
Incremental structured prediction

L101: Machine Learning for Language Processing
Andreas Vlachos, Pushkar Mishra

Given an input x (e.g. a sentence) predict y (e.g. a PoS tag sequence, cf lecture 6):

Where Y is rather large and often depends on the input (e.g. L|x| in PoS tagging)

Structured prediction reminder

Various approaches:
● Linear models (structured perceptron)
● Probabilistic linear models (conditional random fields)
● Non-linear models

Assuming we have a trained model, decode/predict/solve the argmax/inference:

Decoding

Dynamic programming to the rescue?

Yes! But we need to make assumptions on the structure:
● 1st order (t-1) Markov assumption (linear chains), rarely more than 2nd (t-2)
● The scoring function must decompose over the output structure

What if we need greater flexibility?

Examples:
● Predicting the PoS tags word-by-word (MEMM without Viterbi)
● Building a syntax tree by shifting items to and reducing a stack
● Generating a sentence word-by-word (these days with seq2seq)

Incremental structured prediction
A classifier f predicting actions to construct the output:

Incremental structured prediction

Pros:
✓ No need to enumerate all possible outputs
✓ No modelling restrictions on features

Cons:
x Prone to error propagation
x Classifier not trained w.r.t. task-level loss

Ranzato et al. (ICLR2016)

We do not score complete
outputs:
● early predictions do not

know what follows
● cannot be undone if purely

incremental/monotonic
(doesn’t need to be)

● we are training with gold
standard predictions for
previous predictions, but
test with predicted ones
(exposure bias)

Error propagation

https://arxiv.org/abs/1511.06732
https://arxiv.org/pdf/1902.02192.pdf

Greedy: pick the most likely
action (“the nice woman”)

Beam: keep the top-k paths
alive (“the dog has” with k=2)

Overcome locally optimal
decisions that are not globally
optimal according to the model

Incremental basics: Greedy and Beam search

https://huggingface.co/blog/how-to-generate

https://huggingface.co/blog/how-to-generate

Beam search algorithm

Beam search in practice
● It works, but implementation matters

○ Feature decomposability is key to reuse
previously computed scores

○ Sanity check: on small/toy instances
large enough beam should find the
exact argmax

● Take care of bias due to action types with
different score ranges: picking among all
English words is not comparable with
picking among PoS tags

https://www.aclweb.org/anthology/P13-2111/
https://arxiv.org/abs/1909.11049
https://arxiv.org/abs/1909.11049

Reranking:
● Adjust probabilities to normalise for sentence length
● Model to pick outputs that are likely to have better global score (e.g. BLEU)
● Re-rank intermediate beams, a.k.a. incremental beam manipulation

We still rely on beam search to generate good hypotheses (for good reasons?)

Beam search extensions

Training decoders for beam search:
● Penalize the model when the correct hypothesis falls of the beam (beam

search optimization, beam-aware training)
● Train a greedy decoder to approximate beam search to maximize a

sentence-level score

https://arxiv.org/abs/1808.10006
https://arxiv.org/pdf/1606.05491.pdf
https://arxiv.org/abs/2102.02574
https://aclanthology.org/2020.emnlp-main.170/
https://arxiv.org/pdf/1606.02960.pdf
https://arxiv.org/pdf/1606.02960.pdf
https://arxiv.org/pdf/2010.04980.pdf
https://openreview.net/forum?id=rJZlKFkvM

● Search errors save us from model errors!
○ Also MAP decoding might not be doing justice to our models

● In Neural Machine Translation performance degrades with larger beams...

Being less exact helps?

● Part of the problem at least is that we train word-level models but the task
makes (a lot more!) sense at the sentence-level really...

https://arxiv.org/abs/1908.10090
https://arxiv.org/pdf/2005.10283.pdf
https://www.aclweb.org/anthology/W17-3204/

Predict the action leading the correct output. Losses over structured outputs:

● Hamming loss: number of incorrect part of speech tags in a sentence
● False positives and false negatives: e.g. named entity recognition
● Reduction in BLEU score (n-gram overlap) in generation tasks, e.g. machine

translation

Training for incremental structured prediction
In supervised training we assume a loss function e.g. negative log likelihood against
gold labels in classification with logistic regression/ feedforward NNs.

In incremental structured prediction, what do we train our classifier to do?

Can we assess the goodness of each action?

● In PoS tagging, predicting a tag at a
time with Hamming loss?
○ YES

● In machine translation predicting a
word at a time with BLEU score?
○ NO

BLEU score doesn’t decompose over the
actions defined by the transition system

Loss and decomposability

Incremental structured prediction can be viewed as (degenerate) RL:
● No environment dynamics
● No need to worry about physical wear and tear (e.g. robots damaged)

Reinforcement learning

Sutton and Barto (2018)

http://incompleteideas.net/book/the-book.html

We can now do our stochastic gradient (ascent) updates:

Learn the parameters θ of policy/classifier π that optimize rewards/task loss v:

Policy gradient

What could go wrong?

● on-policy learning: the policy affects the distributions of states visited d
● the reward from reaching a state s is its expectation according to the policy

See Choshen et al. (2020), and Kiegeland and Kreutzer (2021) for a recent debate
To obtain training signal we need complete trajectories
● Can sample (REINFORCE) but inefficient in large search spaces
● High variance when many actions are needed to reach the end (credit

assignment problem)
● Can learn Q to evaluate the outcome of the action (actor-critic)

In NLP, often the models are trained initially in the standard supervised way and
then fine-tuned with RL (e.g. for summarization)
● Hard to tune the balance between the two
● Constrains the benefits of RL

Reinforcement learning is hard...

https://arxiv.org/pdf/1907.01752.pdf
https://arxiv.org/pdf/2106.08942.pdf
https://openreview.net/forum?id=SJDaqqveg
https://arxiv.org/pdf/1705.04304.pdf

● We had a good starting point

Reinforcement learning is hard… but what if

Credits: Joao Lages

Pretrained /
SFTed model

Staying close to
the starting point
(regularizer)

https://medium.com/towards-artificial-intelligence/reinforcement-learning-from-human-feedback-rlhf-f88687d5402e

Imitation learning

● Both reinforcement and imitation learning learn a
classifier/policy to maximize reward

● Learning in imitation learning is facilitated by an expert
● Basic form: supervised learning using expert demonstrations,

a.k.a behavioural cloning; IL algorithms go beyond this

Imitation learning in a nutshell

● Rollins-rollouts mix model
and expert predictions

● First iteration trained on
expert, later ones
increasingly use the trained
model

● Exploring one-step
deviations from the rollin of
the classifierChang et al. (2015)

https://arxiv.org/abs/1502.02206

Train without assuming
that all previous words
are correctly predicted

This idea was first
introduced as the
DAgger algorithm in
robotics

Scheduled sampling

Works, but make sure
you don’t forget when
the previous words are
correct!

https://www.cs.cmu.edu/~sross1/publications/Ross-AIStats11-NoRegret.pdf
https://papers.nips.cc/paper/2015/file/e995f98d56967d946471af29d7bf99f1-Paper.pdf
https://www.google.com/url?q=https://arxiv.org/abs/2109.06308&sa=D&source=editors&ust=1698270561670997&usg=AOvVaw3CsvXfqZ0LOlo4OPZgTG52

Imitation learning is hard too!

● Defining a good expert is difficult
○ How to know all possible correct next words to add given a partial

translation and a gold standard?
○ Without a better than random “dynamic” expert, we are back to RL

● While expert demonstrations make learning more efficient, it is still difficult
to handle large numbers of actions

● The interaction between learning the feature extraction and learning the
policy/classifier is not well understood in the context of RNNs

http://approximatelycorrect.com/2020/10/26/superheroes-of-deep-learning-vol-1-machine-learning-yearning/

● Larger models usually do tasks much better than smaller models
○ Knowledge distillation with larger models as the “dynamic” experts
○ Soft distillation, i.e., distilling not just the chosen action, but possibility of other actions too

● Why not get smaller models to imitate the actions of larger model?
○ Greater variability: many different trajectories can be explored, specially in creative domains
○ Richer feedback: the larger model can even provide rationales for picking actions
○ Higher scalability: large amounts of demonstrations can be collected cheaply

● See any problems?
○ Bias amplification: if the larger model has biases, smaller models will inherit that almost surely
○ Saturation: the capabilities of smaller models are inherently capped at those of the larger model

Identifying experts in the new world

● Kai Zhao’s survey
● Noah Smith’s book
● Kevin Murphy’s tutorial
● This blog on policy gradient methods
● Imitation learning tutorial
● RLHF and PPO

Bibliography

https://www.gc.cuny.edu/CUNY_GC/media/Computer-Science/Student%20Presentations/Kai%20Zhao/Second_Exam_Survey_Kai_Zhao_12_11_2014.pdf
http://www.cs.cmu.edu/~nasmith/LSP/
https://arxiv.org/abs/2412.05265
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html#what-is-policy-gradient
https://sites.google.com/view/icml2018-imitation-learning/

