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HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
e datatypes
® recursive functions
® |ogical operators
HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
e Equalities (term = term), e.g. 1 +2 =14
e |ater: A, V, —,V, ...
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Basic syntax:
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bool | mat | int | ...
‘a | b ...
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T list
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base types
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Types

Basic syntax:

T = (1)
| bool | mat | int | ... base types
| e | b ] type variables
| T=T functions
| T xT pairs (ascii: *)
|7 list lists
| T set sets
|

user-defined types

Convention: T = T9g = Ty = T1 = (72 = 7'3)
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Terms

Terms can be formed as follows:

® Function application: ft
is the call of function f with argument ¢t.
If f has more arguments: [t &y ...
Examples: sinm, plusxy

® Function abstraction: Axz. t
is the function with parameter x and result ¢,
ie. “x—
Example: Az plus x x
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Terms
Basic syntax:

t o= (1)
| a constant or variable (identifier)
|ttt function application
|  Axz.t  function abstraction
|

lots of syntactic sugar

Examples: f(gz) y
h (Az. f (g ©))

Convention:  ft bty = ((ft) t) 13

This language of terms is known as the \-calculus.
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The computation rule of the A-calculus is the
replacement of formal by actual parameters:

(Az. 1) u = tlu/4a]
where t[u/2] is “t with u substituted for z".

Example: (Az. 2 +5)3 = 3+5

® The step from (A\z. t) u to t[u/a] is called
[-reduction.

® |sabelle performs [-reduction automatically.

12
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Terms must be well-typed

(the argument of every function call must be of the right type)
Notation:

t :: 7 means “tis a well-typed term of type 7".

t::7T1 = To U Ty
tu: 7o
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Type inference

Isabelle automatically computes the type of each variable
in a term. This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example:  f (z::nat)

14



Overview_Demo.thy

(including an example of how to define a simple
function and prove a lemma about it)
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@ Overview of Isabelle/HOL

By example: types bool, nat and list
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datatype bool = True | False

Type bool
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Type bool

datatype bool = True | False

Predefined functions:
A, V, —>, ... 2 bool = bool = bool

A formula is a term of type bool

if-and-only-if: = or +—

17



datatype nat = 0 | Suc nat

Type nat

18



Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc (Suc0), ...

18



Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc (Suc0), ...

Predefined functions: +, %, ... :: nat = nat = nat

18



Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc (Suc0), ...

Predefined functions: +, %, ... :: nat = nat = nat
|

+ Numbers and arithmetic operations are overloaded:
0,1,2,... 27, + = 'a="a="a

18



Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc (Suc0), ...
Predefined functions: +, %, ... :: nat = nat = nat

+ Numbers and arithmetic operations are overloaded:
0,1,2,... :’a, +: Ta='a="a

You need type annotations: 1 :: nat, = + (y::nat)

18



Type nat

datatype nat = 0 | Suc nat
Values of type nat: 0, Suc 0, Suc (Suc0), ...

Predefined functions: +, %, ... :: nat = nat = nat
|

+ Numbers and arithmetic operations are overloaded:
0,1,2,... :’a, +: Ta='a="a

You need type annotations: 1 :: nat, = + (y::nat)
unless the context is unambiguous: Suc z

18



Nat_Demo.thy
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An informal proof

Lemma add m 0 = m
Proof by induction on m.

e Case 0 (the base case):
add 0 0 = 0 holds by definition of add.

e Case Suc m (the induction step):
We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.

The proof is as follows:
add (Suc m) 0 = Suc (add m 0) by def. of add

= Sucm by IH

20



Induction on natural numbers

To prove P(n) for all natural numbers n, prove
e P(0) and
e for arbitrary but fixed n,
P(n) implies P(Suc(n)).
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Induction on natural numbers

To prove P(n) for all natural numbers n, prove
e P(0) and
e for arbitrary but fixed n,
P(n) implies P(Suc(n)).

P(0) An. P(n) = P(Suc(n))
P(n)

21
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Type 'a list
Lists of elements of type 'a
datatype ’‘a list = Nil | Cons'a ('a list)
Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), ...

Syntactic sugar:
e [| = Nil: empty list
o 1 # xs= Cons x zs:
list with first element z (“head”) and rest xs (“tail”)

° [1’17 ...,Z’n]le#--- Tn # H

22



Structural Induction for lists

To prove that P(zs) for all lists xs, prove
o P(]) and

e for arbitrary but fixed z and s,
P(zs) implies P(z#1xs).
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Structural Induction for lists

To prove that P(zs) for all lists xs, prove
o P(]) and

e for arbitrary but fixed z and s,
P(zs) implies P(z#1xs).

P([) Nz xs. P(xs) = P(a#xs)
P(zs)

23
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An informal proof
Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on s.
e Case Nil: app (app Nil ys) zs = app ys zs =
app Nil (app ys zs) holds by definition of app.
e Case Cons x xs: We assume app (app xs ys) zs =
app s (app ys zs) (IH), and we need to show
app (app (Cons x xs) ys) zs =
app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
= Cons z (app (app s ys) zs) by definition of app
= Cons z (app zs (app ys zs)) by IH
= app (Cons z xs) (app ys zs) by definition of app



Large library: HOL/List.thy

Included in Main.
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Large library: HOL/List.thy

Included in Main.
Don't reinvent, reuse!

Predefined: xs @ ys (append), length, and map

26
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Type synonyms
type_synonym name = 71

Introduces a synonym name for type 7
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Type synonyms
type_synonym name = 71

Introduces a synonym name for type 7

Examples
type_synonym string = char list

type_synonym (‘a,'b)foo = 'a list x 'b list

Type synonyms are expanded after parsing
and are not present in internal representation and output

29
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datatype — the general case

datatype (Odl, Ce ,Ckn)t Cl Tl Tim

o Types: Cj::Tip = = Tin, = (Q1,...,0p)t
e Distinctness: C; ... # C; ... ifi#]
o Injectivity: (C; z1...2,, = C; 1...Yp,) =

(11 = A Ao, = Yn,)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly
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Datatype values can be taken apart with case:

(casexs of [| = ... | y#ys= ...y ... ys ..

)
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Case expressions
Datatype values can be taken apart with case:

(casexs of [| = ... | y#ys= ...y ... ys...)

Wildcards: _
(case m of 0 = Suc0 | Suc__ = 0)

Nested patterns:
(case zs of [0] = 0 | [Sucn]=n | _ = 2)

Complicated patterns mean complicated proofs!

Need () in context

31



Tree Demo.thy
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datatype 'a option = None | Some 'a
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The option type

datatype 'a option = None | Some 'a

If ‘a has values aq, as, ...
then 'a option has values None, Some ay, Some ay, . ..

Typical application:

fun lookup :: (‘a x 'b) list = 'a = 'b option where
lookup [] = None |

lookup ((a, b) # ps) © =
(if a = z then Some b else lookup ps )

33



@® Type and function definitions

Function definitions
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Non-recursive definitions

Example
definition sq :: nat = nat where sq n = nxn
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Non-recursive definitions

Example
definition sq :: nat = nat where sq n = nxn

No pattern matching, just fz; ... z, =

35



The danger of nontermination

How about fz=faz+ 1 7
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The danger of nontermination

How about fz=faz+ 1 7

Subtract f z on both sides.
— 0=1

All functions in HOL must be total |
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Key features of fun

Pattern-matching over datatype constructors
Order of equations matters

Termination must be provable automatically
by size measures

Proves customized induction schema

37



Example: separation

fun sep :: 'a = 'a list = 'a list where

sep a (cfyttes) = o # a # sep a (y#zs) |

Sep a rsS = IS
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Example: Ackermann

fun ack :: nat = nat = nat where

ack 0 n = Sucn |

ack (Suc m) 0 = ack m (Suc 0) |

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)
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Example: Ackermann

fun ack :: nat = nat = nat where

ack 0 n = Sucn |

ack (Suc m) 0 = ack m (Suc 0) |

ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Terminates because the arguments decrease
lexicographically with each recursive call:

e (Suc m, 0) > (m, Suc0)

e (Suc m, Suc n) > (Suc m, n)

e (Suc m, Suc n) > (m, _)

39



© Induction Heuristics
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Basic induction heuristics

Theorems about recursive functions
are proved by induction
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Basic induction heuristics

Theorems about recursive functions
are proved by induction

Induction on argument number 7 of f
if f is defined by recursion on argument number ¢

41



A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev || =1 |
rev (z#xs) = rev xs Q [1]
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A tail recursive reverse

Our initial reverse:

fun rev :: 'a list = 'a list where
rev ] =1 |

rev (z#xs) = rev xs Q [1]

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev |] ys = ys |
itrev (z#xs)  ys = itrev zs (x#ys)
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A tail recursive reverse

Our initial reverse:
fun rev :: 'a list = 'a list where

rev || =1 |
rev (z#xs) = rev xs Q [1]

A tail recursive version:

fun itrev :: 'a list = 'a list = 'a list where
itrev |] ys = ys |
itrev (x#zs) ys = itrev xs (x#ys)

lemma itrev zs [| = rev zs

42



Induction_Demo.thy

Generalisation
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Generalisation

® Replace constants by variables
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Generalisation

® Replace constants by variables

® Generalize free variables

® by arbitrary in induction proof
® (or by universal quantifier in formula)
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because all functions were primitive recursive.

In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.
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So far, all proofs were by structural induction
because all functions were primitive recursive.

In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.

Now: induction for complex recursion patterns.

45



Computation Induction

Example

fun div2 :: nat = nat where
div2 0 =0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(din2 n)
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Computation Induction

Example

fun div2 :: nat = nat where
di2 0 =0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(din2 n)

~~ induction rule div2. induct:

P(0) P(Suc0) P(n) = P(Suc(Suc n))

P(m)
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Computation Induction

Example

fun div2 :: nat = nat where
di2 0 =0 |

div2 (Suc 0) =0 |

div2 (Suc(Suc n)) = Suc(din2 n)

~~ induction rule div2. induct:

P(0) P(Suc0) An. P(n) = P(Suc(Suc n))

P(m)
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Computation Induction

If f:: 7= 7 is defined by fun, a special induction
schema is provided to prove P(z) for all z :: 7:
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prove P(e) assuming P(ry),..., P(ry).
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Computation Induction
If f:: 7= 7 is defined by fun, a special induction

schema is provided to prove P(z) for all z :: 7:
for each defining equation

fle) = .. f(r)...f(m)...
prove P(e) assuming P(ry),..., P(ry).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct

47



How to apply f.induct

ffom=-=7m=>r1"
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How to apply f.induct

ffom=-=7m=>r1"

(induction a1 ... a, rule: finduct)
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How to apply f.induct

ffom=-=7m=>r1"

(induction a1 ... a, rule: finduct)

Heuristic:

® there should be acall fa; ...

a, in your goal
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How to apply f.induct

ffom=-=7m=>r1"
(induction a1 ... a, rule: finduct)

Heuristic:
e there should be acall fa; ... a, in your goal
e ideally the a; should be variables.

48



Induction_Demo.thy

Computation Induction
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O Simplification
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Simplification means . ..

Using equations [ = r from left to right
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Simplification means . ..

Using equations [ = r from left to right

As long as possible
Terminology: equation ~» simplification rule

Simplification = (Term) Rewriting

51



Equations:

O+mn
(Suc m) +n
(Suc m < Suc n)
(0 < m)

An example

n
Suc (m+ n)
(m < n)
True
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Equations:

Rewriting:

An example

O+n = n
(Suc m)+n = Suc (m+n)
(Suc m < Sucn) = (m<n)
(0<m) = True

0+ SucO0 < Suc0—+=x
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An example

O+n = n (1)
o (Suc m)+n = Suc (m+n) (2)
FAUBLONS (Sucm < Sucn) = (m<n) (3
(0<m) = True (4)
0+ SucO < SucO+x =
Suc 0 < SucO0+z

Rewriting:
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Equations:

Rewriting:

O+mn

(Suc m) +n
(Suc m < Suc n)
(0 < m)

0+ Suc 0
Suc 0
Suc 0

<
<
<

An example

=n
= Suc (m+n
— (m<n)

= True

Suc 0+ x
Suc 0+
Suc (0 + x)

)
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Equations:

Rewriting:

O+mn

(Suc m) +n
(Suc m < Suc n)
(0 < m)

0+ Suc 0
Suc 0
Suc 0

0

IAIA TN IA

An example

=n
= Suc (m+n)
— (m<n)

= True

Suc 0+ z =
Suc0+z =
Suc (0+2z) =
0+x
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An example

~~
[\
~—

—
w
~—

—~
IS
N

O+n = n
. (Suc m)+mn = Suc (m+ n)
Equations. (Suc m < Sucn) = (m<n)
(0<m) = True
0+ SucO0 < Suc0—+=x (
Suc 0 < Suc0+zx
Rewriting: Suc 0 < Suc (0+ x)
0 < 0+z

True

—
~—



Conditional rewriting

Simplification rules can be conditional:

[ Pi; .. P ] = 1=

53



Conditional rewriting

Simplification rules can be conditional:
[ Pi; .. P ] = 1=

is applicable only if all P; can be proved first,
again by simplification.
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[ Pi; .. P ] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) True

p(z) = f(z) = g(z)
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Conditional rewriting

Simplification rules can be conditional:
[ Pi; .. P ] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Example

p(0) = True
p(z) = flz) = g(z)
We can simplify f(0) to ¢(0)
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Conditional rewriting

Simplification rules can be conditional:
[ Pi; .. P ] = 1=

is applicable only if all P; can be proved first,
again by simplification.

Example
p(0) = True

p(z) = flz) = g(z)
We can simplify f(0) to g(0) but
we cannot simplify f(1) because p(1) is not provable.



Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(z)
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(=)
Principle:
[Py;...; Pk = 1l=r

is suitable as a simp-rule only
if ['is “bigger” than r and each P;
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(=)
Principle:
[Py;...; Pk = 1l=r

is suitable as a simp-rule only
if ['is “bigger” than r and each P;

n<m=(n< Suc m)= True
Suc n < m= (n< m) = True
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(z) = g(z), g(z) = f(=)
Principle:
[Py;...; Pk = 1l=r

is suitable as a simp-rule only
if ['is “bigger” than r and each P;

n<m=(n< Sucm)= True YES
Suc n < m= (n< m)= True NO
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Goal: 1. [ Py;...;

apply(simp add: eq . ..

Proof method simp
P,]=C

eqn)
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Proof method simp
Goal: 1.[Py;..;P,]=C

apply(simp add: eq; ... eqy)
Simplify P, ... P,, and C using
® |emmas with attribute simp
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apply(simp add: eq; ... eqy)

Simplify P, ... P,, and C using
® |emmas with attribute simp
® rules from fun and datatype
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Proof method simp
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apply(simp add: eq; ... eqy)
Simplify P, ... P,, and C using
® |emmas with attribute simp
® rules from fun and datatype
e additional lemmas eq; ... eq,
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Proof method simp
Goal: 1.[Py;..;P,]=C

apply(simp add: eq; ... eqy)
Simplify P, ... P,, and C using
® |emmas with attribute simp
® rules from fun and datatype
e additional lemmas eq; ... eq,
® assumptions P ... P,
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Proof method simp
Goal: 1.[Py;..;P,]=C

apply(simp add: eq; ... eqy)

Simplify P, ... P,, and C using
® |emmas with attribute simp
® rules from fun and datatype

® additional lemmas eq; ... egq,
® assumptions P ... P,
Variations:
® (simp ... del: ...) removes simp-lemmas

® add and del are optional

55



auto versus Simp

® quto acts on all subgoals
® simp acts only on subgoal 1
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® simp acts only on subgoal 1

® quto applies simp and more
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auto versus Simp

auto acts on all subgoals
simp acts only on subgoal 1

auto applies simp and more

auto can also be modified:
(auto simp add: ... simp del: ...)
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Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: f def ...)
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Rewriting with definitions

Definitions (definition) must be used explicitly:
(simp add: f def ...)

f is the function whose definition is to be unfolded.
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Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))
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Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) N (Vn. e = Sucn — P(b))
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Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) N (Vn. e = Sucn — P(b))

Proof method: (simp split: nat.split)
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Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) N (Vn. e = Sucn — P(b))

Proof method: (simp split: nat.split)
Or auto.
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Case splitting with simp/auto

Automatic:

P (if A then s else t)

(A — P(s)) N (mA — P(t))
By hand:

P (case e of 0 = a | Suc n = b)

(e=0— P(a)) N (Vn. e = Sucn — P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype ¢ t.split
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Simp_Demo.thy
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Chapter 2

Case Study: IMP Expressions



@ Case Study: IMP Expressions
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@ Case Study: IMP Expressions
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This section introduces
arithmetic and boolean expressions

of our imperative language IMP.
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This section introduces
arithmetic and boolean expressions
of our imperative language IMP.

IMP commands are introduced later.
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@ Case Study: IMP Expressions
Arithmetic Expressions
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Concrete and abstract syntax

Concrete syntax: strings, eg "a+5%b"
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Abstract syntax: trees, eg +

Parser: function from strings to trees
Linear view of trees: terms, eg Plus a (Times 5 b)
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Concrete and abstract syntax

Concrete syntax: strings, eg "a+5%b"

Abstract syntax: trees, eg +

Parser: function from strings to trees
Linear view of trees: terms, eg Plus a (Times 5 b)

Abstract syntax trees/terms are datatype values!

65



Concrete syntax is defined by a context-free grammar, eg
ax=nlz|(a)|at+alaxal...

where n can be any natural number and z any variable.
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Concrete syntax is defined by a context-free grammar, eg
ax=nlz|(a)|at+alaxal...

where n can be any natural number and z any variable.

We focus on abstract syntax
which we introduce via datatypes.
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Datatype aexp

Variable names are strings, values are integers:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

67



Datatype aexp

Variable names are strings, values are integers:
type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete \ Abstract
5 N5

67



Datatype aexp

Variable names are strings, values are integers:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete \ Abstract
5 N b
x V //a,,,//
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Datatype aexp

Variable names are strings, values are integers:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete \ Abstract

5 NbH

x V //a,,,//

x+y Plus (V' "2") (V "y
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Datatype aexp

Variable names are strings, values are integers:

type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete | Abstract

5 N5

x V //a,,,//

x+y Plus (V' "2") (V "y

2+ (z+3)

Plus (N 2) (Plus (V "2") (N 3))

67



Warning

This is syntax, not (yet) semantics!
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Warning

This is syntax, not (yet) semantics!

NO # Plus (NO) (NO)
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The (program) state

What is the value of x+17
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® The value of an expression
depends on the value of its variables.
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® The state is a function from variable names to
values:
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The (program) state

What is the value of x+17

® The value of an expression
depends on the value of its variables.

® The value of all variables is recorded in the state.

® The state is a function from variable names to
values:

type_synonym val = int
type_synonym state = vname = val

69



Function update notation

If f:: 71 = 79 and a :: 71 and b :: 75 then
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Function update notation

If f:: 71 = 79 and a :: 71 and b :: 75 then

is the function that behaves like f
except that it returns b for argument a.
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Function update notation

If f:: 71 = 79 and a :: 71 and b :: 75 then

is the function that behaves like f
except that it returns b for argument a.

fla:=0b) = (A\z. if £ = a then b else f )

70



Some states:
e \z. 0

How to write down a state
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How to write down a state

Some states:
e \2. 0
e (A\z. 0)("a" := 3)
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How to write down a state

Some states:
e \z. 0
* (\ 0)("a" =3)
(()\:U 0)(// !l . 5))(// /! — 3)
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How to write down a state

Some states:
e \z. 0
* (\ 0)("a" =3)
(()\:U O)(// !l . 5))(// /! — 3)

Nicer notation defined in AExp.thy:

<//a/// - 5’ //a,,,// - 3’ //y// - 7>

71



How to write down a state

Some states:
e \z. 0
* (\ 0)("a" =3)
(()\ZE O)(// !l . 5))(// /! — 3)

Nicer notation defined in AExp.thy:
<//a// L 5 // "._ 3 // "o — 7>

Maps everything to 0, but "a” to 5, "z" to 3, etc.

71



AExp.thy



@ Case Study: IMP Expressions

Boolean Expressions

73



BExp.thy



This was easy.

75



This was easy.
Because evaluation of expressions always terminates.
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Hence we cannot define it by a total recursive function.
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This was easy.

Because evaluation of expressions always terminates.
But execution of programs may not terminate.
Hence we cannot define it by a total recursive function.

We need more logical machinery
to define program execution and reason about it.

75



Chapter 3

Logic and Proof
Beyond Equality



@ Logical Formulas

@ Proof Automation

@ Single Step Proofs

© Inductive Definitions
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@ Logical Formulas
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Syntax (in decreasing precedence):

form == (
| form A form | formV form
| Vz. form | Jz. form

orm) | term =term | —form

| form — form
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~AANBVC = (A ABVC
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Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| Vz. form | Jz. form
Examples:
~AANBVC = (A ABVC
s=tANC = (s=t)ANC
ANB=BANA = AN(B=B ANA
Ve. Pz AN Qz = Va. (Pz A Q)
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Syntax (in decreasing precedence):

form = (form) | term =term | —form
| form A form | formV form | form — form
| Vz. form | Jz. form
Examples:
~AABVC = (A ABVC
s=tANC = (s=t)ANC
ANB=BANA = AN(B=B ANA
Ve. Pz AN Qzr = Vx.(P:zt/\Qx)

Input syntax:  «—  (same precedence as —)

79



Variable binding convention:

Vey Pxy =

Vo.Vy Pxy
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Variable binding convention:
Vey Pxy =

Similarly for 4 and \.

Vo.Vy Pxy
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Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

' PAVZ Qz ~ PANz Q2) |
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M <>Il>/l_l_l<i

Mathematical symbols

and their ascii representations

\<forall> ALL
\<exists> EX
\<lambda> %
-—>

<->

/\ &
\/ I
\<not> ~
\<noteqg> ~=



Sets over type ‘a
Yp

'a set
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o {1 {e,... e}

Sets over type ‘a
Yp

'a set
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o {1 {e,... e}
e cc A, ACRB

Sets over type ‘a
yp

'a set
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Sets over type ‘a
yp

'a set

o {1 {e,... e}
e cc A, ACRB

e AUB, ANnB A-B -—-A
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Sets over type 'a

'a set

{}, {e,....ent
ec A, ACB

AUuB AnNnB A-B —-A
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{}, {e,. ..

Sets over type 'a

'a set

€n}

ec A, ACB
AUB ANB A-B -—-A

oOCINMm

\<in>
\<subseteq> <=
\<union> Un

\<inter> Int
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Set comprehension

e {z. P} where zis a variable
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® Instead: {t|zy z P}
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Set comprehension

e {z. P} where zis a variable
e But not {t. P} where tis a proper term
® Instead: {t|zy z P}

is short for {v. 3z y 2 v=1tA P}
where z, y, z are the free variables in ¢
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@ Proof Automation
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stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets
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stmp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

e Show you where they got stuck

® highly incomplete

e Extensible with new simp-rules
Exception: auto acts on all subgoals
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fastforce

® rewriting, logic, sets, relations and a bit of arithmetic.
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fastforce

® rewriting, logic, sets, relations and a bit of arithmetic.
® incomplete but better than auto.
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fastforce

® rewriting, logic, sets, relations and a bit of arithmetic.
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® Succeeds or fails
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fastforce

rewriting, logic, sets, relations and a bit of arithmetic.
incomplete but better than auto.

Succeeds or fails

Extensible with new simp-rules
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blast

e A complete proof search procedure for FOL ...
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blast

A complete proof search procedure for FOL ...
... but (almost) without “="

Covers logic, sets and relations

Succeeds or fails

Extensible with new deduction rules

88



arith:

Automating arithmetic
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Automating arithmetic

arith:

® proves linear formulas (no “x")
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Automating arithmetic

arith;
® proves linear formulas (no “x")
e complete for quantifier-free real arithmetic
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Automating arithmetic

arith;
® proves linear formulas (no “x")
e complete for quantifier-free real arithmetic

e complete for first-order theory of nat and int
(Presburger arithmetic)

89



Sledgehammer




Architecture:

L Automatic Theorem Provers

external
ATPs!
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Architecture:
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& filtered library \L T Proof

external
ATPs!

Characteristics:
® Sometimes it works,
® sometimes it doesn't.

L Automatic Theorem Provers
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Architecture:

Goal
& filtered library \L T Proof

external
ATPs!

Characteristics:
® Sometimes it works,
® sometimes it doesn't.

Do you feel lucky?

L Automatic Theorem Provers
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by(proof-method)

~
~Y

apply(proof-method)
done
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Auto Proof Demo.thy
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@ Single Step Proofs
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Step-by-step proofs can be necessary if automation fails
and you have to explore where and why it failed by
taking the goal apart.
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What are these 7-variables 7
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These 7-variables can later be instantiated:

e By hand:
conjI[of "a=b" "False"] ~»
la = b; False] = a = b A False
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What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; Q)] = ?P A Q)

These ?-variables can later be instantiated:
e By hand:
conjI[of "a=b" "False"] ~»
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What are these 7-variables 7

After you have finished a proof, Isabelle turns all free
variables V' in the theorem into ?V.
Example: theorem conjI: [?P; Q)] = ?P A Q)

These ?-variables can later be instantiated:
e By hand:
conjI[of "a=b" "False"] ~»
la = b; False] = a = b A False
e By unification:
unifying 2P A ?2¢) with a=b A False
sets 7P to a=b and ?(Q) to Fulse.
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subgoal: 1. ... = A A B
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Example:

Result:

1.
2.

rule:

subgoal: 1.

Rule application
[?P; 2Q] = ?P A 2Q
.= ANDB

.= A
. — B
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Rule application
Example: rule: [9P; ?2Q] = 7P N ?2Q)

subgoal: 1. ... = A A B
Result: 1. ... = A
2. ... =B
The general case: applying rule [ 41; ... ; 4, ] = A

to subgoal ... = (.
e Unify A and C
e Replace C'with n new subgoals A; ... A,

apply(rule xyz)
“Backchaining”
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Typical backwards rules

2P ?Q)
P A ?Q?

conjl
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Typical backwards rules

2P 2Q _
2P A 70 conjl
= 7Q

=y impl
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Typical backwards rules

P ?Q _

2P A 70 conjl

?P:> QQ Nz. 7P x

P— 2Q impI Vi 9P 2 alll

P= ?Q 7Q = 7P
P = 720

iffI
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Typical backwards rules

P ?Q _

2P A 70 conjl

?P:> QQ Nz. 7P x

P— 2Q impI Vi 9P 2 alll

P= ?Q 7Q = 7P
P = 720

iffI

They are known as introduction rules
because they introduce a particular connective.
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Automating intro rules
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Automating intro rules
If ris a theorem [ Ay; ...; A, ] = A then

(blast intro: r)

allows blast to backchain on 7 during proof search.
Example:
theorem le_trans: | %2 < %y, 2y < 22 = %2 < 72
goal I.[a<bhb<c¢c<d]=a<d
proof apply(blast intro: le__trans)
Also works for auto and fastforce

Can greatly increase the search space!
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Forward proof: OF

If ris a theorem A — B
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Forward proof: OF

If ris a theorem A — B
and s is a theorem that unifies with A then

r OF s
is the theorem obtained by proving A with s.
Example: theorem refl: %t = ¢t

conjI[OF refl[of "a"]]

~

0= a=aN ?Q
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The general case:

If ris a theorem [ Ay; ...; 4, ] = A
and 7, ..., 1, (m<n) are theorems then
rOF ... 1)

is the theorem obtained
by proving Ay ... A, with r1 ... 7.
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and 7, ..., 1, (m<n) are theorems then
rOF ... 1)

is the theorem obtained
by proving Ay ... A, with r1 ... 7.

Example: theorem refl: %t = ¢t
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The general case:

If ris a theorem [ Ay; ...; 4, ] = A
and 7, ..., 1, (m<n) are theorems then
rOF ... 1)

is the theorem obtained
by proving Ay ... A, with r1 ... 7.

Example: theorem refl: %t = ¢t

conjI[OF refllof "a"] refllof "b"]]

~

a=aANb=1»
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From now on:

7 mostly suppressed on slides
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Single Step_Demo.thy
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—> Versus —

— is part of the Isabelle framework. It structures
theorems and proof states: | Ay; ...; A, ] = A
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—> Versus —

— is part of the Isabelle framework. It structures
theorems and proof states: | Ay; ...; A, ] = A

— is part of HOL and can occur inside the logical
formulas A; and A.

Phrase theorems like this [ Ay;...; 4, ] = A
not like this Ay A ... N A, — A
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© Inductive Definitions
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Example: even numbers

Informally:
® (O is even
e |f niseven, soisn-+ 2
® These are the only even numbers

In Isabelle/HOL:

inductive ev :: nat = bool
where

ev( |

evn = ev(n+ 2)

106



An easy proof: ev 4

ev) = ev2 — ev4
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Consider

fun evn :: nat = bool where
evn 0 = True |

evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n
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evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n

A trickier proof: ev m = euvn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by

® rule ev 0
= m = 0= evn m = True

® rule ev n = ev (n+2)
—> m = n+2 and evn n (IH)
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Consider

fun evn :: nat = bool where
evn 0 = True |
evn (Suc 0) = False |

evn (Suc (Suc n)) = evn n

A trickier proof: ev m = euvn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by
® rule ev 0
— m = 0= evn m = True
® rule ev n = ev (n+2)
—> m = n+2 and evn n (IH)
= evn m = evn (n+2) = evn n = True
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Rule induction for ev

To prove
evn— Pn

by rule induction on ev n we must prove

109



Rule induction for ev

To prove
evn— Pn

by rule induction on ev n we must prove
e PO

109



Rule induction for ev

To prove
evn— Pn

by rule induction on ev n we must prove
e PO
e Pn= P(nt+2)

109



Rule induction for ev

To prove
evn— Pn

by rule induction on ev n we must prove
e PO
e Pn=— P(n+2)

Rule ev.induct:

evn PO An [evn; Pn] = P(n+2)
Pn
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Format of inductive definitions

inductive [ :: 7 = bool where
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Format of inductive definitions

inductive [ :: 7 = bool where
[Tay;... ;1la,] = Ia |

Note:
® [ may have multiple arguments.

e Each rule may also contain side conditions not
involving I.
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Rule induction in general
To prove
Ir=— Px

by rule induction on I x
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Rule induction in general
To prove
Ir=— Px

by rule induction on I x
we must prove for every rule

[lTay;...;1Ta,] = 1a
that P is preserved:

[Ta;; Pay; ... ;Tay; Pa, ] = Pa
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Rule induction is absolutely central
to (operational) semantics
and the rest of this lecture course
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Inductive_Demo.thy
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Inductively defined sets

inductive_set [ :: 7 set where

114



Inductively defined sets

inductive_set [ :: 7 set where
[ayel,... ;a, €] = a€l |
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inductive_set [ :: 7 set where
[ayel,... ;a, €] = a€l |
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Inductively defined sets

inductive_set [ :: 7 set where
[ayel,... ;a, €] = a€l |

Difference to inductive: [ can later be used with set
theoretic operators, eg I U . ..
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Chapter 4

Isar: A Language for
Structured Proofs
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® unreadable
® hard to maintain
® do not scale

Apply scripts

No structure!
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Apply scripts versus Isar proofs

Apply script = assembly language program

118



Apply scripts versus Isar proofs

Apply script = assembly language program
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Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with assertions

But: apply still useful for proof exploration
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A typical Isar proof

proof
assume formula,
have formula; by simp

have formula, by blast
show formula, , by ...
ged
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A typical Isar proof

proof
assume formula,
have formula; by simp

have formula, by blast
show formula, , by ...
ged

proves formulay, = formula,,
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Isar core syntax

proof = proof [method]| step* qed
| by method
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Isar core syntax

proof = proof [method]| step* qed
| by method

method = (simp ...) | (blast ...) | (induction ...) | ...

step = fix variables (A\)

| assume prop (=)

| [from fact™] (have | show) prop proof
prop = [name:] "formula”

fact = name|...
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Isar_Demo.thy

Isar by example
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Further reading

® More detailed Isar introduction in Chapter 5 of
"Concrete Semantics”

e |sabelle/Isar reference manual (isar-ref.pdf), in
particular Chapter 6
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