl: %t = ¢t

conjI[OF refllof "a"] refllof "b"]]

~

a=aANb=1»

101

From now on:

7 mostly suppressed on slides

102

Single Step_Demo.thy

103

—> Versus —

— is part of the Isabelle framework. It structures
theorems and proof states: | Ay; ...; A,] = A

104

—> Versus —

— is part of the Isabelle framework. It structures
theorems and proof states: | Ay; ...; A,] = A

— is part of HOL and can occur inside the logical
formulas A; and A.

104

—> Versus —

— is part of the Isabelle framework. It structures
theorems and proof states: | Ay; ...; A,] = A

— is part of HOL and can occur inside the logical
formulas A; and A.

Phrase theorems like this [Ay;...; 4,] = A
not like this Ay A ... N A, — A

104

© Inductive Definitions

105

Informally:

Example: even numbers

106

Informally:
® (O is even

Example: even numbers

106

Example: even numbers

Informally:
® (s even
e |f niseven, soisn-+ 2

106

Example: even numbers

Informally:
® (O is even
e |f niseven, soisn-+ 2
® These are the only even numbers

106

Example: even numbers

Informally:
® (O is even
e |f niseven, soisn-+ 2
® These are the only even numbers

In Isabelle/HOL:

inductive ev :: nat = bool

106

Example: even numbers

Informally:
® (O is even
e |f niseven, soisn-+ 2
® These are the only even numbers

In Isabelle/HOL:

inductive ev :: nat = bool
where

106

Example: even numbers

Informally:
® (O is even
e |f niseven, soisn-+ 2
® These are the only even numbers

In Isabelle/HOL:

inductive ev :: nat = bool
where

ev(|

evn = ev(n+ 2)

106

An easy proof: ev 4

ev) = ev2 — ev4

107

Consider

fun evn :: nat = bool where
evn 0 = True |

evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n

108

Consider

fun evn :: nat = bool where
evn 0 = True |

evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n

A trickier proof: ev m = euvn m

108

Consider

fun evn :: nat = bool where
evn 0 = True |

evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n

A trickier proof: ev m = euvn m
By induction on the structure of the derivation of ev m

108

Consider

fun evn :: nat = bool where
evn 0 = True |
evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n

A trickier proof: ev m = euvn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by

® rule ev 0

108

Consider

fun evn :: nat = bool where
evn 0 = True |
evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n

A trickier proof: ev m = euvn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by

® rule ev 0
= m = 0= evn m = True

108

Consider

fun evn :: nat = bool where
evn 0 = True |

evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n

A trickier proof: ev m = euvn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by

® rule ev 0
= m = 0= evn m = True

® rule ev n = ev (n+2)

108

Consider

fun evn :: nat = bool where
evn 0 = True |

evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n

A trickier proof: ev m = euvn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by

® rule ev 0
= m = 0= evn m = True

® rule ev n = ev (n+2)
—> m = n+2 and evn n (IH)

108

Consider

fun evn :: nat = bool where
evn 0 = True |
evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n

A trickier proof: ev m = euvn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by
® rule ev 0
— m = 0= evn m = True
® rule ev n = ev (n+2)
—> m = n+2 and evn n (IH)
= evn m = evn (n+2) = evn n = True

108

Rule induction for ev

To prove
evn— Pn

by rule induction on ev n we must prove

109

Rule induction for ev

To prove
evn— Pn

by rule induction on ev n we must prove
e PO

109

Rule induction for ev

To prove
evn— Pn

by rule induction on ev n we must prove
e PO
e Pn= P(nt+2)

109

Rule induction for ev

To prove
evn— Pn

by rule induction on ev n we must prove
e PO
e Pn=— P(n+2)

Rule ev.induct:

evn PO An [evn; Pn] = P(n+2)
Pn

109

Format of inductive definitions

inductive [:: 7 = bool where

110

Format of inductive definitions

inductive [:: 7 = bool where
[Tay;... ;1la,] = Ia |

110

Format of inductive definitions

inductive [:: 7 = bool where
[Tay;... ;1la,] = Ia |

110

Format of inductive definitions

inductive [:: 7 = bool where
[Tay;... ;1la,] = Ia |

Note:
® [may have multiple arguments.

110

Format of inductive definitions

inductive [:: 7 = bool where
[Tay;... ;1la,] = Ia |

Note:
® [may have multiple arguments.

e Each rule may also contain side conditions not
involving I.

110

Rule induction in general
To prove
Ir=— Px

by rule induction on I x

111

Rule induction in general
To prove
Ir=— Px

by rule induction on I x
we must prove for every rule

[lTay;...;1Ta,] = 1a

that P is preserved:

111

Rule induction in general
To prove
Ir=— Px

by rule induction on I x
we must prove for every rule

[lTay;...;1Ta,] = 1a
that P is preserved:

[Ta;; Pay; ... ;Tay; Pa,] = Pa

111

Rule induction is absolutely central
to (operational) semantics
and the rest of this lecture course

112

Inductive_Demo.thy

113

Inductively defined sets

inductive_set [:: 7 set where

114

Inductively defined sets

inductive_set [:: 7 set where
[ayel,... ;a, €] = a€l |

114

Inductively defined sets

inductive_set [:: 7 set where
[ayel,... ;a, €] = a€l |

114

Inductively defined sets

inductive_set [:: 7 set where
[ayel,... ;a, €] = a€l |

Difference to inductive: [can later be used with set
theoretic operators, eg I U . ..

114

Chapter 4

Isar: A Language for
Structured Proofs

116

® unreadable

Apply scripts

117

® unreadable
® hard to maintain

Apply scripts

117

® unreadable
® hard to maintain
® do not scale

Apply scripts

117

® unreadable
® hard to maintain
® do not scale

Apply scripts

No structure!

117

Apply scripts versus Isar proofs

Apply script = assembly language program

118

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with assertions

118

Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with assertions

But: apply still useful for proof exploration

118

A typical Isar proof

proof
assume formula,
have formula; by simp

have formula, by blast
show formula, , by ...
ged

119

A typical Isar proof

proof
assume formula,
have formula; by simp

have formula, by blast
show formula, , by ...
ged

proves formulay, = formula,,

119

Isar core syntax

proof = proof [method]| step* qed
| by method

120

Isar core syntax

proof = proof [method]| step* qed
| by method

method = (simp ...) | (blast ...) | (induction ...) | ...

120

Isar core syntax

proof = proof [method]| step* qed
| by method

method = (simp ...) | (blast ...) | (induction ...) | ...

step fix variables (A)

| assume prop (=)
| [from fact™] (have | show) prop proof

120

Isar core syntax

proof = proof [method]| step* qed
| by method

method = (simp ...) | (blast ...) | (induction ...) | ...

step fix variables (A)

| assume prop (=)
| [from fact™] (have | show) prop proof

prop = [name:] "formula”

120

Isar core syntax

proof = proof [method]| step* qed
| by method

method = (simp ...) | (blast ...) | (induction ...) | ...

step = fix variables (A\)

| assume prop (=)

| [from fact™] (have | show) prop proof
prop = [name:] "formula”

fact = name|...

120

Isar_Demo.thy

Isar by example

121

Further reading

® More detailed Isar introduction in Chapter 5 of
"Concrete Semantics”

e |sabelle/Isar reference manual (isar-ref.pdf), in
particular Chapter 6

122

	Programming and Proving in Isabelle/HOL
	Type and function definitions
	Induction Heuristics

	Case Study: IMP Expressions
	Logic and Proof Beyond Equality
	Isar: A Language for Structured Proofs

