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Linear classifiers

e.g. binary logistic regression: P(g _— ]_) — 0'('w . ¢($))
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http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html



http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html

What if we could use multiple classifiers?
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Decompose predicting red vs blue in 3 tasks:
e top-right red circles vs. rest
e bottom-left red circles vs. rest
e If one of the above is red circle, then it is
red circle, otherwise blue cross

Transform non-linearly into linearly
separable!



Feed forward neural networks

More concretely: hi = fl (CB) — 0'(’(1)133 + bl)
h2 = fz(.’B) = J(wza: + b2)
P(:l) = ].) = 0'(’w . [hl;hz] + b)
Terminology: input units x, hidden units h

Can think of the hidden units as learned features

More compactly for ht = o(W'z +b')

k layers : R
P(§ =1) = o(WF . hF1 £ bF)



Feed forward neural networks: Graphical view
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W2 Feedforward: no cycles, the information

flows forwards

Fully connected layers

Barbara Plank (AthNLP 2019)




Activation functions
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Sigmoid

Rectified Linear

0 ifz<0
w(:)={

z ifz220

Non-linearity is key: without it
we still do linear classification

Multilayer perceptron is a bit of a
misnomer

Hughes and Correll (2016)




How to learn the parameters?

Supervised learning! Given labeled training data of the form:
_ 1 .1 M , M
D_{(m7y ),(CB Y )}

Optimize the Negative Log-Likelihood, e.g. with gradient descent:
NLL(y,y) = —ylog P(§ = 1) — (1 — y) log(1 — P(§ = 1))

What could go wrong?

We can only calculate the derivatives of the loss for the final layer, we do not know

the correct values for the hidden ones. The latter with non-linear activations make
the objective non-convex.




Backpropagation

We can obtain temporary values for the hidden layer and final loss (forward
pass) and then calculate the gradients backwards:

FORWARD PASS
Compute the Node
Activations z

BACKWARD PASS
Compute the Node https://srdas.github.io/DLBook
Gradients § /TrainingNNsBackprop.html
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Backpropagation (toy example)

All base derivatives
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Regularization
L2 is standard

Early stopping based on
validation error

Dropout (Srivastava et al.,
2014): remove connections (a) Standard Neural Net (b) After applying dropout.
during training at random,

different each time, in order to

make the rest work harder w pw
Present with Always
probability p present
Same in testing: MC-dropout (=) An tusllng thaes (A et e
uncertaintv estimates https://srdas.github.io/DLBook/ImprovingModelGeneralization.ht

ml#ImprovingModelGeneralization



https://srdas.github.io/DLBook/ImprovingModelGeneralization.html#ImprovingModelGeneralization
https://srdas.github.io/DLBook/ImprovingModelGeneralization.html#ImprovingModelGeneralization
http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
http://jmlr.org/papers/volume15/srivastava14a.old/srivastava14a.pdf
https://arxiv.org/abs/1506.02142
https://arxiv.org/abs/1506.02142

Implementation

Learning rates in (S)GD with backprop need to be small (we don’t know the
values for the hidden layer, we hallucinate them)

Batching the data points allows us to be faster on GPUs

Learning objective non-convex: initialization matters
o Random restarts to escape local optima
o When arguing for the superiority of an architecture, ensure it is not the
random seed (Reimers and Gurevych, 2017) or some other implementation
detail (Narang et al. 2021)

Initialize with small non-zero values

Greater learning capacity makes overfitting more likely: start making sure you
can (over-)fit the data, then regularize

Let’s trx some of this


https://arxiv.org/pdf/1707.09861.pdf
https://arxiv.org/abs/2102.11972
http://playground.tensorflow.org/#activation=sigmoid&batchSize=10&dataset=xor&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4&seed=0.24754&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

From discrete features to neural

Remember multiclass logistic regression:
P(y|z) = softmaz(W - ¢(x)), W € RIYI*I¢E)|
For large number of labels with many sparse features, difficult to learn. Factorize!

P(ylz) = softmaxz((B - A) - ¢(x)),B € RIYXk A ¢ Rexlo()|

A contains the feature embeddings and B maps them to labels
The feature embeddings can be initialized to word embeddings

FastText (Joulin et al., 2017) was popular baseline for classification (pre-BERT)



https://www.aclweb.org/anthology/E17-2068/

Sentence pair modelling

We can use FFNNs to perform tasks

3-way softmax classifier

involving comparisons between two $
sentences, e.g. textual entailment: does 2Ll ta;lh VS
. . o
the premise support the hypothesis? 200d tanh layer
?

Premise: Children smiling and waving 200d tanh layer
at a camera 7 ™~
Hypothesis: The kids are frowning 100d I}remlse e hyTpOtheSIS
Label: Contradiction

sentence model sentence model

with premise input with hypothesis input

Well-studied task in NLP, was
revolutionized Bowman et al. (2015)



https://nlp.stanford.edu/pubs/snli_paper.pdf

Interpretability

What do they learn?

Two families of approaches:
e Black box: alter the inputs to expose the learning, e.g. LIME
e White box: interpret the parameters directly, e.g. learn the decision tree

o Alter the model to generate an explanation in natural language
o Kncourage parameters to be explanation-like

What is an explanation?
e [xplains the model prediction well?
e What a human would have said to justify the label?
e [aithfulness, i.e. does the explanation contain the information used in the

prediction, is important too (e.g. for debugging)
T SGGGSSGSSSSSS——————————————,— S



https://arxiv.org/abs/1602.04938
https://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf
https://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations
https://www.aclweb.org/anthology/N19-1101/
https://www.dongnguyen.nl/publications/nguyen-naacl2018.pdf
https://arxiv.org/abs/2006.01067

Why should we be excited about NNs?

Continuous representations help us achieve better accuracy

Open avenues to work on more tasks that were not amenable with discrete features:
e Multimodal NLP
o Multi-task learning

Pretrained word (Turian et al.. 2010) and sentence embeddings (Devlin et al.,

2018) are the most successful semi-supervised learning method


https://www.aclweb.org/anthology/P10-1040/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

Why not be excited?
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Bowman et al. (2015)
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Optimization
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Testing Function
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Sharp Minimum

Flat Minimum

Noise from being stochastic in gradient descent can be beneficial as it avoid sharp

local minima (Keskar et al. 2017)
T SGGGSSGSSSSSS——————————————,— S



https://arxiv.org/pdf/1609.04836.pdf

Double descent

| under-fitting over-fitting under-parameterized over-parameterized
. Test risk Test risk
% % “classical” “modern”
'OE E regime interpolating regime
LS . .
~ o Training risk ~ Training risk:
sweet spot\: = S~ _ . interpolation threshold
Complexity of H Complexity of H
(a) U-shaped “bias-variance” risk curve (b) “double descent” risk curve

Belkin et al. (2018): Number of parameters is not the only factor in determining

complexity; their size (rnorm) matters


https://www.pnas.org/content/116/32/15849

What can we learn with FFNNs?

Universal approximation theorem tells us that with one hidden layer with enough
capacity can represent any function (map between two spaces). Why new NNs then?

Being able to represent, doesn’t mean able to learn the representation:
e Adding more hidden units becomes infeasible /impractical
e Optimization can find poor local optimum, or overfit

We can compress large trained models with simple ones, but not learn the simpler
ones directly (Ba and Caruana, 2014)

Larger networks with many network weights to tune have more chances to learn the
few network weights needed for the task/dataset (lottery ticket hypothesis)



https://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
https://arxiv.org/abs/1803.03635
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