
Probabilistic Classification

L101: Machine Learning for Language Processing
Andreas Vlachos



Previous lecture: the perceptron
Advantages:
● Intuitive
● Simple to implement

Disadvantages:
● No probabilities
● Can’t handle non-linear datasets



Why probabilities?
● Interpretability: scores don’t tell us much about the confidence of the model
● Knowing what the model knows (and what it doesn’t)
● Knowing when the input is ambiguous
● Ability to incorporate prior knowledge

Two approaches in today’s lecture:

● Generative: Naive Bayes
● Discriminative: Logistic regression



Classification with Bayes

In plain English:

What we want to do:

Bayes Rule:

Should we care about the evidence?
● No(?) if we only want the class prediction
● Yes if we want to know what inputs our model knows about



Naive Bayes

With a feature function:

Naive Bayes: assume each feature 
φi is independent given the class: 

How do we train the model?

Supervised learning, in this case: Count and divide!



Maximum likelihood estimate for Naive Bayes

● w1: Count the times each class appears, divide with the number of instances
● w2: Count the times each feature appears in instances of a class, divide with 

sum of feature occurrences for that class (use smoothing to avoid 0s) 

What did we get by being naive?

Find the parameters w1,w2 that maximize the likelihood L of D under the model:

Probability of one instance?

Given labeled training data of the form:



Generative vs Discriminative

Generative models like Naive Bayes can generate text/instance given the class:
● Can ask the model what an instance of a certain class looks like
● Can be seen as a class conditional language model
● Help learning when we don’t have much training data

Discriminative models:
● Model the class prediction directly
● More flexibility in modelling features



All we want is to predict the class: 

From generative (back) to discriminative 

And we are still happy to use a linear model

Recall the binary linear classifier 
we learned with the perceptron:



Logistic regression

Push the dot product through the 
sigmoid function:

The binary logistic regression 
classifier (labels are 0, 1):

Recall the binary linear classifier 
we learned with the perceptron:



How to learn the parameters?
Supervised learning! Given labeled training data of the form:

Learn weights w that generalize well to new instances

Naive Bayes has closed form solution for MLE (count and divide using the data)

In the case of the logistic regression this is not possible; we still define a learning 
objective, but then use a numerical optimization algorithm to find the weights.

Perceptron is a particular objective-algorithm combination



Objective
Maximize the likelihood of the data under the model:

Recall that y has two discrete options, 1 and 0

Minimize the negative log likelihood (NLL):

Often referred to as the cross entropy loss



Objective
Plugging in the logistic regression function:

And all the training data: 

Unlike the perceptron, it is not enough for the correct label to be the highest 
scoring; the incorrect one must score as low as possible



Optimizing the objective
We have a function that we want to minimize wrt some parameters.

Sometimes there are closed form solutions (naive Bayes), otherwise?

● Random guesses at parameters and objective evaluations

● Take into account the shape of the function



Optimizing a simple function

With a number of random guesses at x we can get close to the minimum



Gradients

http://bestmaths.net/online/index.php/year-levels/year-12/year-12-topic-list/first-principles/

Gradients guide us to the minimum, 
where the gradient in this case is 0

http://bestmaths.net/online/index.php/year-levels/year-12/year-12-topic-list/first-principles/


Gradients for logistic regression

Interpretation: the weight should be updated proportionally to the loss of the model 
multiplied by the value of the feature for each instance

Objective (reminder):

Gradient with respect to weight wj for feature φj:



Binary to Multiclass
The sigmoid “squishes” a real number z 
to the 0..1 range

The softmax “squishes” a vector z of k 
real numbers to the probability simplex

Multinomial logistic regression:

Still a linear classifier:



Generative vs Discriminative
Which one would you choose?

● If we do not have a lot of training data, generative can avoid overfitting (must 
learn to generate the data too)

● If a lot of features are likely to matter and not sure about their correlations, 
discriminative is more intuitive (no need to generate the data)

● Naive Bayes is trivial to train
● Logistic regression is the standard at this point for linear classifiers

○ Linear support vector machines are good too (but not probabilistic)



Limitations of linear classifiers

They assume that our data as represented by φ(x) is linearly separable. It is easy 
construct datasets that are not.

http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html

http://www.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node19.html


Alternatives?
● Engineer better features

● K-nearest neighbors

● Kernel methods

● Neural networks



K-nearest neighbors

Advantages:
● Non-linear
● Non-parametric

● Assumes a distance metric (can be learned)
● No training, just memorize the training data
● Classify according to the nearest neighbor(s)

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

Disadvantages:
● With large datasets can be 

computation/memory heavy
● No feature learning

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm


αi: the times (xi,yi) was 
misclassified in training

Kernel methods
We can replace the weights with calculations involving the training instances:

Binary perceptron

Perceptron with 
(non-linear) kernels

Support vector machines also use kernels, but in addition they find the max 
margin separating hyperplane



Bibliography
● Jurafsky and Martin chapter 4 on logistic regression
● André Martins gave a 3hr lecture covering a lot of what we discussed at LxMLS
● Work on modelling the evidence P(x) by Nalisnick et al. (2019) with references 

on learning the evidence; TLDR: doesn’t behave as needed, WIP
● Ng and Jordan (2002) on generative vs discriminative
● K-nearest neighbours are coming back? Generalization through memorization: 

Nearest neighbor language models applied to machine translation
● On interpreting probabilities (Baan et al. 2024)
● Historical note: until 2010 or so, logistic regression was referred to as 

maximum entropy or maxent

https://web.stanford.edu/~jurafsky/slp3/4.pdf
http://lxmls.it.pt/2019/LINEAR_LEARNERS.pdf
https://arxiv.org/abs/1810.09136
https://papers.nips.cc/paper/2020-on-discriminative-vs-generative-classifiers-a-comparison-of-logistic-regression-and-naive-bayes.pdf
https://arxiv.org/pdf/1911.00172.pdf
https://arxiv.org/pdf/1911.00172.pdf
https://arxiv.org/pdf/2010.00710.pdf
https://aclanthology.org/2024.eacl-short.24/

