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Part I

Isabelle
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Material

• Isabelle part of this course based on book “Concrete
Semantics with Isabelle/HOL” (2014) by Tobias
Nipkow and Gerwin Klein

• Slides shamelessly copied from Tobias Nipkow
(errors are my own)
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Chapter 1

Programming and Proving in
Isabelle/HOL
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1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification
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HOL = Higher-Order Logic

HOL = Functional Programming + Logic

HOL has
• datatypes
• recursive functions
• logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
• Equalities (term = term), e.g. 1 + 2 = 4
• Later: ∧, ∨, −→, ∀, . . .
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1 Overview of Isabelle/HOL
Types and terms
By example: types bool, nat and list
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Types
Basic syntax:

τ ::=

(τ)
| bool | nat | int | . . . base types
| ′a | ′b | . . . type variables
| τ ⇒ τ functions
| τ × τ pairs (ascii: *)
| τ list lists
| τ set sets
| . . . user-defined types

Convention: τ 1 ⇒ τ 2 ⇒ τ 3 ≡ τ 1 ⇒ (τ 2 ⇒ τ 3)
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Terms

Terms can be formed as follows:

• Function application: f t
is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

10



Terms

Terms can be formed as follows:
• Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

10



Terms

Terms can be formed as follows:
• Function application: f t

is the call of function f with argument t.

If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

10



Terms

Terms can be formed as follows:
• Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .

Examples: sin π, plus x y
• Function abstraction: λx. t

is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

10



Terms

Terms can be formed as follows:
• Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

10



Terms

Terms can be formed as follows:
• Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t

is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

10



Terms

Terms can be formed as follows:
• Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t
is the function with parameter x and result t

,
i.e. “x 7→ t ”.
Example: λx. plus x x

10



Terms

Terms can be formed as follows:
• Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.

Example: λx. plus x x

10



Terms

Terms can be formed as follows:
• Function application: f t

is the call of function f with argument t.
If f has more arguments: f t1 t2 . . .
Examples: sin π, plus x y

• Function abstraction: λx. t
is the function with parameter x and result t,
i.e. “x 7→ t ”.
Example: λx. plus x x

10



Terms
Basic syntax:

t ::=

(t)
| a constant or variable (identifier)
| t t function application
| λx. t function abstraction
| . . . lots of syntactic sugar

Examples: f (g x) y
h (λx. f (g x))

Convention: f t1 t2 t3 ≡ ((f t1) t2) t3

This language of terms is known as the λ-calculus.
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The computation rule of the λ-calculus is the
replacement of formal by actual parameters:

(λx. t) u = t[u/x]

where t[u/x] is “t with u substituted for x”.

Example: (λx. x + 5) 3 = 3 + 5

• The step from (λx. t) u to t[u/x] is called
β-reduction.

• Isabelle performs β-reduction automatically.
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Terms must be well-typed

(the argument of every function call must be of the right type)

Notation:
t :: τ means “t is a well-typed term of type τ”.

t :: τ 1 ⇒ τ 2 u :: τ 1
t u :: τ 2
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Type inference

Isabelle automatically computes the type of each variable
in a term.

This is called type inference.

In the presence of overloaded functions (functions with
multiple types) this is not always possible.

User can help with type annotations inside the term.
Example: f (x::nat)
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Overview_Demo.thy

(including an example of how to define a simple
function and prove a lemma about it)

15



1 Overview of Isabelle/HOL
Types and terms
By example: types bool, nat and list
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Type bool

datatype bool = True | False

Predefined functions:
∧, ∨, −→, . . . :: bool ⇒ bool ⇒ bool

A formula is a term of type bool

if-and-only-if: = or ←→
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Type nat

datatype nat = 0 | Suc nat

Values of type nat: 0, Suc 0, Suc (Suc 0), . . .

Predefined functions: +, ∗, ... :: nat ⇒ nat ⇒ nat

! Numbers and arithmetic operations are overloaded:
0,1,2,... :: ′a, + :: ′a ⇒ ′a ⇒ ′a

You need type annotations: 1 :: nat, x + (y::nat)
unless the context is unambiguous: Suc z
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Nat_Demo.thy
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An informal proof
Lemma add m 0 = m

Proof by induction on m.
• Case 0 (the base case):

add 0 0 = 0 holds by definition of add.
• Case Suc m (the induction step):

We assume add m 0 = m,
the induction hypothesis (IH).
We need to show add (Suc m) 0 = Suc m.
The proof is as follows:
add (Suc m) 0 = Suc (add m 0) by def. of add

= Suc m by IH

20
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Induction on natural numbers

To prove P(n) for all natural numbers n, prove
• P(0) and
• for arbitrary but fixed n,

P(n) implies P(Suc(n)).

P(0)
∧

n. P(n) =⇒ P(Suc(n))
P(n)

21
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Type ′a list
Lists of elements of type ′a

datatype ′a list = Nil | Cons ′a ( ′a list)

Some lists: Nil, Cons 1 Nil, Cons 1 (Cons 2 Nil), . . .

Syntactic sugar:
• [] = Nil: empty list
• x # xs = Cons x xs:

list with first element x (“head”) and rest xs (“tail”)
• [x1, . . . , xn] = x1 # . . . xn # []

22
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Structural Induction for lists

To prove that P(xs) for all lists xs, prove
• P([]) and
• for arbitrary but fixed x and xs,

P(xs) implies P(x#xs).

P([])
∧

x xs. P(xs) =⇒ P(x#xs)
P(xs)
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List_Demo.thy
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An informal proof
Lemma app (app xs ys) zs = app xs (app ys zs)
Proof by induction on xs.
• Case Nil: app (app Nil ys) zs = app ys zs =

app Nil (app ys zs) holds by definition of app.
• Case Cons x xs: We assume app (app xs ys) zs =

app xs (app ys zs) (IH), and we need to show
app (app (Cons x xs) ys) zs =
app (Cons x xs) (app ys zs).
The proof is as follows:
app (app (Cons x xs) ys) zs
= Cons x (app (app xs ys) zs) by definition of app
= Cons x (app xs (app ys zs)) by IH
= app (Cons x xs) (app ys zs) by definition of app

25



Large library: HOL/List.thy

Included in Main.

Don’t reinvent, reuse!

Predefined: xs @ ys (append), length, and map
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1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification
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2 Type and function definitions
Type definitions
Function definitions
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Type synonyms
type_synonym name = τ

Introduces a synonym name for type τ

Examples
type_synonym string = char list
type_synonym ( ′a, ′b)foo = ′a list × ′b list

Type synonyms are expanded after parsing
and are not present in internal representation and output
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datatype — the general case
datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t
• Distinctness: Ci . . . 6= Cj . . . if i 6= j
• Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =

(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

30



datatype — the general case
datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t

• Distinctness: Ci . . . 6= Cj . . . if i 6= j
• Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =

(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

30



datatype — the general case
datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t
• Distinctness: Ci . . . 6= Cj . . . if i 6= j

• Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =
(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

30



datatype — the general case
datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t
• Distinctness: Ci . . . 6= Cj . . . if i 6= j
• Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =

(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

30



datatype — the general case
datatype (α1, . . . , αn)t = C1 τ1,1 . . . τ1,n1

| . . .
| Ck τk,1 . . . τk,nk

• Types: Ci :: τi,1 ⇒ · · · ⇒ τi,ni ⇒ (α1, . . . , αn)t
• Distinctness: Ci . . . 6= Cj . . . if i 6= j
• Injectivity: (Ci x1 . . . xni = Ci y1 . . . yni) =

(x1 = y1 ∧ · · · ∧ xni = yni)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly

30



Case expressions
Datatype values can be taken apart with case:

(case xs of [] ⇒ . . . | y#ys ⇒ ... y ... ys ...)

Wildcards: _
(case m of 0 ⇒ Suc 0 | Suc _ ⇒ 0)

Nested patterns:
(case xs of [0] ⇒ 0 | [Suc n] ⇒ n | _ ⇒ 2)

Complicated patterns mean complicated proofs!
Need ( ) in context
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Tree_Demo.thy
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The option type

datatype ′a option = None | Some ′a

If ′a has values a1, a2, . . .
then ′a option has values None, Some a1, Some a2, . . .

Typical application:
fun lookup :: ( ′a × ′b) list ⇒ ′a ⇒ ′b option where
lookup [] x = None |
lookup ((a, b) # ps) x =
(if a = x then Some b else lookup ps x)
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2 Type and function definitions
Type definitions
Function definitions
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Non-recursive definitions

Example
definition sq :: nat ⇒ nat where sq n = n∗n

No pattern matching, just f x1 . . . xn = . . .
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The danger of nontermination

How about f x = f x + 1 ?

Subtract f x on both sides.
=⇒ 0 = 1

! All functions in HOL must be total !
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Key features of fun

• Pattern-matching over datatype constructors

• Order of equations matters

• Termination must be provable automatically
by size measures

• Proves customized induction schema
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Example: separation

fun sep :: ′a ⇒ ′a list ⇒ ′a list where
sep a (x#y#zs) = x # a # sep a (y#zs) |
sep a xs = xs
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Example: Ackermann

fun ack :: nat ⇒ nat ⇒ nat where
ack 0 n = Suc n |
ack (Suc m) 0 = ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Terminates because the arguments decrease
lexicographically with each recursive call:
• (Suc m, 0) > (m, Suc 0)
• (Suc m, Suc n) > (Suc m, n)
• (Suc m, Suc n) > (m, _)
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1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification
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Basic induction heuristics

Theorems about recursive functions
are proved by induction

Induction on argument number i of f
if f is defined by recursion on argument number i
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A tail recursive reverse
Our initial reverse:
fun rev :: ′a list ⇒ ′a list where
rev [] = [] |
rev (x#xs) = rev xs @ [x]

A tail recursive version:
fun itrev :: ′a list ⇒ ′a list ⇒ ′a list where
itrev [] ys = ys |
itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs
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Induction_Demo.thy

Generalisation
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Generalisation

• Replace constants by variables

• Generalize free variables
• by arbitrary in induction proof
• (or by universal quantifier in formula)
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So far, all proofs were by structural induction

because all functions were primitive recursive.
In each induction step, 1 constructor is added.
In each recursive call, 1 constructor is removed.
Now: induction for complex recursion patterns.
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Computation Induction

Example
fun div2 :: nat ⇒ nat where
div2 0 = 0 |
div2 (Suc 0) = 0 |
div2 (Suc(Suc n)) = Suc(div2 n)

 induction rule div2.induct:

P(0) P(Suc 0)

∧
n.

P(n) =⇒ P(Suc(Suc n))
P(m)
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Computation Induction
If f :: τ ⇒ τ ′ is defined by fun, a special induction
schema is provided to prove P(x) for all x :: τ :

for each defining equation

f (e) = . . . f (r1) . . . f (rk) . . .

prove P(e) assuming P(r1), . . . ,P(rk).

Induction follows course of (terminating!) computation
Motto: properties of f are best proved by rule f.induct
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How to apply f.induct

If f :: τ1 ⇒ · · · ⇒ τn ⇒ τ ′:

(induction a1 . . . an rule: f.induct)

Heuristic:
• there should be a call f a1 . . . an in your goal
• ideally the ai should be variables.
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Induction_Demo.thy

Computation Induction
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1 Overview of Isabelle/HOL

2 Type and function definitions

3 Induction Heuristics

4 Simplification
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Simplification means . . .

Using equations l = r from left to right

As long as possible

Terminology: equation  simplification rule

Simplification = (Term) Rewriting
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An example

Equations:

0 + n = n (1)
(Suc m) + n = Suc (m + n) (2)

(Suc m ≤ Suc n) = (m ≤ n) (3)
(0 ≤ m) = True (4)

Rewriting:

0 + Suc 0 ≤ Suc 0 + x (1)
=

Suc 0 ≤ Suc 0 + x (2)
=

Suc 0 ≤ Suc (0 + x) (3)
=

0 ≤ 0 + x (4)
=

True

52
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Conditional rewriting
Simplification rules can be conditional:

[[ P1; . . . ; Pk ]] =⇒ l = r

is applicable only if all Pi can be proved first,
again by simplification.

Example
p(0) = True

p(x) =⇒ f (x) = g(x)
We can simplify f (0) to g(0) but
we cannot simplify f (1) because p(1) is not provable.
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Termination
Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly from left to right.

Example: f (x) = g(x), g(x) = f (x)

Principle:
[[ P1; . . . ; Pk ]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True

YES

Suc n < m =⇒ (n < m) = True

NO
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Termination
Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly from left to right.

Example: f (x) = g(x), g(x) = f (x)
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Proof method simp
Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using
• lemmas with attribute simp
• rules from fun and datatype
• additional lemmas eq1 . . . eqn
• assumptions P1 . . . Pm

Variations:
• (simp . . . del: . . . ) removes simp-lemmas
• add and del are optional
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auto versus simp

• auto acts on all subgoals
• simp acts only on subgoal 1

• auto applies simp and more

• auto can also be modified:
(auto simp add: . . . simp del: . . . )
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Rewriting with definitions

Definitions (definition) must be used explicitly:

(simp add: f_def . . . )

f is the function whose definition is to be unfolded.
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Case splitting with simp/auto
Automatic:

P (if A then s else t)
=

(A −→ P(s)) ∧ (¬A −→ P(t))

By hand:

P (case e of 0 ⇒ a | Suc n ⇒ b)
=

(e = 0 −→ P(a)) ∧ (∀ n. e = Suc n −→ P(b))

Proof method: (simp split: nat.split)
Or auto. Similar for any datatype t: t.split
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Simp_Demo.thy
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Chapter 2

Case Study: IMP Expressions
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This section introduces

arithmetic and boolean expressions

of our imperative language IMP.

IMP commands are introduced later.

63



This section introduces

arithmetic and boolean expressions

of our imperative language IMP.

IMP commands are introduced later.

63



5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
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Concrete and abstract syntax
Concrete syntax: strings, eg "a+5*b"

Abstract syntax: trees, eg +
@

@
@

�
�

�a *
A
AA

�
��

5 b

Parser: function from strings to trees
Linear view of trees: terms, eg Plus a (Times 5 b)

Abstract syntax trees/terms are datatype values!
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Concrete syntax is defined by a context-free grammar, eg

a ::= n | x | (a) | a + a | a ∗ a | . . .

where n can be any natural number and x any variable.

We focus on abstract syntax
which we introduce via datatypes.
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Datatype aexp

Variable names are strings, values are integers:
type_synonym vname = string
datatype aexp = N int | V vname | Plus aexp aexp

Concrete Abstract
5 N 5
x V ′′x ′′
x+y Plus (V ′′x ′′) (V ′′y ′′)
2+(z+3) Plus (N 2) (Plus (V ′′z ′′) (N 3))
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Warning

This is syntax, not (yet) semantics!

N 0 6= Plus (N 0) (N 0)
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Warning

This is syntax, not (yet) semantics!

N 0 6= Plus (N 0) (N 0)
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The (program) state

What is the value of x+1?

• The value of an expression
depends on the value of its variables.

• The value of all variables is recorded in the state.
• The state is a function from variable names to

values:
type_synonym val = int
type_synonym state = vname ⇒ val
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Function update notation

If f :: τ 1 ⇒ τ 2 and a :: τ 1 and b :: τ 2 then

f (a := b)

is the function that behaves like f
except that it returns b for argument a.

f(a := b) = (λx. if x = a then b else f x)
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How to write down a state

Some states:
• λx. 0

• (λx. 0)( ′′a ′′ := 3)
• ((λx. 0)( ′′a ′′ := 5))( ′′x ′′ := 3)

Nicer notation defined in AExp.thy:

< ′′a ′′ := 5, ′′x ′′ := 3, ′′y ′′ := 7>

Maps everything to 0, but ′′a ′′ to 5, ′′x ′′ to 3, etc.
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AExp.thy
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5 Case Study: IMP Expressions
Arithmetic Expressions
Boolean Expressions
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BExp.thy
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This was easy.

Because evaluation of expressions always terminates.
But execution of programs may not terminate.
Hence we cannot define it by a total recursive function.

We need more logical machinery
to define program execution and reason about it.
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Chapter 3

Logic and Proof
Beyond Equality
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6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions
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Syntax (in decreasing precedence):

form ::= (form) | term = term | ¬form
| form ∧ form | form ∨ form | form −→ form
| ∀x. form | ∃x. form

Examples:
¬ A ∧ B ∨ C ≡ ((¬ A) ∧ B) ∨ C

s = t ∧ C ≡ (s = t) ∧ C
A ∧ B = B ∧ A ≡ A ∧ (B = B) ∧ A
∀ x. P x ∧ Q x ≡ ∀ x. (P x ∧ Q x)

Input syntax: ←→ (same precedence as −→)
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Variable binding convention:

∀ x y. P x y ≡ ∀ x. ∀ y. P x y

Similarly for ∃ and λ.
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Variable binding convention:

∀ x y. P x y ≡ ∀ x. ∀ y. P x y

Similarly for ∃ and λ.

80



Warning

Quantifiers have low precedence
and need to be parenthesized (if in some context)

! P ∧ ∀ x. Q x  P ∧ (∀ x. Q x) !
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Mathematical symbols
and their ascii representations

∀ \<forall> ALL
∃ \<exists> EX
λ \<lambda> %
−→ -->
←→ <->
∧ /\ &
∨ \/ |
¬ \<not> ~
6= \<noteq> ~=
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Sets over type ′a
′a set

• {}, {e1,. . . ,en}
• e ∈ A, A ⊆ B
• A ∪ B, A ∩ B, A − B, − A
• . . .

∈ \<in> :
⊆ \<subseteq> <=
∪ \<union> Un
∩ \<inter> Int
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Set comprehension

• {x. P} where x is a variable

• But not {t. P} where t is a proper term
• Instead: {t |x y z. P}

is short for {v. ∃ x y z. v = t ∧ P}
where x, y, z are the free variables in t
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6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions
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simp and auto

simp: rewriting and a bit of arithmetic
auto: rewriting and a bit of arithmetic, logic and sets

• Show you where they got stuck
• highly incomplete
• Extensible with new simp-rules

Exception: auto acts on all subgoals
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fastforce

• rewriting, logic, sets, relations and a bit of arithmetic.

• incomplete but better than auto.
• Succeeds or fails
• Extensible with new simp-rules
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blast

• A complete proof search procedure for FOL . . .

• . . . but (almost) without “=”
• Covers logic, sets and relations
• Succeeds or fails
• Extensible with new deduction rules
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Automating arithmetic

arith:

• proves linear formulas (no “∗”)
• complete for quantifier-free real arithmetic
• complete for first-order theory of nat and int

(Presburger arithmetic)
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Sledgehammer
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Architecture:

Isabelle

Goal
& filtered library ↓ ↑ Proof

external
ATPs1

Characteristics:
• Sometimes it works,
• sometimes it doesn’t.

Do you feel lucky?

1Automatic Theorem Provers
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by(proof-method)

≈

apply(proof-method)
done
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Auto_Proof_Demo.thy
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6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions
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Step-by-step proofs can be necessary if automation fails
and you have to explore where and why it failed by
taking the goal apart.
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What are these ?-variables ?

After you have finished a proof, Isabelle turns all free
variables V in the theorem into ?V.
Example: theorem conjI: [[?P; ?Q]] =⇒ ?P ∧ ?Q
These ?-variables can later be instantiated:
• By hand:
conjI[of "a=b" "False"]  
[[a = b; False]] =⇒ a = b ∧ False

• By unification:
unifying ?P ∧ ?Q with a=b ∧ False
sets ?P to a=b and ?Q to False.
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Rule application

Example: rule: [[?P; ?Q]] =⇒ ?P ∧ ?Q
subgoal: 1. . . . =⇒ A ∧ B

Result: 1. . . . =⇒ A
2. . . . =⇒ B

The general case: applying rule [[ A1; . . . ; An ]] =⇒ A
to subgoal . . . =⇒ C:
• Unify A and C
• Replace C with n new subgoals A1 . . . An

apply(rule xyz)
“Backchaining”
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Typical backwards rules
?P ?Q
?P ∧ ?Q conjI

?P =⇒ ?Q
?P −→ ?Q impI

∧
x. ?P x
∀ x. ?P x allI

?P =⇒ ?Q ?Q =⇒ ?P
?P = ?Q iffI

They are known as introduction rules
because they introduce a particular connective.
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Automating intro rules

If r is a theorem [[ A1; . . . ; An ]] =⇒ A then

(blast intro: r)

allows blast to backchain on r during proof search.
Example:

theorem le_trans: [[ ?x ≤ ?y; ?y ≤ ?z ]] =⇒ ?x ≤ ?z
goal 1. [[ a ≤ b; b ≤ c; c ≤ d ]] =⇒ a ≤ d

proof apply(blast intro: le_trans)
Also works for auto and fastforce

Can greatly increase the search space!
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Forward proof: OF
If r is a theorem A =⇒ B

and s is a theorem that unifies with A then

r[OF s]

is the theorem obtained by proving A with s.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"]]
 

?Q =⇒ a = a ∧ ?Q
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The general case:

If r is a theorem [[ A1; . . . ; An ]] =⇒ A
and r1, . . . , rm (m≤n) are theorems then

r[OF r1 . . . rm]

is the theorem obtained
by proving A1 . . . Am with r1 . . . rm.

Example: theorem refl: ?t = ?t

conjI[OF refl[of "a"] refl[of "b"]]
 

a = a ∧ b = b
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From now on: ? mostly suppressed on slides
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Single_Step_Demo.thy
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=⇒ versus −→

=⇒ is part of the Isabelle framework. It structures
theorems and proof states: [[ A1; . . . ; An ]] =⇒ A

−→ is part of HOL and can occur inside the logical
formulas Ai and A.

Phrase theorems like this [[ A1; . . . ; An ]] =⇒ A
not like this A1 ∧ . . . ∧ An −→ A
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6 Logical Formulas

7 Proof Automation

8 Single Step Proofs

9 Inductive Definitions
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Example: even numbers
Informally:

• 0 is even
• If n is even, so is n + 2
• These are the only even numbers

In Isabelle/HOL:
inductive ev :: nat ⇒ bool
where

ev 0 |
ev n =⇒ ev (n + 2)
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An easy proof: ev 4

ev 0 =⇒ ev 2 =⇒ ev 4
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Consider

fun evn :: nat ⇒ bool where
evn 0 = True |
evn (Suc 0) = False |
evn (Suc (Suc n)) = evn n

A trickier proof: ev m =⇒ evn m
By induction on the structure of the derivation of ev m
Two cases: ev m is proved by
• rule ev 0

=⇒ m = 0 =⇒ evn m = True
• rule ev n =⇒ ev (n+2)

=⇒ m = n+2 and evn n (IH)
=⇒ evn m = evn (n+2) = evn n = True
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Rule induction for ev
To prove

ev n =⇒ P n

by rule induction on ev n we must prove

• P 0
• P n =⇒ P(n+2)

Rule ev.induct:

ev n P 0
∧

n. [[ ev n; P n ]] =⇒ P(n+2)
P n
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Format of inductive definitions

inductive I :: τ ⇒ bool where

[[ I a1; . . . ; I an ]] =⇒ I a |
...

Note:
• I may have multiple arguments.
• Each rule may also contain side conditions not

involving I.
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Rule induction in general
To prove

I x =⇒ P x

by rule induction on I x

we must prove for every rule

[[ I a1; . . . ; I an ]] =⇒ I a

that P is preserved:

[[ I a1; P a1; . . . ; I an; P an ]] =⇒ P a

111



Rule induction in general
To prove

I x =⇒ P x

by rule induction on I x
we must prove for every rule

[[ I a1; . . . ; I an ]] =⇒ I a

that P is preserved:

[[ I a1; P a1; . . . ; I an; P an ]] =⇒ P a

111



Rule induction in general
To prove

I x =⇒ P x

by rule induction on I x
we must prove for every rule

[[ I a1; . . . ; I an ]] =⇒ I a

that P is preserved:

[[ I a1; P a1; . . . ; I an; P an ]] =⇒ P a

111



!
Rule induction is absolutely central

to (operational) semantics
and the rest of this lecture course

!
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Inductive_Demo.thy
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Inductively defined sets

inductive_set I :: τ set where

[[ a1 ∈ I; . . . ; an ∈ I ]] =⇒ a ∈ I |
...

Difference to inductive: I can later be used with set
theoretic operators, eg I ∪ . . .
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Chapter 4

Isar: A Language for
Structured Proofs
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Apply scripts

• unreadable

• hard to maintain
• do not scale

No structure!
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Apply scripts versus Isar proofs

Apply script = assembly language program

Isar proof = structured program with assertions

But: apply still useful for proof exploration
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A typical Isar proof

proof
assume formula0
have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1
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Isar core syntax
proof = proof [method] step∗ qed

| by method

method = (simp . . . ) | (blast . . . ) | (induction . . . ) | . . .

step = fix variables (
∧

)
| assume prop (=⇒)
| [from fact+] (have | show) prop proof

prop = [name:] ”formula”

fact = name | . . .
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Isar_Demo.thy

Isar by example
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Further reading

• More detailed Isar introduction in Chapter 5 of
”Concrete Semantics”

• Isabelle/Isar reference manual (isar-ref.pdf), in
particular Chapter 6
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