
Sequence2Sequence

L101: Machine Learning for Language Processing
Andreas Vlachos

Given an input x (e.g. a sentence) predict y (e.g. a PoS tag sequence, cf lecture 5):

Where Y is rather large and often depends on the input (e.g. L|x| in PoS tagging)

Structured prediction reminder

Various approaches:
● Linear models (structured perceptron)
● Probabilistic linear models (conditional random fields)
● Generative models (hidden Markov models)

As input?

Most common structures

As output?

Natural language, i.e. sequences of character, words, sentences!

Today: focus on language-to-language methods, a.k.a. seq2seq, encoder-decoder

Odd sounding problem. Applications:

● speech recognition
● machine translation
● grammatical error detection
● etc.

Language modelling

How likely is that a sequence of words comes from a
particular language (e.g. English)?

We want to learn a model that gives us:

Problem setup

Training?

As much text as we can get!

Decompose the probability of the sentence x into conditional probabilities of each
word given the previous ones:

Language modelling

These are typically (until 2010) estimated using word counts:

Any problems?
Sparsity! Solutions:
● Markov assumption, i.e. N-gram language models
● smoothing: interpolation between models, Kneser-Ney, stupid back-off, etc.

https://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

A giant logistic regression classifier over words:

But terribly inefficient using counts/one-hot encoding as features!

What is a language model?

A language generator:

● Sample repeatedly from p(x), each time adding the words in the context
● Stop when the <END> of the sentence token is sampled

Skipgram word embeddings

Skipgram (Mikolov et al.
2013) is a giant word-
given-word classifier with
learned features:

(each word has two
embeddings)

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781

Using 3 words
as context
instead of 1.
Limitations?

Context used
still limited

NN has to learn
how to use the
same word in
each context
place separately

A Feedforward NN N-gram Language model

Each word is
processed using
the same weight
matrices.

Recurrence

● V is the output layer, like the weights of logistic regression
● W is the word embeddings dictionary (can be pre-trained/fine-tuned)
● g is a nonlinear function, e.g. tanh
● U determines how to use the representation of the context ht-1

Recurrent Neural Network

Why not simple backpropop?

Each ht affects yt and every
yt’>t afterwards

The loss calculation needs to
take all into account

Unroll the network for a
fixed number of steps

Still uses unlimited context
during testing

Backpropagation through time

1. Sample a word
2. Feed its embedding
3. Repeat until end of sentence

Many options for decoding

● max
● random
● top-k
● nucleus (Holtzman et al.)
● temperature scaling
● beam search (next lecture)

Decoding, i.e. generation

https://arxiv.org/pdf/1904.09751.pdf
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/temp-scaling.html

Which tasks fit which variant?
● PoS tagging?
● Machine translation?
● Image captioning?

Typical combinations

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

FFNN

Seq2seq, encoder-decoder,
language generator
conditioned on sequence

Conditional
language
generator

Sequence
encoder and
classifier

Sequence encoder,
token tagger

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

● Bidirectional RNN encoders are commonly used
○ Sentence representations avoiding being biased by the last tokens
○ Word representations taking into account context left and right

● Multiple hidden layers are commonly used (stacked RNNs)
○ More demanding computationally
○ Able to learn more high level features

● Long-Short Term Memory Networks (Hochreiter and Schmidhuber, 1997)
were introduced to handle long-range dependencies

● Convolutional Neural Networks are also used relying on multiple layers to
mitigate the effect of the fixed window

● While using words as the modelling unit, using characters and subwords helps
deal with rare/unknown words

A few more pointers

https://arxiv.org/pdf/1705.03122.pdf
https://www.aclweb.org/anthology/P16-1162/

RNNs don’t handle them well, but Long-Short Term Memory Networks
(Hochreiter and Schmidhuber, 1997) do:
● introduce a memory cell, running parallel to the hidden state
● forget gate that decides which part of the memory to drop
● input gate that decides which part of the input to add to the memory
● output gate that decides which part of the memory to use in the hidden state

Advantages:
● Memory cell allows us to keep information not immediately needed
● Addresses the issue of vanishing/exploding gradients

○ see gradient clipping as an alternative
Main disadvantage: more parameters to learn, but usually worth it

Long-range dependencies

Abigail See, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long-short term memory networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Generating a sentence based
on one vector suboptimal:
not all inputs relevant to
every output

Allow the model to use
hidden states of the input
apart from the last one

Attention intuitively works
as an alignment mechanism,
but it is not clear how/why

Attention

https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

https://arxiv.org/abs/1902.10186
https://arxiv.org/abs/1908.04626
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html

Key idea behind the Transformers (Vaswani et al. 2017)
● Better parallelization, i.e. faster, more data, etc.
● Can be seen as a fully connected graph neural network

Self-attention instead of recurrence

Arriana Bisazza
(AthNLP 2019)

https://arxiv.org/abs/1706.03762
https://thegradient.pub/transformers-are-graph-neural-networks/
https://www.youtube.com/watch?v=asa9yme-lO8
https://www.youtube.com/watch?v=asa9yme-lO8

http://jalammar.github.io/illustrated-transformer/

Transformers - overview

http://jalammar.github.io/illustrated-transformer/

Transformers - multiple layers of self-attention

https://ai.googleblog.com/2017/08/transformer-novel-
neural-network.html

Each layer has multiple attention heads
which can be pruned after training

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://papers.nips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf

Transformers - positional encoding

No recurrence, but
order is taken into
account via the
positional
embeddings

http://jalammar.github.io
/illustrated-transformer/

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

Transformers - decoder

Same as
encoding but
can only
self-attend to
tokens already
generated and
attends to the
input too

http://jalammar.git
hub.io/illustrated-t
ransformer/

http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

BERT: Bidirectional Encoder Representations from Transformers, i.e.:
● take the transformer encoder stack (self-attention, positional encodings, etc.)
● download a lot of text (sub-word tokenized)
● add special tokens for the sentence beginning and separators
● train two models: left-to-right and right-to-left using two objectives:

○ Masked language modelling: predict words missing at random from the text
○ Next sentence prediction: predict whether the next sentence was the one in

the text or not

Typically considered the baseline method to beat:
● use it pre-trained as an input encoder/feature extractor
● fine-tune it to produce token/sentence embeddings for the task

Encoder only: BERT (Devlin et al., 2018)

https://arxiv.org/pdf/1810.04805.pdf

http://jalammar.github.
io/illustrated-bert/

BERT
Task 1: masked
language modelling

Task 2: next sentence
prediction

http://jalammar.github.io/illustrated-bert/
http://jalammar.github.io/illustrated-bert/

Yes! Generalised pre-training (GPT)!

Just take the embedding produced by the decoder before predicting the word

Simpler architecture, better scaling!

Decoders is all we need?
● An overkill when we just need an embedding (millions vs billions of params)
● Dedicated encoders can produce superior representations (Qorib et al. 2024)
● With enough labeled data encoder only has better accuracy (Wang et al. 2024)

Decoders as encoders?

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://aclanthology.org/2024.findings-acl.967.pdf
https://arxiv.org/abs/2411.05050

● Jurafsky and Martin chapters on neural language models and RNNs (RNN
figures are from there unless otherwise stated)

● This blog explains RNNs and BPTT with code
● The deep learning book, chapter 10
● Two blogs about transformers and J&M chapter
● BERT survey
● Noah Smith’s introduction to contextual word embeddings
● Seq2Seq can be used for generating sequences that are not words (only) such as

semantic parsing

Bibliography

https://web.stanford.edu/~jurafsky/slp3/7.pdf
https://web.stanford.edu/~jurafsky/slp3/13.pdf
http://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/
https://www.deeplearningbook.org/
http://jalammar.github.io/illustrated-transformer/
http://nlp.seas.harvard.edu/2018/04/03/attention.html
https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://arxiv.org/abs/2002.12327
https://arxiv.org/pdf/1902.06006.pdf
https://arxiv.org/pdf/1601.01280.pdf

We have
addressed the
problem of
sparse
N-grams

But we
replaced it with
the problem of
empty
translations
(next lecture!)

http://nlp.cs.berkele
y.edu/comics.shtml

http://nlp.cs.berkeley.edu/comics.shtml
http://nlp.cs.berkeley.edu/comics.shtml

