Incremental structured prediction

LL101: Machine Learning for Language Processing %gﬁ

Andreas Vlachos, Pushkar Mishra

Structured prediction reminder

Given an input X (e.g. a sentence) predict y (e.g. a PoS tag sequence, cf lecture 6):
Y = arg max score(x,y)
yey
Where Y is rather large and often depends on the input (e.g. LI*! in PoS tagging)

Various approaches:
e Linear models (structured perceptron)
e Probabilistic linear models (conditional random fields)

e Non-linear models

Decoding
Assuming we have a trained model, decode/predict/solve the argmax/inference:

Y = arg max score(z, y; 0)
yey

Dynamic programming to the rescue?

Yes! But we need to make assumptions on the structure:
e 1storder (t-1) Markov assumption (linear chains), rarely more than 2nd (t-2)
e The scoring function must decompose over the output structure

What if we need greater flexibility?

Incremental structured prediction

A classifier f predicting actions to construct the output:

& =arg max f(a, x),
acA

y = output Gy —arg max f(a, X,01),"
acA

&y =argmax f(a, X, &1 ...4aN_1)
acA

Examples:
e Predicting the PoS tags word-by-word (MEMM without Viterbi)
e Building a syntax tree by shifting items to and reducing a stack
e (enerating a sentence word-by-word (these days with seq2seq)

Incremental structured prediction

Pros:

v No need to enumerate all possible outputs
v No modelling restrictions on features

Cons:
x Prone to error propagation
x Classifier not trained w.r.t. task-level loss

Krror propagation

We do not score complete
outputs:
e carly predictions do not
know what follows
e cannot be undone if purely
incremental/monotonic
(doesn’t need to be)
e we are training with gold

standard predictions for
previous predictions, but
test with predicted ones
(exposure bias)

hi1—»>

0 —>

h1—>

0 —

h2 = ¢9(®) hl) >
po(w|0, h1)
| o
()
h‘2 = ¢9(®7 hl)

po(w|0, hi)

h3 = ¢g(w2, ha)

pe(w|w2a h2)

w3

>

hs = ¢9(wg7h’2) >

po(w|w3, ho)

Ranzato et al. (ICLR2016)

https://arxiv.org/abs/1511.06732
https://arxiv.org/pdf/1902.02192.pdf

Incremental basics: Greedy and Beam search

[- |
P runs
0.4
0.05
has
0.9/

The

-

0.3
‘ /03
P drives

0.1

— 0.5/
turns
https://huggingface.co/blog/how-to-generate

0.2]

Greedy: pick the most likely
action (“the nice woman”)

Beam: keep the top-k paths
alive (“the dog has” with k=2)

Overcome locally optimal
decisions that are not globally
optimal according to the model

https://huggingface.co/blog/how-to-generate

Beam search algorithm

Input: word sequence z = [x1,...,2xN], tags), parameters 0
Initialize beam B = {Ytemp = ([START], score = 0)}, size k
forn=1...N do
B'={}
for b € B do
for y € Y do
s = score(X, [b-Ytemp; y]); 0)
B' = B' U ([b.Yeempi U): 9
end for
end for
B = B'[l1: K]
end for
return B|[1]

Beam search in practice

e It works, but implementation matters

o Feature decomposability is key to reuse

1 ArcIE+Iazy K vid I
previously computed scores 5 eyt . F
; . : . | ArcS+lazy - & w4
o Sanity check: on small/toy instances 7 [csiamets | > &
large enough beam should find the o =r 4 D %Jg
s T y o
exact argmax ? sl AL
g - /’#ﬁ‘ wf"a“a_
1 . e o
. . . 05 2 ; fwww i
e Take care of bias due to action tvpes with o =
° 0 200 400 600 800 1000

different score ranges: picking among all

sentence length

English words is not comparable with
picking among PoS tags

https://www.aclweb.org/anthology/P13-2111/
https://arxiv.org/abs/1909.11049
https://arxiv.org/abs/1909.11049

Beam search extensions

Reranking:
e Adjust probabilities to normalise for sentence length
e Model to pick outputs that are likely to have better global score (e.g. BLEU)
e Re-rank intermediate beams, a.k.a. incremental beam manipulation

We still rely on beam search to generate good hypotheses (for good reasons?)

Training decoders for beam search:
e Penalize the model when the correct hypothesis falls of the beam (beam
search optimization, beam-aware training)
e Train a greedy decoder to approximate beam search to maximize a

sentence-level score
T SGGGSSGSSSSSS——————————————,— S

https://arxiv.org/abs/1808.10006
https://arxiv.org/pdf/1606.05491.pdf
https://arxiv.org/abs/2102.02574
https://aclanthology.org/2020.emnlp-main.170/
https://arxiv.org/pdf/1606.02960.pdf
https://arxiv.org/pdf/1606.02960.pdf
https://arxiv.org/pdf/2010.04980.pdf
https://openreview.net/forum?id=rJZlKFkvM

Being less exact helps?

Czech-English

Search BLEU Ratio #Search errors #Empty
Greedy 293 1.02 73.6% 0.0%
3 Beam-10 30.3 1.00 57.7% 0.0%
2 259 Exact 2.1 0.06 0.0% 51.8%
—
m
Table 1: NMT with exact inference. In the absence of
—&— Umomalized (5 search errors, NMT often prefers the empty translation,
—o— Normalized
— causing a dramatic drop in length ratio and BLEU.

1 2 4 8 12 2030 50 100 200 500 1,000

Beam Size

e In Neural Machine Translation performance degrades with larger beams...

e Search errors save us from model errors!
o Also MAP decoding might not be doing justice to our models
e Part of the problem at least is that we train word-level models but the task

makes (a lot more!) sense at the sentence-level really...

https://arxiv.org/abs/1908.10090
https://arxiv.org/pdf/2005.10283.pdf
https://www.aclweb.org/anthology/W17-3204/

Training for incremental structured prediction

In supervised training we assume a loss function e.g. negative log likelihood against
oold labels in classification with logistic regression/ feedforward NNs.

In incremental structured prediction, what do we train our classifier to do?

Predict the action leading the correct output. Losses over structured outputs:

e Hamming loss: number of incorrect part of speech tags in a sentence
e False positives and false negatives: e.g. named entity recognition
e Reduction in BLEU score (n-gram overlap) in generation tasks, e.g. machine

translation

Loss and decomposability

Can we assess the goodness of each action?

e In PoS tagging, predicting a tag at a
time with Hamming loss?

o YES actions:
e In machine translation predicting a
word at a time with BLEU score? states:

o NO

BLEU score doesn’t decompose over the
actions defined by the transition system

input sentence x

Reinforcement learning

e
~| Agent —
state | | reward 2ction actions: e
S, - !
:‘ Vesj
<ur| Environment | states:
Sutton and Barto (2018) [input sentence x]

Incremental structured prediction can be viewed as (degenerate) RL:
e No environment dynamics
e No need to worry about physical wear and tear (e.g. robots damaged)

http://incompleteideas.net/book/the-book.html

Policy gradient

Learn the parameters 0 of policy/classifier « that optimize rewards/task loss »:

Z d™ (s)v™ (s)

scS
= d"(s) Z mo(als)Q™ (s,)
seS acA

e on-policy learning: the policy affects the distributions of states visited d
e the reward from reaching a state s is its expectation according to the policy

We can now do our stochastic gradient (ascent) updates:
Ht—l—l =0 + aVJ(Ht)

What could go wrong?

Reinforcement learning is hard...

See Choshen et al. (2020), and Kiegeland and Kreutzer (2021) for a recent debate
To obtain training signal we need complete trajectories

e (Can sample (REINFORCE) but inefficient in large search spaces

e High variance when many actions are needed to reach the end (credit

assignment problem)
e (an learn @ to evaluate the outcome of the action (actor-critic)

In NLP, often the models are trained initially in the standard supervised way and
then fine-tuned with RL (e.g. for summarization)

e Hard to tune the balance between the two

e C(onstrains the benefits of RL

https://arxiv.org/pdf/1907.01752.pdf
https://arxiv.org/pdf/2106.08942.pdf
https://openreview.net/forum?id=SJDaqqveg
https://arxiv.org/pdf/1705.04304.pdf

Reinforcement learning is hard... but what if

e We had a good starting point

Pretrained /

E——
SFTed model

Staying close to
the starting point
(regularizer)

(Production)
Text data

Trained LM

Update weights

each step

Repeats N
steps

RL Update

__

! Constrain LM to not output gibberish and ;
i fool the reward model :

Credits: Joao Lages

https://medium.com/towards-artificial-intelligence/reinforcement-learning-from-human-feedback-rlhf-f88687d5402e

Imitation learning

CAUTION
TEENAGE
DRIVER

coMmaTOARIMY o
MEAR YOU SO0M! -4

e Both reinforcement and imitation learning learn a
classifier/policy to maximize reward

e [Learning in imitation learning is facilitated by an expert

e Basic form: supervised learning using expert demonstrations,
a.k.a behavioural cloning; 1L algorithms go beyond this

Imitation learning in a nutshell

xe X

e Rollins-rollouts mix model
>(—>(e)—> vy ly)=00 and expert predictions
e First iteration trained on

yey, l(y)=0.2 expert, later ones
increasingly use the trained
>@ »ye, lly)=038 model

—— o c e Exploring one-step
. ¥ O e ,
rollin 0 - dev1at10n.s from the rollin of
O © \ v J Chang et al. (2015) the classifier
c -~
©> rollout
©

https://arxiv.org/abs/1502.02206

Scheduled sampling

Sample

Loss
\ Softmax over
y(t-1)

Sample

i

Loss
Softmax over /
y(t)

i

h(1) |—...——{ h(t-1)

h(t)

f

/X

sampled y(t-2)

X 2 .|

J

AN

true y(t-2)

true y(t-1)

Train without assuming
that all previous words
are correctly predicted

This idea was first
introduced as the
DAgger algorithm in

robotics

Works, but make sure
you don’t forget when
the previous words are
correct!

https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://papers.nips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://www.google.com/url?q=https://arxiv.org/abs/2109.06308&sa=D&source=editors&ust=1698270561670997&usg=AOvVaw3CsvXfqZ0LOlo4OPZgTG52

Imitation learning is hard too!

Defining a good expert is difficult

o How to know all possible correct next words to add given a partial
translation and a gold standard?
o Without a better than random “dynamic” expert, we are back to RL

While expert demonstrations make learning more efficient, it is still difficult
to handle large numbers of actions

The interaction between learning the feature extraction and learning the
policy/classifier is not well understood in the context of RNNs

http://approximatelycorrect.com/2020/10/26/superheroes-of-deep-learning-vol-1-machine-learning-yearning/

Identifying experts in the new world

e Larger models usually do tasks much better than smaller models

o Knowledge distillation with larger models as the “dynamic” experts
o Soft distillation, i.e., distilling not just the chosen action, but possibility of other actions too

e Why not get smaller models to imitate the actions of larger model?

o Greater variability: many different trajectories can be explored, specially in creative domains
o Richer feedback: the larger model can even provide rationales for picking actions
o Higher scalability: large amounts of demonstrations can be collected cheaply

e See any problems?

o Bias amplification: if the larger model has biases, smaller models will inherit that almost surely
o Saturation: the capabilities of smaller models are inherently capped at those of the larger model

Bibliography

Kai Zhao’s survey

Noah Smith’s book

Kevin Murphy’s tutorial

This blog on policy gradient methods

Imitation learning tutorial

RLHF and PPO

https://www.gc.cuny.edu/CUNY_GC/media/Computer-Science/Student%20Presentations/Kai%20Zhao/Second_Exam_Survey_Kai_Zhao_12_11_2014.pdf
http://www.cs.cmu.edu/~nasmith/LSP/
https://arxiv.org/abs/2412.05265
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#what-is-policy-gradient
https://sites.google.com/view/icml2018-imitation-learning/

