Program Synthesis

MPhil ACS module P342 - Alan Blackwell

You do the rest!

What is the problem?

According to Tim Flagg, founder of UKAI “the trade association for Al

businesses in the UK”, speaking at the Judge Business School last week
(29 Oct 2025):

The main problem faced by companies is
time wasted on repetitive processes.

So, how can we find appropriate solutions? (Perhaps “agentic” Al?)

Principles of program synthesis, from HCI perspective

1 The user experience of ML-based synthesis:
The user says: “Here is an example of what | want to do”
Followed by: “You do the rest”

1 System response:“OK, I'll do others the same way”
How does it know what “others” are?
How does it know what “the same way” is?

1 Usability issues:
How to specify applicability?
How to control generalisation?
How to understand what was inferred?
How to modify the synthesised program!?

Classic programming by example

1 Keyboard macros — demo in Emacs

1 Get a plain text file containing semi-structured text

0 <Ctrl+x> (starts macro recording

1 Perhaps search for context, cut and paste, add text ...

1 Remember to go to known location (e.g. start of next line)
0 <Ctrl+x>) ends recording

0 <Ctrl+x> e plays back once

1 <ESC> 1 0 0 <Ctrl+x> e repeats 100 time

Value proposition

1 The next generation of Al:“Intelligent tools”

1 If a user knows how to perform a task on a computer, that should be sufficient to

create a program to perform the task.
Early research aimed to achieve “programming in the user interface”

1 Macro recorders are one model, but they are “too literal”
Do only what they are shown (no generalisation)
Unable to adjust for different cases (no inference)

1 Other models:
Automation of repetitive activities
Creation of custom applications

1 Machine learning problem is to create a model of user intent
|deally informed by prior likelihood — from this user, and other users

Eager

Classic mixed-initiative programming by example

1 Allen Cypher’s “Eager” created at Apple research in 1990
Implemented as extension to Hypercard (event capture + injection)
Machine learning implemented in LISP

1 Scenario — create a script to produce a list of subject lines from messages

« File Edit Go Tools Objects For

=—— Mail =———0)|
& MESSAGE o |
Subject{Where were you?

Erom: JONES3

Allen -

[had expected to see you

‘;‘; File

a) copy first subject

.....................

sanaeBlABITRTERTTRTS .

.....................

.....................

g Go Tools Objects Font S!

Undo . ¥4

[t Y
fopy Zi3H
Paste Texnt #1I
{fear

wny e s A SES A AR RLARESBIRATORT NS

New Card N

Delete Card
Cut Card
Copy Card

e EbestsadsatiREsPITRITaS st a TRt ARastERIERTARSTTERSLES

Texnt Style... 8T

Background]

icom... ®1
u |ec

2

L

e nea s tRAeRTAAAsianaEesatiBIIRATERT T R AsRAS S

CRAAmeseeERe ia ALIAREABEERaT R ARAsRTIRETRSLaLlen

RN AERARAERNENEERITNTS SIARIRARINIRcLRaRas AR

b) type "1. " and paste subject

« File Edit 6o Tools Objects For

E———— Bepqpe——

3

Subject: a necessary evil... .
From: jmiller

R S R L e e P P B S PR R R B e S T P T TR

paTTERTIESALCAARRIR AR RN TR . i e e D B R T PR T P PR

m

& MESSAGE g

c) go to next message

« File Edit Go Tools Objects For
Mail [Z1Efh

"MESSAGE o ||

LT ST L

_This is a reminder to all
tolook once againfor ..

T T R T e e e e e e e T LT TP

ARRAARANen SRS NS BOE SEE SHE AP TR AR SR IIREEREIRITETINITRY

d) copy second subject

= rile JCIP Go Tools Objects Font S! = File Edit Go Tools Objects For
| BE

Undo ®Z =T Mail

........... & MESSAGE o

Lan ful =L —
Lopy L
Paste Text #.
fipar

Subject{Where were you}
From: JONES3. .

ineaEetasaEatRIRIVIEIIREsETIPIsissTIsRaLRRRIRSISS

................. New Cord %N
Delete Card
Cut Card

.................. Copy Card

.....................

--

wasoa B e L LA L
..

Text Style... T

ssie] BocHGROING. X8 o

Icom... E 4
¥ Subjecis °

e |

e) type "2. " and paste subject

f) Eager appears

< File Edit Go Tools Objects Font SI - File Go Tools Objects Font SI
Y \is\ =————-"715 émumo %2 Beu=—r

weenasonenne sds pavan

1.anecessaryevil... .
2. Lost folders

o enanma ne

{ut B |
Lopy 3

oo ve oo - o ="\ veeemeatd sas ausaseses ius ot sus bos bas ba
) Paste Tent #U

L e A el TSR A ; R S
{{enr

B L L T D P P P T

................... New Card 27 i
Delete Card
Cut Card
Copy Card PSRN |

CRIT TR
sIilesias i
S LSl sn s
silaiiiiaat

SRR IIE SN IRA SRAREE PR S IN SRR YRR T 3

. Background ¥B
* Subjects © r Icon... %81 I

g) anticipate typing "“3. " | h) anticipate paste

= File Edit Go Tools Objects For = File Edit Go Tools Objectls For
Mail [212 —=———— Mol ———— é‘

o MESSAGE [& MESSAGE ©

Subject: Where were you?. Subject:

e ene pee bau 1an s BASEES FUY YT HaS (A 444 BIL PR SALLOS BT --n-«.------—--n.uuuuun.n.u--uu----u“--o

P LT

...............................

| have thedataonthe .. .

A RRAAIAARE N bl ARA AR bae

expected to see you

o« ow ow

DEEE lsub]eclsstop B oo

j) user clicks on Eager

i) anticipate going to next message

« File Edit Go Tools Objects Font Si

« File Edit Go Tools Objects For
sl

U ——————
@ MESSAGE Qo l.anecessaryevil... ...
2. Llostfolderso
3. Where were you7
4Expenment
ol L | 5Meeting oo

|

(
[Finish The Task *_J 6. We're Open
|7 7 Vacauon Done

e

SR LT TR

k) finish the task l) Eager finishes

Chimera

Programming by demonstration in the graphics domain

1 Classic example: David Kurlander’s Chimera

Infers constraints via heuristics, from snapshots of drawing editor state

Users can generalise a “graphical macro” in editable history of operations

I hd Macro Builder

Make-Argument - 2 Make-Argument - 2 Toggle-Slope - 1 Toggle-Slope - 1 Make-Normals-Hot - 2 Make-Normals-Hot - 2 Drag -3

Text Input: fixed Text Input: moved I

) ' :
0 ‘ 90 | 1
B ‘
i | |

MacroOps ¥) Gran: 0| 1| 2| 3| 4|[5 Editable: f <) = >

1 D.Kurlander Graphical Editing by Example (1993)
PhD thesis, Columbia University. CS Tech/ Report CUCS-023-93

https://youtu.be/JbrJQW25ekI?t=7m9s

ToonTalk

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

rrrrrr
U

recerron

IRRRRER

-
L ="

i — -

] ~
N pine (o [TR A

L
ol ot ol st ad ol

j
f

- —
|5
o« >
L e

i duddddddddy

= EEEEEEREE -

iy U“Qiu.hi-hnhn ks

Ken Kahn’s ToonTalk — user control of generalisation

e T VT S “I/,

JRUFURSHSUHORSRUABRURU NGRS
JUUUUUUUUUUUUU U
uCCLCCLCCLLCCCCP

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

Ken Kahn’s ToonTalk — user control of generalisation

A
- R

Ken Kahn’s ToonTalk — user control of generalisation

“ﬂ 1l 0000
, NN R EE RN RS
_ .:¢cccr
i) E.m, jgoct

_.cccr
th EZLL#.CCCr
IRS RS
b Cr C rr_....«...

M

-.'

uCCCCCCCCCCCCCrF

Ecccccccccccc..rrr_r UL
Ecccccccccccc L |

hcccccccc
ucccccccr
JUJUuy
gccccc

Ken Kahn’s ToonTalk — user control of generalisation

ey

BY gy rrayeeyy

FErFrT

-

mrrrrrrrrrrrrrrh

—— T r‘;—-—l

it rr—

e

Cg3 7

o ————
-1 Sy >

Ken Kahn’s ToonTalk — user control of generalisation

JUUUuUuUUA

JOUJ U JUUUUULOUU
gCCCr.,.E._ JUUUUUUUUUL
JUUU U

UuuUuUuUuuLUL

o .“W. 53
JyUOUU Y Lo
g ¢

Ken Kahn’s ToonTalk — user control of generalisation

i N @ @ mel @

B UUuUJUuUL
Juuuuuuuus
JUUUUU L
JUuLuUuuUTUUU 3
UUUUUUUUUUUUG
UUUUUUUUUUUU |
UUUUUUUUUUUU,
UUUUuuUuuuy
JUuuuuuuyuyt

. CCC\. 7,
il EPPh—»hI

Generalising a constraint with Dusty

Generalising a constraint with Dusty

dddddids ¥

ol ik ka8 g
=

S e e oo | |- .
e
r r R i

FrrrrIrer’,

Generalisation

Why is the generalisation step so significant?

1 Generalisation from examples is fundamental to mental abstraction
Repetition of concrete instances (i.e. direct manipulation) does not require abstraction
Any automated action (i.e. programming) does require abstraction

1 So program synthesis requires the user to conceptualise their problem in an

abstract way
Programming by example is a strategy for achieving this ...
... the user can become comfortable with individual cases, while
... the system formulates abstractions at the same time the user does.

1 Essential that user & system can “discuss” what they are concluding;
So is this what you want me to do!?
No, here is a case where you should do something else.
Oh, | see, so like this?

The Attention Investment model of abstraction use

1 Programming is not like direct manipulation, so the standard rules of usability

(Shneiderman’s direct manipulation principles) do not apply:
Incremental action
Fully visible state
Immediate feedback
Easily reversible actions

1 Making abstractions is cognitively hard, because actions take place in the future,and

they apply to multiple potential contexts.
Automating repetitive actions does save time and (mental) effort
But formulating and refining abstractions costs time and mental effort!

What leads a user to approach their tasks in this way?
Richard Potter’s “Just In Time Programming”
Rosson and Carroll’s “Paradox of the Active User”
Bainbridge’s “lronies of Automation”
Burnett’s “Surprise, Explain, Reward” (cf mixed-initiative design strategies, including Clippy)

AUTOMATION

Ci< § <poe] Rwooun § Neo> 5

“T SPEND A LOT OF TiIME ON THIS TASK.
T SHOULD LWRITE A PROGRAM AUTOMATING IT!"
THEORY:
WRITIN
e
WORK = FREE
\JORK ON-? AURHTON ThE.
ORIGINAL TASK
TME
REAUTY:

UR\TINE
Work] =/ REIRINNING NO TME FOR
ORIGINAL TASK
ANYVIORE

TIME.

Ci< J <poe] Rwooun | Neo> 5

PERMANENT LINK TO THIS cOMIC: HTTPS://xKcD.com/1319/
IMAGE URL (FOR HOTLINKING/EMBEDDING): HTTPS://IMGS.XKCD.COM/COMICS/AUTOMATION.PNG

SWYN: See What You Need

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble

wibbbbbbble tries to trouble
wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wuabbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble

wibbbbbbble tries to trouble
wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wuabbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble
wibbbbbbble tries to trouble

wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre tries to nobble
wubbse tries to nobble
wobble tries to nobble
wibblel wobblée tries to nobble
wobble tries to nobble
tries to nobble
wobblé tries to nobble
e wubble tries to nobble
w1bbbbbbble tries to trouble

wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre webble tries to nobble
wubbse tries to nobble
wobble tries to nobble
wibbhlel wobble tries to nobble
wobble tries to nobble
wobble tries to nobble
wobble tries to nobble
e wubble tries to nobble
w1bbbbbbble tries to trouble

wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre webble tries to nobble
wubbse tries to nobble
wobble tries to nobble
wibbhlel wobble tries to nobble
wobble tries to nobble
wobble tries to nobble
e wobble tries to nobble
e wubble tries to nobble
mbbbbb'bble tries to treuble

wibbne wobble tries to nobble

Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble

mb'bre weobble tries to nobble

wa-bbse tries to nobble
i c (ries to nobble

'f_ 'f___" ¢ {ries to nobble

@< ‘o nobble

wib WV 1 ﬂ £ nobble
m:.uﬂ WUublc u1es w hobble

e wubble tries to nobble
wrb-bbb'b'bhle tries to treuble

wibbne wobble tries to nobble

Explaining the inference to end-users

[

(00044) 1223[356][0-9]+

—

—

—

Find one of the following:

a) either the sequence “0”
b) the sequence “0044”

followed by the sequence “1223”

followed by

any one of these characters:“3”or “5”or “6

bRl

followed by at least one, possibly more, of the following:
any one of these characters: any one from“0” to “9”

35
ooaa | 128 ¢

0 0044
— Y e,
1223
!
any one of {3,5,6}
any one of {0-9}
0-9

Structured text editing as an ML application

1 Aimed at the kind of things people did with sed/awk/perl
Many automated text operations involved regexps
But users found these the hardest thing to understand ...
... research agenda for machine learning: sed/awk/perl/swyn

1 Similar goals to Witten and Mo’s TELS (1989)

Learning Text Editing Tasks from Examples
See Cypher book chapter 8

1 Luke Church demonstrated working solution (2007)
Recursive language model “Structured Prediction by Partial Match”
Prior expectation based on harvested corpus of regular expressions

Example applications

We've had intelligent code editors since 1978

1 The Programmer’s Assistant. Knowledge-Based Emacs (KB-Emacs)
PhD project of Charles Rich at MIT

Aimed to recognise cognitive plan elements within source code

1 However, most programmer-assist features in IDEs were implemented using
context-aware heuristics rather than Al models:
Syntax-directed editing
Auto-complete of standard constructs
Refactoring
Inference from identifier names (e.g. follow x=x+1; with y=y+1;)
Navigate-by-completion for library APls

1 LLM-based solutions (Claude Code, CoPilot, many others) are making rapid
advances, but we are still learning what notations they can be integrated with.

Working in a data-centric paradigm: FlashFill for Excel

1 Building on this paper by Sumit Gulwani (MSR Redmond)

Automating String Processing in Spreadsheets using Input-Output Examples, Proc. POPL
2011

https://www.microsoft.com/en-us/research/publication/automating-string-processing-spr
eadsheets-using-input-output-examples/

0 Live Demo
Paste a list of semi-structured text data into the left column
Type an example transform result in top cell to the right, then <Enter>
Press <Ctrl+E>

1 “Synthesises a program from input-output examples”
How do you choose the examples?
How do you know what will happen!?
Using this ‘program’ as a component of a larger system is still a research topic

Visualising abstract structure: Data Noodles

]

1 Applies a transformation paradigm
Directed search for fold/unfold transforms that will achieve the demonstrated result

1 Search procedure uses off-the-shelf program synthesis toolkit
PROSE SDK from Gulwani team at MSR Redmond

1 Custom-built front-end
The “spreadsheet” is purely for familiarity of presentation
No actual spreadsheet calculation is performed
Drag-and-drop target previews allow user to anticipate inference
Noodles preserve and visualise the demonstrated actions

Allow reasoning about causality from example to synthesised program
Potentially support modification/correction of examples

https://www.youtube.com/watch?v=hyCVBxfx7VE

