Optimization fundamentals

LL101: Machine Learning for Language Processing % ig%%

44 4

Andreas Vlachos

Previous lecture

Logistic regression parameter learning:

w —argmin S —ylogo(u- 4() ~ (1 ~1) g1 ~ o(w - 6(s))

Supervised machine learning algorithms typically involve optimizing a loss over the

training data: w* = arg min L(w; D), w E Rk
w

This is an instance of numerical optimization, i.e. optimize the value of a function
with respect to some parameters.

A scientific field of its own; this lecture just gives some useful pointers

Types of optimization problems

Continuous: r* = argmin f(z),z € RF
Wi

Discrete: z* = argmin L(z),z € ZF
xZ

Sounds rare in NLP?
Inference in classification/structured prediction: a label is either applied or not

Constraints: x* = arg min L(:B), c(x) >0
£

Examples: SVM parameter training, enforcing constraints on the output graph

Convexity

T i @ Ve,y €S :az+ (1—a)y € S,a € [0,1]
f(x)

For functions:

If £ concave, -f'is tf (1) + (1=) (x2)

convex £ (b2 (1)a) >

For sets the
. . http://en.wikipedia.org/wiki/Convex set,
relatlon IS more http://en.wikipedia.org/wiki/Convex function

complicated 1 ta+ (1= fa o

ftzr + (1 — t)z) < tf(z1) + (1 —) f(22),t € [0, 1]

https://en.wikipedia.org/wiki/Convex_set
https://en.wikipedia.org/wiki/Convex_function

Derivatives (refresher)

Derivative at a point x is the slope of
the tangent line on the function f

tangent line

Best linear approximation of fnear x . R

http://en.wikipedia.org/wiki/Derivative

Defined as this quotient:

f(z+h)—f(z) O
h

secant line

limy, 0

L :

https://en.wikipedia.org/wiki/Derivative

Taylor’s theorem

For a function f that is continuously differentiable, there is ¢ such that:

f(x +p) = f(z) + Vf(z +tp)p,t € (0,1)

If twice differentiable:

f(+p) = f(z) + Vf(x)p+ 50V*f(z + tp)p, t € (0,1)

e We don’t know ¢, just that it exists
e (Given value and gradients at x, can approximate function at x + p
e Higher degree gradients used, better approximation possible

Types of optimization algorithms

e Line search
e Trust region
e (radient free

e C(Constrained optimization

Line search

At the current solution x,, pick a descent direction first p,, then find a stepsize a:

min f(xy + apx)
a>0

and calculate the next solution: T+l — Tk + « k Pk
General definition of direction: D — —B;l Vf(CU k)
Gradient descent: B — I

Newton method (assuming f twice 2
differentiable and B, invertible): Bk =V f (Q?k)

Gradient descent (for supervised MLE training)

Input: training examples D = {(z!,9'),... (z™,yM)},
learning_rate o
Initialize weights w
while V,,NLL(w; D) # 0 do
Update w = w — aV NLL(w; D)
end while

To make it stochastic, just look at one training example in each iteration and go over
each of them. Why is this a good idea?

What can go wrong?

Gradient descent

Wrong step size:

fiw) fiw)

w' w w' w
Too small: converge Too big: overshoot and
very slowly even diverge

https://srdas.github.io/DLBook/GradientDescentTechniques.html

o () =flx,+ap,)

line of sufficient
decrease

o o)

acceptable

acceptable

Line search converges to the minimizer when the iterates follow the Wolfe

conditions on sufficient decrease and curvature (Zoutendijk’s theorem)

Back tracking: start with a large stepsize and reduce it to get sufficient decrease

https://srdas.github.io/DLBook/GradientDescentTechniques.html

Second order methods

Using the Hessian (line search Newton’s method):

Tpi1 = o — o V2 f(zr) 7V F(2r)
Expensive to compute. Can we approximate?

Yes, based on the first order gradients:

Vf(zr1)—Vf(zr)

Lr+1— Tk

By =

BFGS calculates B, ! directly without moving too far from B,

What are desirable properties in line search?

Fast convergence:
e [ew iterations
o Stochastic gradient descent will have more than standard gradient descent
e C(Cheap iterations; what makes them expensive?
o Function evaluations for backtracking with line search (this is the reason
for researching adaptive learning rates)
o (approximate) second order gradients (partly why they are not used in DL)

Memory requirements? Storing second order gradients requires |w|?. One of the key
variants of BFGS is L(imited memory)-BFGS.

Default line search nowadays

ADAM (Adaptive Moment Estimation)

- An exponentially decaying average of the gradients is kept (momentum)
Have we seen this before?

- HKach parameter has its own learning rate using exponentially decaying squared
oradients (adaptive)

One can learn the updates: Learning to learn gradient descent by gradient descent

https://arxiv.org/abs/1606.04474

Trust region

Taylor’s theorem:

f(+p) = f(z) + Vf(x)p+ 50V*f(z + tp)p, t € (0,1)

Assuming an approximation m to the function /' we are minimizing:

my(p) = fzx) + Vf(zr)p + 50V f(zi)p

Given a radius A (max stepsize, trust region), choose a direction p such that:
min mg (p), p < Ay

f(zr)—f(zr+py)
my (0) —my (py,)

Measuring trust:

‘rust region

s --.. Trustregion

Line search direction

contours of my

Trust region step
contours of f

Worth considering
with relatively few
dimensions.

Recent success in
reinforcement

learning

https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1502.05477

Gradient free

What if we don’t have/want gradients?
e [function is a black box to us, can only test values
e (Gradients too expensive/complicated to calculate, e.g.: hyperparameter
optimization

Two large families:
e Model-based (similar to trust region but without gradients for the
approximation model)
e Sampling solutions according to some heuristic

o Nelder-Mead
o Evolutionary/genetic algorithms, particle swarm optimization

Bayesian Optimization

T T T T
o|- Gaussian process posterior on the objective function i

e Model approximation
based on Gaussian

Process regression
e Acquisition function

tells us where to
sample next

® See here for a nice
illustration

value of sampling

Frazier (2018)

https://distill.pub/2020/bayesian-optimization/
https://arxiv.org/pdf/1807.02811.pdf

Overfitting

Separating hyperplanes in training Error during training and testing
L

A

https://en.wikipedia.org/wiki/Overfitting# Machine learning

https://en.wikipedia.org/wiki/Overfitting#Machine_learning

Regularization

We want to optimize the function/fit the data but not too much:

w* = arg min L(w; D) + AR (w)

Some options for the regularizer:
o L2 (ridge): Zuw”

e L1 (Lasso): X|w)|

e Flastic net: L1+L2

e L-infinity: max(w)

Words of caution

Sometimes we are saved from overfitting by not optimizing well enough

There is often a discrepancy between loss and evaluation objective; often the latter
are not differentiable (e.g. BLEU scores)

Check your objective if it tells you the right thing: optimizing less precisely and
oetting better generalization is OK, having to optimize badly to get results is not.

Construct toy problems: if you have a good initial set of weights, does optimizing the
objective leave them unchanged?

Harder cases

e Non-convex
e Non-smooth

10

x3

Saddle points: zero gradient is a first
order necessary condition, not sufficient

/ \

/

/

-4 -3 =2 -1 0

1

2

3 4

https://en.wikipedia.org/wiki/Saddle point

https://en.wikipedia.org/wiki/Saddle_point

Bibliography

e Numerical Optimization, Nocedal and Wright, 2002. (uncited images from
there) https://www.springer.com/gb/book/9780387303031

e Francisco Orabona’s blog: https://parameterfree.com

e A course on optimization in ML by Roger Grosse:
https://www.cs.toronto.edu/~rgrosse/courses/csc2541 2022/

https://www.springer.com/gb/book/9780387303031
https://parameterfree.com
https://www.cs.toronto.edu/~rgrosse/courses/csc2541_2022/

