
Feed Forward Neural Networks

L101: Machine Learning for Language Processing
Andreas Vlachos



Linear classifiers

http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html

e.g. binary logistic regression:

And their limitations:

http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html


Decompose predicting red vs blue in 3 tasks:
● top-right red circles vs. rest
● bottom-left red circles vs. rest
● If one of the above is red circle, then it is 

red circle, otherwise blue cross

Transform non-linearly into linearly 
separable!

What if we could use multiple classifiers?



More concretely:

Feed forward neural networks

Terminology: input units x, hidden units h

Can think of the hidden units as learned features

More compactly for 
k layers :



Feedforward: no cycles, the information 
flows forwards

Fully connected layers

Feed forward neural networks: Graphical view

Barbara Plank (AthNLP 2019)



Non-linearity is key: without it 
we still do linear classification

Multilayer perceptron is a bit of a 
misnomer

Hughes and Correll (2016)

Activation functions



What could go wrong?

We can only calculate the derivatives of the loss for the final layer, we do not know 
the correct values for the hidden ones. The latter with non-linear activations make 
the objective non-convex.

How to learn the parameters?
Supervised learning! Given labeled training data of the form:

Optimize the Negative Log-Likelihood, e.g. with gradient descent:



We can obtain temporary values for the hidden layer and final loss (forward 
pass) and then calculate the gradients backwards:

Backpropagation

https://srdas.github.io/DLBook
/TrainingNNsBackprop.html

https://srdas.github.io/DLBook/TrainingNNsBackprop.html
https://srdas.github.io/DLBook/TrainingNNsBackprop.html


Backpropagation (toy example)

Ryan McDonald (AthNLP 
2019)



L2 is standard

Early stopping based on 
validation error

Regularization

https://srdas.github.io/DLBook/ImprovingModelGeneralization.ht
ml#ImprovingModelGeneralization

Dropout (Srivastava et al., 
2014): remove connections 
during training at random, 
different each time, in order to 
make the rest work harder

Same in testing: MC-dropout 
uncertainty estimates

https://srdas.github.io/DLBook/ImprovingModelGeneralization.html#ImprovingModelGeneralization
https://srdas.github.io/DLBook/ImprovingModelGeneralization.html#ImprovingModelGeneralization
http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1506.02142


● Learning rates in (S)GD with backprop need to be small (we don’t know the 
values for the hidden layer, we hallucinate them)

● Batching the data points allows us to be faster on GPUs

● Learning objective non-convex: initialization matters
○ Random restarts to escape local optima
○ When arguing for the superiority of an architecture, ensure it is not the 

random seed (Reimers and Gurevych, 2017) or some other implementation 
detail (Narang et al. 2021)

● Initialize with small non-zero values

● Greater learning capacity makes overfitting more likely: start making sure you 
can (over-)fit the data, then regularize

Let’s try some of this

Implementation

https://arxiv.org/pdf/1707.09861.pdf
https://arxiv.org/abs/2102.11972
http://playground.tensorflow.org/#activation=sigmoid&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4&seed=0.24754&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


From discrete features to neural
Remember multiclass logistic regression:

For large number of labels with many sparse features, difficult to learn. Factorize!

A contains the feature embeddings and B maps them to labels

The feature embeddings can be initialized to word embeddings

FastText (Joulin et al., 2017) was popular baseline for classification (pre-BERT)

https://www.aclweb.org/anthology/E17-2068/


Sentence pair modelling

Bowman et al. (2015)

We can use FFNNs to perform tasks 
involving comparisons between two 
sentences, e.g. textual entailment: does 
the premise support the hypothesis?

Premise: Children smiling and waving 
at a camera
Hypothesis: The kids are frowning
Label: Contradiction

Well-studied task in NLP, was 
revolutionized

https://nlp.stanford.edu/pubs/snli_paper.pdf


Interpretability
What do they learn?

Two families of approaches:
● Black box: alter the inputs to expose the learning, e.g. LIME
● White box: interpret the parameters directly, e.g. learn the decision tree

○ Alter the model to generate an explanation in natural language
○ Encourage parameters to be explanation-like

What is an explanation?
● Explains the model prediction well?
● What a human would have said to justify the label?
● Faithfulness, i.e. does the explanation contain the information used in the 

prediction, is important too (e.g. for debugging)

https://arxiv.org/abs/1602.04938
https://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf
https://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations
https://www.aclweb.org/anthology/N19-1101/
https://www.dongnguyen.nl/publications/nguyen-naacl2018.pdf
https://arxiv.org/abs/2006.01067


Why should we be excited about NNs?
Continuous representations help us achieve better accuracy

Open avenues to work on more tasks that were not amenable with discrete features:
● Multimodal NLP
● Multi-task learning

Pretrained word (Turian et al., 2010) and sentence embeddings (Devlin et al., 
2018) are the most successful semi-supervised learning method 

https://www.aclweb.org/anthology/P10-1040/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805


Why not be excited?

We don’t quite understand them: arguments 
about architecture/regularization suitability 
to task do not seem to be tight 

(the field is working on it)

Feature engineering is replaced by 
architecture engineering

Bowman et al. (2015)

Need for (more) data

https://arxiv.org/abs/1611.03530
https://nlp.stanford.edu/pubs/snli_paper.pdf


Noise from being stochastic in gradient descent can be beneficial as it avoid sharp 
local minima (Keskar et al. 2017)

Optimization

https://arxiv.org/pdf/1609.04836.pdf


Double descent

Belkin et al. (2018): Number of parameters is not the only factor in determining 
complexity; their size (norm) matters

https://www.pnas.org/content/116/32/15849


What can we learn with FFNNs?
Universal approximation theorem tells us that with one hidden layer with enough 
capacity can represent any function (map between two spaces). Why new NNs then?

Being able to represent, doesn’t mean able to learn the representation:
● Adding more hidden units becomes infeasible/impractical
● Optimization can find poor local optimum, or overfit

We can compress large trained models with simple ones, but not learn the simpler 
ones directly (Ba and Caruana, 2014)

Larger networks with many network weights to tune have more chances to learn the 
few network weights needed for the task/dataset (lottery ticket hypothesis)

https://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
https://arxiv.org/abs/1803.03635


Bibliography
A simple implementation in python of backpropagation (the nonlinear function 
derivative there is a bit of a misnomer, but the code works, why?)

The tutorial of Quoc V. Le

A nice, full-fledged explanation of back-propagation

Similar material from an NLP perspective is covered in Yoav Goldberg's tutorial, 
sections 3-6

Chapter 6, 7 and 8 from Goodfellow, Bengio and Courville (2016) Deep Learning

New book on Understanding deep learning 

http://iamtrask.github.io/2015/07/12/basic-python-network/
http://cs.stanford.edu/~quocle/tutorial1.pdf
http://cs231n.github.io/optimization-2/
http://u.cs.biu.ac.il/~yogo/nnlp.pdf
http://www.deeplearningbook.org/
https://udlbook.github.io/udlbook/

