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You do the rest!



What is the problem?

According to Tim Flagg, founder of UKAI “the trade association for Al

businesses in the UK”, speaking at the Judge Business School last week
(29 Oct 2025):

The main problem faced by companies is
time wasted on repetitive processes.

So, how can we find appropriate solutions? (Perhaps “agentic” Al?)



Principles of program synthesis, from HCI perspective

1 The user experience of ML-based synthesis:
The user says: “Here is an example of what | want to do”
Followed by: “You do the rest”

1 System response:“OK, I'll do others the same way”
How does it know what “others” are?
How does it know what “the same way” is?

1 Usability issues:
How to specify applicability?
How to control generalisation?
How to understand what was inferred?
How to modify the synthesised program!?



Classic programming by example

1 Keyboard macros — demo in Emacs

1 Get a plain text file containing semi-structured text

0 <Ctrl+x> ( starts macro recording

1 Perhaps search for context, cut and paste, add text ...

1 Remember to go to known location (e.g. start of next line)
0 <Ctrl+x> ) ends recording

0 <Ctrl+x> e plays back once

1 <ESC> 1 0 0 <Ctrl+x> e repeats 100 time



Value proposition

1 The next generation of Al:“Intelligent tools”

1 If a user knows how to perform a task on a computer, that should be sufficient to

create a program to perform the task.
Early research aimed to achieve “programming in the user interface”

1 Macro recorders are one model, but they are “too literal”
Do only what they are shown (no generalisation)
Unable to adjust for different cases (no inference)

1 Other models:
Automation of repetitive activities
Creation of custom applications

1 Machine learning problem is to create a model of user intent
|deally informed by prior likelihood — from this user, and other users



Eager




Classic mixed-initiative programming by example

1 Allen Cypher’s “Eager” created at Apple research in 1990
Implemented as extension to Hypercard (event capture + injection)
Machine learning implemented in LISP

1 Scenario — create a script to produce a list of subject lines from messages
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Chimera




Programming by demonstration in the graphics domain

1 Classic example: David Kurlander’s Chimera

Infers constraints via heuristics, from snapshots of drawing editor state

Users can generalise a “graphical macro” in editable history of operations

I hd Macro Builder

Make-Argument - 2 Make-Argument - 2 Toggle-Slope - 1 Toggle-Slope - 1 Make-Normals-Hot - 2 Make-Normals-Hot - 2 Drag -3

Text Input: fixed Text Input: moved I

) ' :
0 ‘ 90 | 1
B ‘
i | |

MacroOps ¥ ) Gran: 0| 1| 2| 3| 4|[5 Editable: f <) = >

1 D.Kurlander Graphical Editing by Example (1993)
PhD thesis, Columbia University. CS Tech/ Report CUCS-023-93



https://youtu.be/JbrJQW25ekI?t=7m9s
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Ken Kahn’s ToonTalk — user control of generalisation




Ken Kahn’s ToonTalk — user control of generalisation




Ken Kahn’s ToonTalk — user control of generalisation




Ken Kahn’s ToonTalk — user control of generalisation




Ken Kahn’s ToonTalk — user control of generalisation
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Ken Kahn’s ToonTalk — user control of generalisation
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Ken Kahn’s ToonTalk — user control of generalisation
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Ken Kahn’s ToonTalk — user control of generalisation
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Ken Kahn’s ToonTalk — user control of generalisation
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Ken Kahn’s ToonTalk — user control of generalisation
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Ken Kahn’s ToonTalk — user control of generalisation
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Generalising a constraint with Dusty




Generalising a constraint with Dusty
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Generalisation



Why is the generalisation step so significant?

1 Generalisation from examples is fundamental to mental abstraction
Repetition of concrete instances (i.e. direct manipulation) does not require abstraction
Any automated action (i.e. programming) does require abstraction

1 So program synthesis requires the user to conceptualise their problem in an

abstract way
Programming by example is a strategy for achieving this ...
... the user can become comfortable with individual cases, while
... the system formulates abstractions at the same time the user does.

1 Essential that user & system can “discuss” what they are concluding;
So is this what you want me to do!?
No, here is a case where you should do something else.
Oh, | see, so like this?



The Attention Investment model of abstraction use

1 Programming is not like direct manipulation, so the standard rules of usability

(Shneiderman’s direct manipulation principles) do not apply:
Incremental action
Fully visible state
Immediate feedback
Easily reversible actions

1 Making abstractions is cognitively hard, because actions take place in the future,and

they apply to multiple potential contexts.
Automating repetitive actions does save time and (mental) effort
But formulating and refining abstractions costs time and mental effort!

What leads a user to approach their tasks in this way?
Richard Potter’s “Just In Time Programming”
Rosson and Carroll’s “Paradox of the Active User”
Bainbridge’s “lronies of Automation”
Burnett’s “Surprise, Explain, Reward” (cf mixed-initiative design strategies, including Clippy)



AUTOMATION

Ci< § <poe ] Rwooun § Neo> 5

“T SPEND A LOT OF TiIME ON THIS TASK.
T SHOULD LWRITE A PROGRAM AUTOMATING IT!"
THEORY:
WRITIN
e
WORK = FREE
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ORIGINAL TASK
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REAUTY:
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PERMANENT LINK TO THIS cOMIC: HTTPS://xKcD.com/1319/
IMAGE URL (FOR HOTLINKING/EMBEDDING): HTTPS://IMGS.XKCD.COM/COMICS/AUTOMATION.PNG




SWYN: See What You Need



Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre wobble tries to nobble
wibble wubbse tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wobble tries to nobble
wibble wubble tries to nobble

wibbbbbbble tries to trouble
wibbne wobble tries to nobble



Swyn: inferring regexps to generalise text macros
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Swyn: inferring regexps to generalise text macros
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Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre tries to nobble
wubbse tries to nobble
wobble tries to nobble
wibblel wobblée tries to nobble
wobble tries to nobble
tries to nobble
wobblé tries to nobble
e wubble tries to nobble
w1bbbbbbble tries to trouble

wibbne wobble tries to nobble



Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre webble tries to nobble
wubbse tries to nobble
wobble tries to nobble
wibbhlel wobble tries to nobble
wobble tries to nobble
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w1bbbbbbble tries to trouble
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Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble
wibbre webble tries to nobble
wubbse tries to nobble
wobble tries to nobble
wibbhlel wobble tries to nobble
wobble tries to nobble
wobble tries to nobble
e wobble tries to nobble
e wubble tries to nobble
mbbbbb'bble tries to treuble

wibbne wobble tries to nobble



Swyn: inferring regexps to generalise text macros

wibble wobble tries to nobble

mb'bre weobble tries to nobble

wa-bbse tries to nobble
i c (ries to nobble

'f_ 'f___" ¢ {ries to nobble

@< ‘o nobble

wib WV 1 ﬂ £ nobble
m:.uﬂ WUublc u1es w hobble

e wubble tries to nobble
wrb-bbb'b'bhle tries to treuble

wibbne wobble tries to nobble




Explaining the inference to end-users

[

(00044) 1223[356][0-9]+

—

—

—

Find one of the following:

a) either the sequence “0”
b) the sequence “0044”

followed by the sequence “1223”

followed by

any one of these characters:“3”or “5”or “6

bRl

followed by at least one, possibly more, of the following:
any one of these characters: any one from“0” to “9”

35
ooaa | 128 ¢

0 0044
— Y e,
1223
!
any one of {3,5,6}
any one of {0-9}
0-9




Structured text editing as an ML application

1 Aimed at the kind of things people did with sed/awk/perl
Many automated text operations involved regexps
But users found these the hardest thing to understand ...
... research agenda for machine learning: sed/awk/perl/swyn

1 Similar goals to Witten and Mo’s TELS (1989)

Learning Text Editing Tasks from Examples
See Cypher book chapter 8

1 Luke Church demonstrated working solution (2007)
Recursive language model “Structured Prediction by Partial Match”
Prior expectation based on harvested corpus of regular expressions



Example applications



We've had intelligent code editors since 1978

1 The Programmer’s Assistant. Knowledge-Based Emacs (KB-Emacs)
PhD project of Charles Rich at MIT

Aimed to recognise cognitive plan elements within source code

1 However, most programmer-assist features in IDEs were implemented using
context-aware heuristics rather than Al models:
Syntax-directed editing
Auto-complete of standard constructs
Refactoring
Inference from identifier names (e.g. follow x=x+1; with y=y+1;)
Navigate-by-completion for library APls

1 LLM-based solutions (Claude Code, CoPilot, many others) are making rapid
advances, but we are still learning what notations they can be integrated with.



Working in a data-centric paradigm: FlashFill for Excel

1 Building on this paper by Sumit Gulwani (MSR Redmond)

Automating String Processing in Spreadsheets using Input-Output Examples, Proc. POPL
2011

https://www.microsoft.com/en-us/research/publication/automating-string-processing-spr
eadsheets-using-input-output-examples/

0 Live Demo
Paste a list of semi-structured text data into the left column
Type an example transform result in top cell to the right, then <Enter>
Press <Ctrl+E>

1 “Synthesises a program from input-output examples”
How do you choose the examples?
How do you know what will happen!?
Using this ‘program’ as a component of a larger system is still a research topic



Visualising abstract structure: Data Noodles

]

1 Applies a transformation paradigm
Directed search for fold/unfold transforms that will achieve the demonstrated result

1 Search procedure uses off-the-shelf program synthesis toolkit
PROSE SDK from Gulwani team at MSR Redmond

1 Custom-built front-end
The “spreadsheet” is purely for familiarity of presentation
No actual spreadsheet calculation is performed
Drag-and-drop target previews allow user to anticipate inference
Noodles preserve and visualise the demonstrated actions

Allow reasoning about causality from example to synthesised program
Potentially support modification/correction of examples


https://www.youtube.com/watch?v=hyCVBxfx7VE

