
Program Synthesis

MPhil ACS module P342 - Alan Blackwell

You do the rest!

What is the problem?

According to Tim Flagg, founder of UKAI “the trade association for AI
businesses in the UK”, speaking at the Judge Business School last week
(29 Oct 2025):

The main problem faced by companies is
time wasted on repetitive processes.

So, how can we find appropriate solutions? (Perhaps “agentic” AI?)

Principles of program synthesis, from HCI perspective

� The user experience of ML-based synthesis:
� The user says: “Here is an example of what I want to do”
� Followed by: “You do the rest”

� System response: “OK, I’ll do others the same way”
� How does it know what “others” are?
� How does it know what “the same way” is?

� Usability issues:
� How to specify applicability?
� How to control generalisation?
� How to understand what was inferred?
� How to modify the synthesised program?

Classic programming by example

� Keyboard macros – demo in Emacs

� Get a plain text file containing semi-structured text
� <Ctrl+x> (starts macro recording
� Perhaps search for context, cut and paste, add text …
� Remember to go to known location (e.g. start of next line)
� <Ctrl+x>) ends recording
� <Ctrl+x> e plays back once
� <ESC> 1 0 0 <Ctrl+x> e repeats 100 time

Value proposition

� The next generation of AI: “Intelligent tools”
� If a user knows how to perform a task on a computer, that should be sufficient to

create a program to perform the task.
� Early research aimed to achieve “programming in the user interface”

� Macro recorders are one model, but they are “too literal”
� Do only what they are shown (no generalisation)
� Unable to adjust for different cases (no inference)

� Other models:
� Automation of repetitive activities
� Creation of custom applications

� Machine learning problem is to create a model of user intent
� Ideally informed by prior likelihood – from this user, and other users

Eager

Classic mixed-initiative programming by example

� Allen Cypher’s “Eager” created at Apple research in 1990
� Implemented as extension to Hypercard (event capture + injection)
� Machine learning implemented in LISP

� Scenario – create a script to produce a list of subject lines from messages

Chimera

Programming by demonstration in the graphics domain

� Classic example: David Kurlander’s Chimera
� Infers constraints via heuristics, from snapshots of drawing editor state
� Users can generalise a “graphical macro” in editable history of operations
� https://youtu.be/JbrJQW25ekI?t=7m7s

� D. Kurlander Graphical Editing by Example (1993)
� PhD thesis, Columbia University. CS Tech/ Report CUCS-023-93

https://youtu.be/JbrJQW25ekI?t=7m9s

ToonTalk

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Ken Kahn’s ToonTalk – user control of generalisation

Generalising a constraint with Dusty

Generalising a constraint with Dusty

Generalisation

Why is the generalisation step so significant?

� Generalisation from examples is fundamental to mental abstraction
� Repetition of concrete instances (i.e. direct manipulation) does not require abstraction
� Any automated action (i.e. programming) does require abstraction

� So program synthesis requires the user to conceptualise their problem in an
abstract way
� Programming by example is a strategy for achieving this …
� … the user can become comfortable with individual cases, while
� … the system formulates abstractions at the same time the user does.

� Essential that user & system can “discuss” what they are concluding:
� So is this what you want me to do?
� No, here is a case where you should do something else.
� Oh, I see, so like this?

The Attention Investment model of abstraction use

� Programming is not like direct manipulation, so the standard rules of usability
(Shneiderman’s direct manipulation principles) do not apply:
� Incremental action
� Fully visible state
� Immediate feedback
� Easily reversible actions

� Making abstractions is cognitively hard, because actions take place in the future, and
they apply to multiple potential contexts.
� Automating repetitive actions does save time and (mental) effort
� But formulating and refining abstractions costs time and mental effort!
� What leads a user to approach their tasks in this way?

� Richard Potter’s “Just In Time Programming”
� Rosson and Carroll’s “Paradox of the Active User”
� Bainbridge’s “Ironies of Automation”
� Burnett’s “Surprise, Explain, Reward” (cf mixed-initiative design strategies, including Clippy)

SWYN: See What You Need

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Swyn: inferring regexps to generalise text macros

Explaining the inference to end-users

� (0|0044)1223[356][0–9]+

� Find one of the following:
� a) either the sequence “0”
� b) the sequence “0044”

� followed by the sequence “1223”

� followed by
� any one of these characters: “3”or “5”or “6”

� followed by at least one, possibly more, of the following:
� any one of these characters: any one from“0” to “9”

Structured text editing as an ML application

� Aimed at the kind of things people did with sed/awk/perl
� Many automated text operations involved regexps
� But users found these the hardest thing to understand …
� … research agenda for machine learning: sed/awk/perl/swyn

� Similar goals to Witten and Mo’s TELS (1989)
� Learning Text Editing Tasks from Examples
� See Cypher book chapter 8

� Luke Church demonstrated working solution (2007)
� Recursive language model “Structured Prediction by Partial Match”
� Prior expectation based on harvested corpus of regular expressions

Example applications

We’ve had intelligent code editors since 1978

� The Programmer’s Assistant: Knowledge-Based Emacs (KB-Emacs)
� PhD project of Charles Rich at MIT
� Aimed to recognise cognitive plan elements within source code

� However, most programmer-assist features in IDEs were implemented using
context-aware heuristics rather than AI models:
� Syntax-directed editing
� Auto-complete of standard constructs
� Refactoring
� Inference from identifier names (e.g. follow x=x+1; with y=y+1;)
� Navigate-by-completion for library APIs

� LLM-based solutions (Claude Code, CoPilot, many others) are making rapid
advances, but we are still learning what notations they can be integrated with.

Working in a data-centric paradigm: FlashFill for Excel

� Building on this paper by Sumit Gulwani (MSR Redmond)
� Automating String Processing in Spreadsheets using Input-Output Examples, Proc. POPL

2011
� https://www.microsoft.com/en-us/research/publication/automating-string-processing-spr

eadsheets-using-input-output-examples/

� Live Demo
� Paste a list of semi-structured text data into the left column
� Type an example transform result in top cell to the right, then <Enter>
� Press <Ctrl+E>

� “Synthesises a program from input-output examples”
� How do you choose the examples?
� How do you know what will happen?
� Using this ‘program’ as a component of a larger system is still a research topic

Visualising abstract structure: Data Noodles

� https://www.youtube.com/watch?v=hyCVBxfx7VE
� Applies a transformation paradigm
� Directed search for fold/unfold transforms that will achieve the demonstrated result

� Search procedure uses off-the-shelf program synthesis toolkit
� PROSE SDK from Gulwani team at MSR Redmond

� Custom-built front-end
� The “spreadsheet” is purely for familiarity of presentation

� No actual spreadsheet calculation is performed
� Drag-and-drop target previews allow user to anticipate inference
� Noodles preserve and visualise the demonstrated actions

� Allow reasoning about causality from example to synthesised program
� Potentially support modification/correction of examples

https://www.youtube.com/watch?v=hyCVBxfx7VE

