EE UNIVERSITY OF

.bﬁ..

%» CAMBRIDGE

Introduction to Graphics

Computer Science Tripos Part 1A
Michaelmas Term 2025/2026

Department of

Computer Science

and Technology

The Computer Laboratory

William Gates Building
15 JJ Thomson Avenue
Cambridge

CB3 OFD

www.cst.cam.ac.uk

This handout includes copies of the slides that will be used in lectures.
These notes do not constitute a complete transcript of all the lectures, and
they are not a substitute for textbooks. They are intended to give a
reasonable synopsis of the subjects discussed, but they give neither
complete descriptions nor all the background material.

Selected slides contain a reference to the relevant section in the
recommended textbook for this course: Fundamentals of Computer
Graphics by Marschner & Shirley, CRC Press 2015 (4" or 5" edition). The
references are in the format [FCG A.B/C.D], where A.B is the section number
in the 4™ edition and C.D is the section number in the 5 edition.

Material is copyright © Neil A Dodgson, Peter Robinson & Rafat Mantiuk,
1996-2025, except where otherwise noted.

All other copyright material is made available under the University’s licence.
All rights reserved.

Introduction to Graphics

Introduction to Computer Graphics
Rafat Mantiuk
www.cl.cam.ac.uk/~rkm38

Eight lectures & two practical tasks

Part IA CST
Two supervisions suggested

Two exam questions on Paper 3

Michaelmas Term 2025/2026

Visual computing pipeline

2
Scene I

description
Computer Image analysis &
graphics computer vision
Digital
Image Image Image
capture display

Visual w =
perception (

Computing without graphics Computing with graphics

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

Why bother with CG?

+ All visual computer output depends on CG
printed output (laser/ink jet/phototypesetter)
monitor (CRT/LCD/OLED/DMD)

all visual computer output consists of real images generated by the computer

from some internal digital image
+ Much other visual imagery depends on CG

computer games

TV & movie special effects &
post-production

most books, magazines,
catalogues...

VR/AR

Introduction to Graphics

Michaelmas Term 2025/2026

Course Structure

+ Background

What is an image? Resolution and quantisation. Storage of images in memory. [lecture]

+ Rendering

Perspective. Reflection of light from surfaces and shading. Geometric models. Ray tracing.

[2 lectures]

+ Graphics pipeline
Polygonal mesh models. Transformations using matrices in 2D and 3D. Homogeneous
coordinates. Projection: orthographic and perspective. Rasterisation. [2 lectures]

+ Graphics hardware and OpenGL
GPU APIs. Vertex processing. Fragment processing. Working with meshes and textures.
[I lecture]

+ Human vision, colour and tone mapping
Colour perception. Colour spaces. Tone mapping [2 lectures]

Course books

+ Fundamentals of Computer Graphics
Shirley & Marschner
CRC Press 2015 (4™ or 5t edition)
[FCG 8.1/9.1] — reference to section 3.1 in the 4*" edition, 9.1
in the 5% edition
+ Computer Graphics: Principles & Practice
Hughes, van Dam, McGuire, Sklar et al.
Addison-Wesley 2013 (3™ edition)
+ OpenGL Programming Guide:
The Official Guide to Learning OpenGL Version 4.5 with
SPIR-V

Kessenich, Sellers & Shreiner
Addison Wesley 2016 (7 edition and later)

Fundamentals

COMPUTER GRAPHICS

Introduction to Computer Graphics

+ Background
What is an image?
Resolution and quantisation
Storage of images in memory

+Rendering

+ Graphics pipeline

+ Rasterisation

+ Graphics hardware and OpenGL

+Human vision and colour & tone mapping

What is a (digital) image?
+ A digital photograph? (“JPEG”)
+ A snapshot of real-world lighting?

From computing

- .

perspective perspective

(discrete) / \ (continuous)
2D array of pixels

To represent images in

From mathematical

«To express image processing

memory as a mathematical problem

«To create image processing
software algorithms

«To develop (and understand)

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

Introduction to Graphics

Michaelmas Term 2025/2026

Image

+ 2D array of pixels
+ In most cases, each pixel takes 3 bytes: one for each red, green and blue
+ But how to store a 2D array in memory?

column-major interleaved, row-major
N1 0 N1
0 N1
0
7

row-major

[

N1 N1

N1

Stride

+ Calculating the pixel component index in memory

For row-major order (grayscale)
i(xy)=x+y - Neos

For column-major order (grayscale)
i(6,y) =% Npows +¥
For interleaved row-major (colour)
ix,y,c)=x-3+y:-3-ngs+¢

General case
ix,y,c)=x-sx+y-s,+tc-s.

where sy, s, and s, are the strides for the x, y and colour dimensions

Padded images and stride

+ Sometimes it is desirable to “pad” image with extra pixels
for example when using operators that need to access pixels outside the image border

+ Or to define a region of interest (ROI)

Allocated memory space
Image

Region of Interest
(ROI)

+ How to address pixels for such an image and the ROI?
I

11

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

10
Padded images and stride
Allocated memory space
Image
Region of Interest
(ROI)
i(,y,€) =lifirst X Sy +y-sy+c-sc
+ For row-major, interleaved, colour
Ufirst =
Sy =
Sy =
Sc =
12
12

Introduction to Graphics

Michaelmas Term 2025/2026

Pixel (Plcture ELement)

+ Each pixel (usually) consist of three values describing the colour
(red, green, blue)
+ For example
(255, 255, 255) for white
(0, 0, 0) for black
(255, 0, 0) for red
+ Why are the values in the 0-255 range?
4+ How many bytes are needed to store 5MPixel image?

Pixel formats, bits per pixel, bit-depth

+ Grayscale — single colour channel, 8 bits (I byte)
+ Highcolor — 2'6=65,536 colors (2 bytes)

Sample Length: 5 B 5
Channel Membership: Red Green Blue
I T T i
Bit Number: 15 14131211109 8 7 6 5 4 3 2|1 0
RGBAX R.G.B. . X
Sample Length Notation: 5.6.5.0.0

+ Truecolor — 2% = 16,8 million colors (3 bytes)

+ Deepcolor — even more colors (>= 4 bytes)

Sample Length: 2 10 10 10

Channel Membership: None

Red Green Blue

R T
Bit Number: 31 30 29 28 27 126 25 24 23 22 21 20 19 18 17 16 1514 13121110 8 8 7 6 § 4 3 2 1 0
RGBAX R.G.B.A. X
10.10.10.0.2

Sample Length Notation:

13

Colour banding

+If there are not enough bits
to represent colour

(uncompressed)

4 Looks worse because of
the Mach band or
Chevreul illusion

+ Dithering (added noise) can 8-bit gradient g;:)l:;ir:dlcm, 24-bit gradient

reduce banding »

e
Printers but also some LCD s
. e
displays S
=

Intensity profile

15

15

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

+ But why?
14
What is a (computer) image?
+ A digital photograph? (“|JPEG”)
+ A snapshot of real-world lighting?
From computing From mathematical
) mage)
perspective perspective
(discrete) / \ (continuous)
+To represent images in «To express image processing
memory as a mathematical problem
*To create image processing +To develop (and understand)
software algorithms
16
16

Introduction to Graphics

Image - 2D function

+ Image can be seen as a function I(x,y), that gives
intensity value for any given coordinate (x,y)

17

What is a pixel? (math)

+ A pixel is not I

a box

a disk 7

a teeny light -
+ A pixel is a point

it has no dimension

it occupies no area

it cannot be seen

it has coordinates

+ A pixel is a sample

19
From: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture05/lecture05.pdf

Michaelmas Term 2025/2026

Sampling an image

+ The image can be sampled on a rectangular sampling
grid to yield a set of samples. These samples are
pixels.

o

i

W

bl
N

;IW

18

Sampling and quantization

+ Physical world is described in terms of continuous quantities
+ But computers work only with discrete numbers

+ Sampling — process of mapping continuous function to a
discrete one

+ Quantization — process of mapping continuous variable to a
discrete one

fx) flx/

20

19

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

20

Introduction to Graphics

Michaelmas Term 2025/2026

21
Computer Graphics & Image Processing
+Background
+ Rendering
Perspective
Reflection of light from surfaces and shading
Geometric models
Ray tracing
+ Graphics pipeline
+ Graphics hardware and modern OpenGL
+Human vision and colour & tone mapping
21
23
Rendering depth
23

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

22
Depth cues
00 W=
Shading Familiar Size
22
24
Perspective in photographs
Gates Building — he rounded versio Gates Building — the rectilinear version
(Stanford) (Cambridge)
24

Introduction to Graphics

Early perspective

4 Presentation at the
Temple

§ +Ambrogio Lorenzetti 1342
S | + Uffizi Gallery
Florence

25

25

Renaissance perspective

+ Geometrical perspective
Filippo Brunelleschi 1413

+ Holy Trinity fresco

+ Masaccio (Tommaso di Ser Giovanni
di Simone) 1425

+ Santa Maria Novella
Florence

+ De pictura (On painting)
textbook by Leon Battista Alberti
1435

27

Michaelmas Term 2025/2026

Wrong perspective

+ Adoring saints

4+ Lorenzo Monaco
1407-09

+ National Gallery
London

26

26

27

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

False perspective

28

28

Introduction to Graphics

29
Calculating
perspective
29
Ray tracing: examples 31

Turner Whitted 1979

Ray tracing easily handles reflection, refraction,

shadows and blur (due to motion and optics)

Ray tracing is computationally expensive

31

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

Michaelmas Term 2025/2026

Ray tracing

+ Identify point on surface and calculate illumination

+ Given a set of 3D objects, shoot a ray from the eye through the
centre of every pixel and see what surfaces it hits

5

whatever the ray hits determines the colour of
that pixel

shoot a ray through each pixel

[FCG 4/4]

30

30

Ray tracing algorithm

32

select an eye point and a screen plane

FOR every pixel in the screen plane
determine the ray from the eye through the pixel’s centre
FOR each object in the scene
IF the object is intersected by the ray
IF the intersection is the closest (so far) to the eye
record intersection point and object
END IF;
END IF;
END FOR;

calculate colour for the closest intersection point (if any)
END FOR;

32

Introduction to Graphics

Michaelmas Term 2025/2026

33
Intersection of a ray with an object |
plane
D
o
rayP=0+sD, s=0
plane:P-N+d =0
_ d+N-0
STTTND
polygon or disc
® intersection the ray with the plane of the polygon
as above
m then check to see whether the intersection point lies inside the polygon
a 2D geometry problem (which is simple for a disc)
33
35
Ray tracing: shading
once you have the intersection of a
ray with the nearest object you can
also:
® calculate the normal to the object at
that intersection point
m shoot rays from that point to all of the
light sources, and calculate the diffuse
and specular reflections off the object
at that point
this (plus ambient illumination)
gives the colour of the object (at
that point)
35

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

34
Intersection of a ray with an object 2
sphere
a=D-D
D b=2D-(0-0)
19) c=0-0)-(0-0)—r?
ray:P=0+sD, s=0 d:\/_ﬁ
sphere: (P—C)-(P—C)—12=0 5= ——
2a
_-b-d
—0 0 "
d real d imaginary
cylinder, cone, torus
m all similar to sphere
m try them as an exercise
34
36
Ray tracing: shadows
because you are tracing
rays from the intersection
point to the light, you can
check whether another
object is between the
intersection and the light
and is hence casting a
shadow
= also need to watch for self-
shadowing
36

Introduction to Graphics

37

Ray tracing: reflection

if a surface is totally or
partially reflective then
new rays can be
spawned to find the
contribution to the
pixel’s colour given by
the reflection

u this is perfect (mirror)

reflection

37

39

lllumination and shading

+ Diirer’s method allows us to calculate what part of the scene is
visible in any pixel
+ But what colour should it be?
+ Depends on:
lighting
shadows
properties of surface material

[FCG 4.5-4.8/5)

39

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

Michaelmas Term 2025/2026

38

Ray tracing: transparency & refraction

objects can be totally or partially

transparent
u this allows objects behind the current one to be

seen through it
transparent objects can have refractive

indices
= bending the rays as they pass through the objects

transparency + reflection means that a ray
can split into two parts

Example of
a refraction

38
40
o
How do surfaces reflect light?
7’ 4 - z
perfect specular / imperfect specular diffuse reflection
reflection ,’ reflection (Lambertian reflection)
(mirror) ‘l
1
'
]
the surface of a specular reflector is facetted,
each facet reflects perfectly but in a slightly
different direction to the other facets
Johann Lambert, |8™ century German mathematician
40

Introduction to Graphics Michaelmas Term 2025/2026

41 42
Comments on reflection Calculating the shading of a surface
gross assumptions:
the surface can absorb some wavelengths of light = there is only diffuse (Lambertian) reflection
® e.g. shiny gold or shiny copper u all light falling on a surface comes directly from a light source

there is no interaction between objects

. . o . . ® no object casts shadows on any other
specular reflection has “interesting” properties at glancing angles

R . . so can treat each surface as if it were the only object in the scene
owing to occlusion of micro-facets by one another

m light sources are considered to be infinitely distant from the object
the vector to the light is the same across the whole surface

observation:

u the colour of a flat surface will be uniform across it, dependent only on the colour & position of
the object and the colour & position of the light sources
plastics are good examples of surfaces with:

m specular reflection in the light’s colour
u diffuse reflection in the plastic’s colour

41 42
43 44
Diffuse shading calculation Diffuse shading: comments
N Lis a normalised vector pointing in can have different I, and different k, for different wavelengths (colours)
I the direction of the light source watch out for cos0 < 0
%) N is the normal to the surface m implies that the light is behind the polygon and so it cannot illuminate this side of

. . . . the polygon
1, is the intensity of the light source . .
do you use one-sided or two-sided surfaces?

k, is the proportion of light which is

I = Ilkdcose diffusely reflected by the surface m one sided: only the side in the direction of the normal vector can be illuminated
=Ik4y(N-L))))) if cos@ < 0 then both sides are black
Iis the intensity of the light reflected u two sided: the sign of cos@ determines which side of the polygon is illuminated
by the surface

need to invert the sign of the intensity for the back side

))) this is essentially a simple one-parameter () BRDF
use this equation to calculate the colour of a pixel

m Bidirectional Reflectance Distribution Function

43 44

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk Il

Introduction to Graphics

45
Imperfect specular reflection ¥

L is a normalised vector pointing in the direction of
the light source

R is the vector of perfect reflection

N is the normal to the surface

V is a normalised vector pointing at the viewer
1, is the intensity of the light source

k, is the proportion of light which is specularly
reflected by the surface

n is Phong’s ad hoc “roughness” coefficient
Iis the intensity of the specularly reflected light

n=1 n=3 n=7

n=20 n=40

+ Phong developed an easy-to-calculate
approximation to imperfect specular
reflection

I = lLikgcos™ a
= Lky(R - V)"

Phong Bui-Tuong, “lllumination for computer generated

Michaelmas Term 2025/2026

pictures”, CACM, 18(6), 1975,311-7

45

47
Shading: overall equation

The overall shading equation can thus be considered to be the ambient
illumination plus the diffuse and specular reflections from each light source

= Iky + Z Lka(L-N) + z Lks(R - V)
i i

= The equation above is computed for each colour channel (red, green and blue)
® The more lights there are in the scene, the longer this calculation will take

47

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

46
Examples ‘ 100%
Y
‘ ‘ . 50% specular
reflection
(NN N R
CO000 -
100% 75% 50% 25% 0%
diffuse reflection
46
48

The gross assumptions revisited

diffuse reflection
approximate specular reflection
no shadows
® need to do ray tracing or shadow mapping to get shadows
lights at infinity
m can add local lights at the expense of more calculation
need to interpolate the L vector
no interaction between surfaces

® cheat!
assume that all light reflected off all other surfaces onto a given surface can be amalgamated
into a single constant term: “ambient illumination”, add this onto the diffuse and specular
illumination

48

Introduction to Graphics

Sampling

we have assumed so far that each ray
passes through the centre of a pixel
u i.e. the value for each pixel is the colour of
the object which happens to lie exactly
under the centre of the pixel
this leads to:
u stair step (jagged) edges to objects
= small objects being missed completely

m thin objects being missed completely or
split into small pieces

49

49

single point
m shoot a single ray through the pixel’s centre
super-sampling for anti-aliasing

u shoot multiple rays through the pixel and average
the result

® regular grid, random, jittered, Poisson disc
adaptive super-sampling
u shoot a few rays through the pixel, check the

variance of the resulting values, if similar enough
stop, otherwise shoot some more rays

Sampling in ray tracing

51

Michaelmas Term 2025/2026

51

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

50
. o e
Anti-aliasing
These artefacts (and others) are jointly known as aliasing
Methods of ameliorating the effects of aliasing are known as anti-aliasing
= in signal processing dliasing is a precisely defined technical term for a particular kind of artefact
® in computer graphics its meaning has expanded to include most undesirable effects that can occur
in the image
this is because the same anti-aliasing techniques which ameliorate true aliasing artefacts also
ameliorate most of the other artefacts
50
52
.
Types of super-sampling |
. eo|ojofe
regular grid T T
m divide the pixel into a number of sub-pixels and shoot a ofefe]e
ray through the centre of each oflefe]e
= problem: can still lead to noticeable aliasing unless a very
high resolution sub-pixel grid is used Bre
random
= shoot N rays at random points in the pixel 12 8 4
= replaces aliasing artefacts with noise artefacts
the eye is far less sensitive to noise than to aliasing ° ol
oo
* LN O
L] e o
L] ° . .
52

Introduction to Graphics Michaelmas Term 2025/2026

53 54
Types of super-sampling 2 Types of super-sampling 3
Poisson disc i [‘e Jittered (a.k.a. stratified sampling)
= shoot N rays at random points in the pixel u divide pixel into IV sub-pixels and shoot one ° = °le
with the proviso that no two rays shall pass ray at a random point in each sub-pixel .' 0|
. []
through the pixel closer than & to one ® an approximation to Poisson disc sampling ~ e
o L]
another u for N rays it is better than pure random
u for N rays this produces a better looking sampling
image than pure random sampling ® easy to implement
= very hard to implement properly
® ° o 0 3 * . . ® ° o 0 . 5
o o
* .n o © i .o.o > °% o ° * .n ° ° i .o.o >
o o o e® o o ® . ° o o . e® o o
° °® *e ® e . °, o o ® ®e ®
Poisson disc pure random jittered Poisson disc pure random
53 54
. 55 56
More reasons for wanting to take E I f distributed .
. . xamples of distributed ray tracin
multiple samples per pixel P 4 g
m distribute the samples for a pixel over the pixel area
super-sampling is only one reason why we might want to take multiple samples get random (or jittered) super-sampling
per pixel used for anti-aliasing
many effects can be achieved by distributing the multiple samples over some range = distribute the rays going to a light source over some area
= called distributed ray tracing allows area light sources in addition to point and directional light sources
N.B. distributed means distributed over a range of values produces soft shadows with penumbrae
. m distribute the camera position over some area
can work in two ways)) .)
. o allows simulation of a camera with a finite aperture lens
Oeach of the multiple rays shot through a pixel is allocated a random value from the relevant
el produces depth of field effects
distribution(s) o o
all effects can be achieved this way with sufficient rays per pixel ® distribute the sam?les In time))
@each ray spawns multiple rays when it hits an object produces motion blur effects on any moving objects
this alternative can be used, for example, for area lights

55 56

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk |4

Introduction to Graphics Michaelmas Term 2025/2026

57 58
Anti-aliasing Area vs point light source
- - an area light source produces soft shadows a point light source produces hard shadows
one sample per pixel multiple samples per pixel
57 58

59 60

Finite aperture . .
P Introduction to Computer Graphics
left, a pinhole camera
below, a finite aperture camera * Backgrou nd
below left, 12 samples per pixel + Rendering
bel ight, 120 | ixel . . .
elow right, samples per pixe ' + Graphlcs plpelme
note the depth of field blur: only objects
- at the correct distance are in focus Polygonal mesh models

Transformations using matrices in 2D and 3D

Homogeneous coordinates
Projection: orthographic and perspective
+Rasterization
+ Graphics hardware and modern OpenGL
+Human vision, colour and tone mapping
59

60

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk I5

Introduction to Graphics

Michaelmas Term 2025/2026

Unfortunately...

+ Ray tracing is computationally expensive
used for super-high visual quality
+ Video games and user interfaces need something faster
+ Most real-time applications rely on rasterisation
Model surfaces as polyhedra — meshes of polygons
Use composition to build scenes
Apply perspective transformation and project into the plane of the screen
Work out which surface was closest
Fill pixels with the colour of the nearest visible polygon
+ Graphics cards have hardware to support this
+ Ray tracing starts to appear in real-time rendering
The new generations of GPUs offer accelerated ray-tracing
But it is still not as efficient as rasterisation

61

61

Surfaces in 3D: polygons

+ Easier to consider planar polygons
3 vertices (triangle) must be planar Q
> 3 vertices, not necessarily planar
anon-planar B

“polygon” rotate the polygon A
A about the vertical axis c
€ should the result be this —

DB

D or this? —
A
this vertexis in
front of the other

three, which are all D
in the same plane

63

63

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

62
Three-dimensional objects
Polyhedral surfaces are made up from meshes of
multiple connected polygons
Polygonal meshes a
= open or closed
Curved surfaces
= must be converted to polygons to be drawn
62
64
Splitting polygons into triangles
Most Graphics Processing Units (GPUs) are optimised to draw triangles
Split polygons with more than three vertices into triangles
//r 0 which is preferable?
?
64

Introduction to Graphics

Michaelmas Term 2025/2026

65
2D transformations
+ scale why?

D + it is extremely useful to be able to
transform predefined objects to an
arbitrary location, orientation, and size

+ rotate))
+ any reasonable graphics package will
D Q include transforms
m 2D 2 Postscript
+ translate /|:| = 3D & OpenGL
] =
+ (shear)
[FCG 6/7]
65
67
Matrix representation of transformations
+ scale + rotate
about origin, factor m about origin, angle 8

x| [m 0fx x"| [cos® —sin6 | x

y'_O m|y y'_sin6 cosO ||y
+ do nothing + shear

identity parallel to x axis, factor a
ST I WS P ¥
Y110 y yio 1y
67

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

66
Basic 2D transformations
scale
m about origin x'=mx
u by factor m y’ =my
rotate
= about origin x' =xcosf —ysinb
m by angle 0 y' =xsinf + ycos 6
translate
= along vector (x,.y,) x' =x+x
y' =Y+
shear
m parallel to x axis x' =x+ay
m by factor a yr =y
66
68
Homogeneous 2D co-ordinates
translations cannot be represented using simple 2D matrix multiplication on
2D vectors, so we switch to homogeneous co-ordinates
(o, y,w)=(2,%)
an infinite number of homogeneous coordinates maps to every 2D point
w=0 represents a point at infinity
usually take the inverse transform to be:
(x,3)=(x,».1)
The symbol = means equivalent
[FCG 6.3/7.3]
68

Introduction to Graphics

Michaelmas Term 2025/2026

69
Matrices in homogeneous co-ordinates
+ scale + rotate
about origin, factor m about origin, angle 0
x' m 0 Ofx x' cos® —sin® Ofx
Yi=10 m Ofy y'|=|sin@ cos® Ofy
w' 0 0 Ifw w' 0 0 1w
+ do nothing + shear
identity parallel to x axis, factor a
x' 1 0 Ofx x' 1 a Ofx
y'|=/0 1 Ofy yi=|0 1 0fy
w' 00 1|w w' 00 1|w
69
71
Concatenating transformations
often necessary to perform more than one transformation on the same object
can concatenate transformations by multiplying their matrices
e.g. a shear followed by a scaling:
scale shear
x" m 0 0] x' x' 1 a Ofx
y'l=|0 m ofy yi=lo 1 o)y
w'| oo 1w wl [0 0 1]w
scale r both
x" m 0 01 a Ofx m ma Ofx
V=0 m 0f0 1 0fy|={0 m Ofy
wl [0 0 1]0 o tfw] [0 0o 1]w
71

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

70
Translation by matrix algebra
x' 1 0 x,|x
YI=10 1 ye |y
w' 00 1w
In homogeneous coordinates
X'=x+wx, y'=y+wy, w'=w
In conventional coordinates
X' x y oy
== ==
woow %o woow o
70
72
Transformation are not commutative
+ be careful of the order in which you concatenate transformations
rotate then scale scale
(%5 %5 O 2 00
Fotate by 45° scale by 2 / V2 / V2 0 010
along x axis | 0 0 1 00 1
(%5 Vs O] [Yz Ym O
F F Y Ve O |V Jr O
tate by 45°
along « s e 0 o0 1] |0 o0 1
scale then rotate rotate
72

Introduction to Graphics

Michaelmas Term 2025/2026

73
Scaling about an arbitrary point
scale by a factor m about point (x,.y,)
(I) translate point (x,,p,) to the origin
(2) scale by a factor m about the origin
(3) translate the origin to (x,y,)
=7 v o -x7x @2)[x"] [m o ofx "
Y=o r =y, |y y'={0 m o)y "
w' 00 1 |w w' 0 0 1w w' |
XM I 0 x,[m 0 Ofl 0 —x,|x
yrl=l0 1 y, |0 m ofo 1 —y |y Exercise: show how to
W 00 110 0 1lo o 1 |w perforrp rotatpn about
an arbitrary point
73
75
3D transformations are not commutative
90° rotation 90° rotation
about z-axis about x-axis .
v opposite
z z _Gx faces
L~ £ [J
y -
L £ o -
X
90° rotation 90° rotation
about x-axis about z-axis
75

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

74
.
3D transformations
3D homogeneous co-ordinates
(x,y,2,w) > (5,05
3D transformation matrices
translation identity rotation about x-axis
100 ¢ 1000 [t o 0 0]
010y 0100 0 cos® -sin® 0
001 ¢ 0010 0 sin® cos® O
000 1 000 1 K] 0 1]
scale rotation about z-axis rotation about y-axis
m. 0 0 0 cos® —sin® 0 0 cos® 0 sin® 0
o m 0 0 sin cos® 0 0 0 1 0 0
0 0 m 0 0 0 10 —sin® 0 cos® 0
0 0 0 1 0 0 01 L o o o 1]
74
76
o
Model transformation |
m the graphics package Open Inventor defines a cylinder to be:
centre at the origin, (0,0,0) x
radius | unit
height 2 units, aligned along the y-axis
u this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations
= we want to draw a cylinder of:
radius 2 units
the centres of its two ends
located at (1,2,3) and (2,4,5)
< its length is thus 3 units
= what transforms are required?
and in what order should they be applied?
76

Introduction to Graphics

Michaelmas Term 2025/2026

77
Model transformation 2
+ order is important:
scale first
rotate
translate last
+ scaling and translation are straightforward
2 0 00 1 0 0 15
015 00 010 3
S= T=
0 0 20 001 4
0 0 01 00 0 1
scale from translate centre of
size (2,2,2) cylinder from (0,0,0) to
to size (4,3,4) halfway between (1,2,3) :
and (2:4,5) ‘ 4
77
79
Model transformation 4
desired axis: (2,4,5)—(1,2,3) = (1,2,2)
original axis: y-axis = (0,3,0)
zero the z-coordinate by rotating about the x-axis
1 0 0 0 t
|0 cos® —sinb 0 \FLZZ)
|0 sin® cos® 0
0 0 0 1 y
) (L 22+22,o)
0 = —arcsin N ~(180)
79

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

78
Model transformation 3
+ rotation is a multi-step process
break the rotation into steps, each of which is rotation about a principal axis
work these out by taking the desired orientation back to the original axis-
aligned position
the centres of its two ends located at (1,2,3) and (2,4,5)
desired axis: (2,4,5)—(1,2,3) = (1,2,2)
original axis: y-axis = (0,1,0)
78
80
Model transformation 5
then zero the x-coordinate by rotating about the z-axis
we now have the object’s axis pointing along the y-axis
~sing 0 0 ¥
oS0 s (0o 0) s 050
R. - sing cos¢ 0 0
"o 0 10 00
0 0 0 1 x
. 1
¢ =arcsin ————
12 +4/8
80

20

Introduction to Graphics

Michaelmas Term 2025/2026

Model transformation 6

+ the overall transformation is:
first scale
then take the inverse of the rotation we just calculated
finally translate to the correct position

RA

N

=T><R1_1><R2_1><S><

T N e R

S

81

81

3D = 2D projection

+to make a picture

3D world is projected to a 2D image
u like a camera taking a photograph
u the three dimensional world is projected onto a plane

The 3D world is described as a set
of (mathematical) objects

e.g. sphere radius (3.4)
centre (0,2,9)
e.g. box size (2,4,3)

centre (7, 2, 9)

orientation (27°, 156°)

83

83

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

82
Application: display multiple instances
transformations allow you to define an object at one location and then place
multiple instances in your scene
82
84
Types of projection
e
+ parallel
P pEgpye
eg. (x.2.2) > (x,) [L]
useful in CAD' architecture’ etC Cavalier projection Cabinet projection
looks unrealistic Iﬂ g
. <[]
+ PerSPeCtlve Parallel o X axis P\s Parallel to Z axis
e'g‘ (X’y’z)*)(f’%
things get smaller as they get farther away _— —
o ©] O]
looks realistic P4 =
® this is how cameras work . .
84

21

Introduction to Graphics Michaelmas Term 2025/2026

85 86
Geometry of perspective projection Projection as a matrix operation
Yy
(x',y'.d d _
(x,3,2) x'=x— x 10 0 0 x xX'=x—
z z
(0,0,0) y | |01 0 0]y
' 1/d| |0 0 0 1/d|z ,
y=y- y=y-
z/d 0 0 1/d 0 |1
This is useful in the z-buffer 1
N algorithm where we need to Z' —
remember | || y/w interpolate 1/z values rather z
2w than z values.
85 86
p " o cti 87 88
erspective projection . .
. . A variety of transformations
with an arbitrary camera
object in object in object in object in
we have assumed that: object |m——- — world —- VIEWING —| 2D screen
= screen centre at (0,0,d) co-ordinates | modelling | co-ordinates | viewing co-ordinates projection co-ordinates
transform transform
u screen parallel to xy-plane
m z-axis into screen = the modelling transform and viewing transform can be multiplied together to produce a single
= p-axis up and x-axis to the right matrix, taking an object directly from object coordinates into viewing coordinates
u eye (camera) at origin (0,0,0) m either or both of the modelling transform and viewing transform matrices can be the identity
. . matrix
for an arbitrary camera, we can either:

e.g. objects can be specified directly in viewing co-ordinates, or directly in world co-ordinates

m work out equations for projecting objects about an arbitrary point onto an arbitrary plane . ’
q proj 8 Ob) YP YP u this is a useful set of transforms, not a hard and fast model of how things should be done

= transform all objects into our standard coordinate system (viewing coordinates) and use the
above assumptions

87 88

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk 22

Introduction to Graphics

89
Model, View, Projection matrices
+y +y
| 2
X < g +X |:> Model |:> X
matrix
+Z +
To position each
-y object in the scene. -y
Object coordinates Could be different World coordinates
for each object.
Object centred at the
origin
89
91

Model, View, Projection matrices

The default OpenGL
coordinate system is
right-handed

To project 3D
coordinates to a 2D
plane. Note that z
coordinate is retained
for depth testing.

View (camera)
coordinates

Screen coordinates
or Normalised Device Coordinates (NDC)

x and y must be in the range
-l and |
91

91

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

Michaelmas Term 2025/2026

90
Model, View, Projection matrices
+y +y |
| <
-z | -z 2
. |
X 2 - S
L
+z +z
To position all objects
-y relative to the camera -y
World coordinates View (camera)
coordinates
Camera at the origin,
inting at -
0 pointing at -z
90
92

All together

3D world
vertex
coordinates

Screen
coordinates

x,/w, and
ys/w, must be
between
-land |

SN R

Projection, view and
model matrices

92

92

23

Introduction to Graphics

Michaelmas Term 2025/2026

Transforming normal vectors

+ Transformation by a nonorthogonal
matrix does not preserve angles
+ Since:

N'-T" = (GN) - (MT) = 0

Vertex position
Transformed normal
transform
and tangent vector

+ We can find that: ¢ = (M~1)T

Derivation shown in the lecture

Scale
—_—

" 1.0 0
020
Y 0 0 1

[FCG 6.2.2/7.2.2]

94

94

93
Viewing transform: look at
+ Task: find a viewing transform so that the camera centre is at ¢, is
directed towards I and vector u is the “up” direction
For a left-handed a u Note: In OpenGL, vector ¥
coordinate system: is pointing away from I
(right-handed coordinate
D= l-c system). Therefore, the signs
It —cll and cross produced must
c be updated accordingly
N vXu
= .
1D x ull 3
U=TXD
e B f OJ[1 0 0 —c] [B f -—c-F
V:ﬁ" 2 @, 0|0 1 0 —¢f_ | @, @, —c-@
o D, ¥, 0||0 0 1 —cf |Dy D, 0, —c-®
o 0o o 1o 0 0 1 0 0 0 1
change of basis translation
93
95
.
Scene construction
. . . box
+We will build a robot from basic parts &,
+ Body transformation g
1 1
Mpoay = Object \0‘25
+ Arm1l transformation coordinates
Arm2
Marm1 = l'm
4+ Arm2 transformation p Body
8
Marmz = DE;
World ‘
coordinates

95

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

Scene construction

box

+Body transformation

Epoay = scale B]

Xo
Thoay = translate [YO] - rotate(30°)

Mpoay = ThoayEpboay
4+ Arml transformation
Tarm1 = translate [1.175] - rotate(—90°)

Marm1 = TbudyTarmI

4+ Arm2 transformation
Tarmz = translate [g] - rotate(—90°)

Marmz = Tbody TarmiTarmz

96

96

24

Introduction to Graphics

Scene Graph

+ A scene can be drawn by traversing a E
scene graph:

Thoay Eboay

traverse(node, T_parent) {
M =T_parent * node.T * node.E

node.draw(M)
for each child { Toam -
tight-arm

traverse(child, T_parent * node.T)

Tieftarm

Thight-arm2 ’B 8 Tiefi-arm2 D -

}
}

[FCG 12.2/12.2]

97

97

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafat Mantiuk

Michaelmas Term 2025/2026

25

Introduction to Graphics

Michaelmas Term 2025/2026

Introduction to Computer Graphics

Rasterisation

98

Rasterisation algorithm(¥)

Set model, view and projection (MVP) transformations
fragment — a candidate

FOR every triangle in the scene pixel in the triangle

transform its vertices using MVP matrices
IF the triangle is within a view frustum
clip the triangle to the screen border
FOR each fragment in the triangle
interpolate fragment position and attributes between vertices
compute fragment colour
IF the fragment is closer to the camera than any pixel drawn so far, update
the screen pixel with the fragment colour
END IF ;
END FOR ;
END IF ;
END FOR ;

(*) simplified
99

98
[lumination & shading
Drawing polygons with uniform colours Interpolate colours across polygons
gives poor results
100

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

99

Rasterisation

» Efficiently draw (thousands of) triangles
Interpolate vertex attributes inside the triangle

» Homogeneous barycentric
.coordlnates are used to a=0;f =0y =1
interpolate colours, normals, RGB=[100]
texture coordinates and other
attributes inside the triangle

RGB=[110]
a=18=0v=0

101 [FCG 2.7/2.9]

101

Introduction to Graphics

Michaelmas Term 2025/2026

Homogenous barycentric coordinates

» Find barycentric coordinates of the
point (x,y)
Given the coordinates of the vertices
Derivation in the lecture

_ S (y) — Jacxy)
fev(*aya) Jac(*b:Yb)
fap(x,y) is the implicit line equation:

far (6, ¥) = (Va = ¥p)x + (Xp = Xa)Y + Xa¥p = XbYa

— 074 = (Ta,Ya)
ol 0/ /
gl B
/
y=-1

Triangle rasterisation

for y=yui, to yua do
for X=X, t0 Xpay dO

a = fep(%,¥)/fer(Xar Ya)

B = fac(, ¥/ fac(xp, Y1)

y=1-a-p

if(e>0and g >0andy > 0) then
c=acg+ Py +yce
draw pixels (x,y) with colour ¢

Optimisation: the barycentric coordinates will change by the same amount
when moving one pixel right (or one pixel down), regardless of the
position
Precompute increments A, A3, Ay and use them instead of computing barycentric
coordinates when drawing pixels sequentially

102

103

Surface normal vector interpolation

for a polygonal model, interpolate normal vector between the vertices
Calculate colour (Phong reflection model) for each pixel
Diffuse component can be either interpolated or computed for each pixel

N.B. Phong’s approximation to (a0, 2 (00000 N

specular reflection ignores

(amongst other things) the

effects of glancing incidence
(the Fresnel term)

[(x' 727,25,
(r2,8:,6,),N]

[Cxs's 23,255 (5, 85, 65), N5]

Occlusions (hidden surfaces)

Simple case

More difficult cases

)

105 [FCG 8.2.3/9.2.3]

104

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

105

Introduction to Graphics

Michaelmas Term 2025/2026

Z-Buffer - algorithm

Colour Depth
buffer buffer '

» Initialise the depth buffer and image buffer for all pixels
colour(x, y) = Background_colour,
depth(x, y) =z,.x // position of the far clipping plane

» For every triangle in a scene do
For every fragment (x, y) in this triangle do
Calculate z for current (x, y)
if (z < depth(x, y)) and (z > z,,) then
depth(x, y) = z
colour(x, y) = fragment_colour(x, y)

View frustum and Z-buffer
» Z-buffer must store depth with sufficient precision

24 or 32 bit
Range of values mapped to
Integer or float the Z-Buffer

1.
Often Z instead of z

/

Near-clipping plane

f

Far-clipping plane
107

Z-fighting

106

107

Introduction to Computer Graphics

Graphics hardware and OpenGL
+ GPU & APIs

¢ OpenGL Rendering pipeline

+ GLSL

o Textures

+ Raster buffers

What is a GPU?

» Graphics Processing Unit

» Like CPU (Central Processing Unit)
but for processing graphics

» Optimised for floating-point
operations on large arrays of data

Vertices, normals, pixels, etc.

e

109

108

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

109

Introduction to Graphics

What does a GPU do

» Performs all low-level tasks & a lot of high-level tasks

Clipping, rasterisation, hidden surface removal, ...
Essentially draws millions of triangles very efficiently

Procedural shading, texturing, animation, simulation, ...
Ray tracing (ray traversal, acceleration data structures)
Video rendering, de- and encoding, ...
Physics engines

» Full programmability at several pipeline stages
fully programmable
but optimized for massively parallel operations

110
GPU APIs
(Application Programming Interfaces)
Microsoft .
OpenGL @GL, DirectX DirectX
» Multi-platform » Microsoft Windows / Xbox
» Open standard API » Proprietary API
» Focus on general 3D applications » Focus on games
Open GL driver manages the Application manages resources
resources

» No ray tracing extensions

Michaelmas Term 2025/2026

What makes GPU so fast?

» 3D rendering can be very efficiently parallelized
Millions of pixels
Thousands of triangles
Many operations executed independently at the same time
» This is why modern GPUs
Contain between hundreds and thousands of SIMD processors
Single Instruction Multiple Data — operate on large arrays of data
>>1000 GB/s memory access
This is much higher bandwidth than CPU
But peak performance can be expected for very specific operations

111

One more API IVl—l I i(a n ™

» Vulkan — cross platform, open standard
» Low-overhead API for high performance 3D graphics
» Compared to OpenGL / DirectX
Reduces CPU load
Better support of multi-CPU-core architectures
Finer control of GPU
» But
The code for drawing a few primitives can take 1000s line of code
Intended for game engines and code that must be very well optimized

13

112

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

113

Introduction to Graphics

o
And one more &
» Metal (Apple iOS8)

low-level, low-overhead 3D GFX and compute shaders API

Support for Apple chips, Intel HD and Iris, AMD, Nvidia

Similar design as modern APIs, such as Vulcan

Swift or Objective-C API

Used mostly on iOS

Michaelmas Term 2025/2026

114

GPGPU - general purpose computing

» OpenGL and DirectX are not meant to be used for general purpose
computing

Example: physical simulation, machine learning

» CUDA — Nvidia’s architecture for parallel computing QE
C-like programming language NVIDIA.

With special API for parallel instructions CUDA
Requires Nvidia GPU

» OpenCL — Similar to CUDA, but open standard :‘15“"
Can run on both GPU and some CPUs :
Supported by AMD, Intel and NVidia, Qualcomm, Apple, ... openct

GPU and mobile devices

» OpenGL ES 1.0-3.2
Stripped version of OpenGL
Removed functionality that is not strictly necessary on mobile devices

» Devices
iOS:iPhone, iPad
Android phones
PlayStation 3
Nintendo 3DS
and many more

OpenGL ES 2.0 rendering (iOS)

115

QrenGLES

116

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

WebGL and WebGPU
» WebGL (since ~2007)

JavaScript library for 3D rendering in a web browser
WebGL 1.0 - based on OpenGL ES 2.0
WebGL 2.0 — based on OpenGL ES 3.0
Used in 3D JavaScipt libraries
,WebXR
» WebGPU (since ~2017)

Provides access to Vulcan, Metal, DirectX 12

httb://zygotebody.corﬁ/

Own shading language WGSL (similar to Rust)

17

117

Introduction to Graphics

Michaelmas Term 2025/2026

OpenGL History

» Proprietary library IRIS GL by SGI » OpenGL 4.0 (2010)
» OpenGL 1.0 (1992) Catching up with Direct3D ||
» OpenGL 1.2 (1998) » OpenGL 4.5 (2014)
» OpenGL 2.0 (2004) » OpenGL 4.6 (2017)
GLSL

SPIR-V shaders
Non-power-of-two (NPOT) textures

» OpenGL 3.0 (2008)
Major overhaul of the API

Many features from previous versions
depreciated

» OpenGL 3.2 (2009)
Core and Compatibility profiles
Geometry shaders

How to learn OpenGL?

» Lectures — algorithms behind OpenGL, general principles

» References

OpenGL Programming Guide: The Official Guide to Learning OpenGL,Version 4.5
with SPIR-V by John Kessenich, Graham Sellers, Dave Shreiner ISBN-10: 0134495497

OpenGL quick reference guide

Google search: ,,man gl.....” OpenGL &

nming Guide

118

OpenGL rendering pipeline

120

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

119
OpenGL programming model
» gI* functions that » Fragment shaders
Create OpenGL objects » Vertex shaders
Copy data CPU<->GPU » and other shaders
:'°d'fy OpenGL state » Written in GLSL
Enuee operacions Similar to C
yn(f ronize & From OpenGL 4.6 could be written in
» C99 library other language and compiled to SPIR-V
» Wrappers in most programming
language
121
121

Introduction to Graphics

OpenGL rendering pipeline

Vertex Vertex Tessellation Tessellation
data shader control shader evaluation shader

. o 1 Primitive

[Rasterization](—[Clipping assembly
Fragment Screen
shader buffer

Geometry
shader

Programmable .
[p—][Fixed stages]

Michaelmas Term 2025/2026

122

OpenGL rendering pipeline

Vertex Vertex Tessellation Tessellation
data shader control shader evaluation shader

Primitive Geometry
assembly shader

Processing of vertices, normals,
uv texture coordinates.

[

Programmable] [B s]
stages

123

OpenGL rendering pipeline

Vertex Vertex Tessellation Tessellation
data shader control shader evaluation shader

N C l
[Rasterization](—[Clipp/ [Optional] Create new

primitives by tessellating existing
l primitives (patches).

Fragment Screg
shader buffq

-

[Programmable] [e s]
stages

123

124

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

OpenGL rendering pipeline

/ [Optional] Operate on tessellated

Vertg
datd

Raste|

shadow volumes

geometry. Can create new primitives.

Tessellation
' evaluation shader

_—T Geometry
] shader

l fur
Fragment Screen
shader buffer

[

Programmable] [i) G]
stages

125

125

Introduction to Graphics

\
OpenGL rendering pi
p g p Organises vertices into
primitives and prepares them for

rendering.
Vertex Vertex ssellation
data shader aluation shader
- - Primitive Geometry
[Rasterization](—[Clipping](—[oSy shader
Fragment Screen
shader buffer

Programmable .
[p—][Fixed stages]

126

Generates fragments (pixels) to

OpenGL re be drawn for each primitive.

Interpolates vertex attributes.
Vert jllation Tessellation
data ‘ol shader evaluation shader
Primitive Geometry
Rasterlzatlon Clipping](—[el](—[shader]
Fragment Screen
shader buffer

[Programmable] [e s]
stages

Michaelmas Term 2025/2026

Vertex
data

Remove or modify vertices so
that they all lie within the
viewport (view frustum).

Tessellation
evaluation shader

[Rasterization]‘—[Clipping ¢ ::slr:r:l;li

Geometry
shader

Fragment Screen
shader buffer

127

[Programmable] [B s]
stages

127

128

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

OpenGL rende

Vertex |
data

Rasterization

Fragment
shader

Computes colour per each fragment (pixel). Can lookup
colour in the texture. Can modify pixels’ depth value.

Physically accurate Non-Photorealistic-Rendering
materials shader

Also used for tone mapping. /

129

[Programmable] [i) G]
stages

129

Introduction to Graphics

oLl

Example: preparing vertex data for a cube

(1,11)
(0,1,0) S
2 3 ,1,0) Primitives (triangles)
01,2
A\ 6
o0
yZ 4 Vertex attributes
X 07000 111,000 mm
0 0,0,0 0,0,-1

130

GLSL - fundamentals

Michaelmas Term 2025/2026

Geometry objects in OpenGL (OO view)

[E=a

bound VertexArray [

—1

ElementArrayBuffer
—

bound Buffer P

ArrayBuffer

vertices : ArrayBuffer
S —
myVertexArray : VertexArray

normals : ArrayBuffer
e —

indices : ElementArrayBuffer

131

132

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Shaders

» Shaders are small programs executed on a GPU

» They are written in GLSL (OpenGL Shading Language)

Executed for each vertex, each pixel (fragment), etc.

Similar to C and Java

Primitive (int, float) and aggregate data types (ivec3, vec3)
Structures and arrays

Arithmetic operations on scalars, vectors and matrices
Flow control: if, switch, for, while

Functions

133

Introduction to Graphics

Example of a vertex shader

#version 330

in vec3 position; /I vertex position in local space
in vec3 normal; /I vertex normal in local space
out vec3 frag_normal; /I fragment normal in world space
uniform mat4 mvp_matrix; /I model-view-projection matrix
void main()

{

/ Typicaly normal is transformed by the model matrix
/I Since the model matrix is identity in our case, we do not modify normals

frag_normal = normal;

/I The position is projected to the screen coordinates using mvp_matrix

gl_Position = mvp_matrix * vec4(position, 1.0);

Why is this piece
of code needed?

Michaelmas Term 2025/2026

134

Data types

» Basic types
float, double, int, uint, bool
» Aggregate types
float: vec2, vec3, vec4; mat2, mat3, mat4
double: dvec?, dvec3, dvec4; dmat2, dmat3, dmat4
int:ivec2, ivec3, ivec4
uint: uvec2, uvec3, uvec4
bool: bvec2, bvec3, bvec4

vec3V =vec3(1.0,2.0,3.0); mat3 M = mat3(1.0, 2.0, 3.0,

4.0,5.0,6.0,
7.0,8.0,9.0);

Indexing components in aggregate types

» Subscripts: rgba, xyzw, stpq (work exactly the same)
float red = color.r;
float v_y = velocity.y;
but also
float red = color.x;
float v_y = velocity.g;
» With 0-base index:
float red = color[0];
float m22 = M[1][1]; // second row and column
/I of matrix M

135

136

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Swizzling

You can select the elements of the aggregate type:
vec4 rgba_color(1.0, 1.0, 0.0, 1.0);

vec3 rgb_color = rgba_color.rgb;

vec3 bgr_color = rgba_color.bgr;

vec3 grayscale = rgba_color.ggg;

137

Introduction to Graphics

Arrays

» Similar to C
float lut[5] = float[5](1.0, 1.42, 1.73, 2.0, 2.23);

» Size can be checked with “length()”
for(int i = @; i < lut.length(); i++) {
lut[i] *= 2;

Michaelmas Term 2025/2026

138

Storage qualifiers

v

const — read-only, fixed at compile time

v

in —input to the shader

v

out — output from the shader

v

uniform— parameter passed from the application (Java), constant for the
drawn geometry

v

buffer — GPU memory buffer (allocated by the application), both read and
write access

v

shared — shared with a local work group (compute shaders only)

v

Example: const float pi=3.14;

Shader inputs and outputs

|GetAttribLocati
§|Bi: dBt:frf'er ocation ArrayBuffer (normals)

glVertexAttribPointer

glEnableVertexAttribArray
ArrayBuffer (vertices)

out vec3
frag_normal
Vertex
shader Vertex attribute
interpolation

in vec3 frag_normal

[optional]
FrameBuffer (pixels) ¢ glBindFragDatal.ocation
ol

"
layout(location=?) in GLSL

out vec3 colour

Fragment
shader

139

140

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

GLSL Operators

» Arithmetic: + - ++ --

Multiplication:
vec3 * vec3 - element-wise

mat4 * vec4 — matrix multiplication (with a column vector)
» Bitwise (integer): <<, >>, &, |, *
» Logical (bool):&&, ||, ~*

» Assignment:
float a=0;
a += 2.0; // Equivalent to a = a + 2.0

» See the quick reference guide at:

141

141

Introduction to Graphics Michaelmas Term 2025/2026

GLSL Math GLSL flow control

» Trigonometric: if(bool) { for(int i = @; i<1@; i++) {
radians(deg), degrees(rad), sin, cos, tan, asin, acos, atan, sinh, cosh, // true
tanh, asinh, acosh, atanh } else { }

» Exponential: // false
pow, exp, log, exp2, log2, sqrt, inversesqrt } while(n < 10) {

Common functions:

v

. . switch(int_value) { }
abs, round, floor, ceil, min, max, clamp, ..
X case n:
> Graphics // statements do {
reflect, refract, inversesqgrt break;
» And many more case m: } while (n < 10)
// statements
» See the quick reference guide at: break;
default:
}
142 143
142 143
Simple OpenGL application - flow Rendering geometry
J’ » Initialize rendering window & OpenGL context » To render a single object with OpenGL
Initialize OpenGL » Ze;l(j the geometry (vertices, triangles, normals) to the I.glUseProgram() — to activate vertex & fragment shaders
» Load and compile Shaders 2.glVertexAttribPointer () — to indicate which Buffers with vertices and

normals should be input to the vertex shader

v

Clear the screen buffer

5.glBindVertexArray() — to bind the vertex array

v

Set the model-view-projection matrix 6.glDrawElements() —to queue drawing the geometry

Set up inputs 3.glUniform*() — to set uniforms (parameters of the fragment/vertex shader)
4.glBindTexture() - to bind the texture

Draw a frame -
7.Unbind all objects
» OpenGL API is designed around the idea of a state-machine — set the state & queue

drawing command
Free resources

144 145

v

Render geometry

v

Flip the screen buffers

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Introduction to Graphics

Textures

Michaelmas Term 2025/2026

146

(Most important) OpenGL texture types

0 s 1
W0 [IITTTITTITTTITT]

0 s 1 performance.
0 s 1}

CUBE_MAP

Texture can have any size but the sizes that
are powers of two (POT, 2") may give better

Used for environment
mapping

Texture mapping

» |.Define your texture function (image)
T(u,v)
» (u,v) are texture coordinates

147

148

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Texture mapping

» 2.Define the correspondence between
the vertices on the 3D object and the
texture coordinates

u=0
v=1

149

149

Introduction to Graphics Michaelmas Term 2025/2026

Texture mapping Sampling

Texture

» 3.When rendering, for every surface point compute texture coordinates. Use v

the texture function to get texture value. Use as colour or reflectance.
Up-sampling

More pixels than texels
Values need to be interpolated

Down-sampling
Fewer pixels than texels
Values need to be averaged
over an area of the texture
(usually using a mipmap)

150 151

Nearest neighbor vs.
bilinear interpolation (upsampling) Texture mapping examples
g v
2 2 Jllillll.
2 L T
£ 58 —
8 =2 u
5 m .S
[}
z -
i nearest-
Pick the nearest Interpolate first along neighbour
texel: D x-axis between AB
and CD, then along
y-axis between the -
interpolated points. bilinear
152 153
152 153

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Introduction to Graphics

Up-sampling

if one pixel in the texture map covers

nearest-) . -
neighbour severja.l pixels in the final image, you
get visible artefacts
blocky

u artefacts) -
only practical way to prevent this is

to ensure that texture map is of
sufficiently high resolution that it does

bilinear not happen

blurry
artefacts

154

Michaelmas Term 2025/2026

Down-sampling

» if the pixel covers quite a large area of the
texture, then it will be necessary to average the
texture across that area, not just take a sample

in the middle of the area

155

154

Mipmap
» Textures are often stored at multiple resolutions as a
mipmap
Each level of the pyramid is half the size of the lower level
Mipmap resolution is always power-of-two (1024, 512,
256, 128, ...)

It provides pre-filtered texture (area-averaged) when
screen pixels are larger than the full resolution texels

v

v

Mipmap requires just an additional |/3 of the original
texture size to store

v

OpenGL can generate a mipmap with
glGenerateMipmap (GL_TEXTURE_2D)

4

This image is an illustration showing
only 1/3 increase in storeage.
Mipmaps are stored differently in the
GPU memory.

155

Down-sampling

without area averaging

with area averaging

156

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

157

Introduction to Graphics

Texture tiling

» Repetitive patterns can be represented as texture tiles.
» The texture folds over, so that
T(u=1.1,v=0) = T(u=0.1,v=0)

57wy

Gimp and other drawing software often offer plugins for creating tiled textures

158

Bump mapping and normal mapping

From Computer Desktop Encyclopedia

» Special kind of texture that modifies 501 i Gt Systems
surface normal

Surface normal is a vector that is
perpendicular to a surface

» The surface is still flat but shading
appears as on an uneven surface

» Easily done in fragment shaders

Michaelmas Term 2025/2026

Multi-surface UV maps

» A single texture is often used for multiple surfaces and objects

Example from: http://awshub.com/blog/blog/2011/11/01/hi-poly-vs-
low-poly/

159

159

Displacement mapping

» Texture that modifies surface

» Better results than bump mapping since
the surface is not flat

» Requires geometry shaders

16l

160

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

161

Introduction to Graphics

Michaelmas Term 2025/2026

Environment mapping

» To show environment reflected by
an object

Assumption:infinite distance to the
source of reflection

Environment mapping

. CUBE_MAP

» Environment cube =

» Each face captures environment in e

that direction
face 5
face 2 face 3 face 1
face 1 face 6

face 4

163

163

Texture parameters

//Setup filtering, i.e. how OpenGL will interpolate the pixels when scaling up or down
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);

How to
interpolate in

2D
//Setup wrap mode, i.e. how OpenGL will handle pixels outside of the expected range
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

How to interpolate
between mipmap
levels

Stores texture data I | tercvare LBy
reading texture in
fragment shader
\
Texture N
[ightae | ~ min_fiter - int TextureUnit
- max_filer - int
— -wrap_s : int 1 boundto B>, | - index:int
-wrap_t int
Texture1D Texture2D Texture3D .
- width it - width int - width : it -
i e TP - min_fier : int SamplerUnit
—— depth - int - mag_filter . int index - int
- depl wratesEit bound to P} -
_wrap_t - int
f
= ,
» /
Defines how the texels are Hardware units that
looked Up in Textures performs sampiing
164

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

165

Introduction to Graphics Michaelmas Term 2025/2026

Render buffers in OpenGL
Four components:
Colour: GL_FRONT GL_BACK RGBA
Typically 8 bits per
component
GL_FRONT_LEFT | | GL_FRONT_RIGHT
. In stereo:
Raster buffers (colour, depth, stencil)
GL_BACK_LEFT GL_BACK_RIGHT
Depth: DEPTH To resolve occlusions (see Z-buffer algorithm)
Single component, usually >8 bits
To block rendering selected pixels
Stencil: STENCIL Single component, usually 8 bits.
167
166 167
Double buffering Triple buffering
» To avoid flicker, tearing » Do not wait for swapping to start drawing the next frame

» Use two buffers (rasters):
Front buffer — what is shown on the screen Double buffering

Front buffer — display time
Back buffer — not shown, GPU draws into that buffer Back buffer - draw ‘h‘E-—E-’—’

» When drawing is finished, swap front- and back-buffers)
Get rid of these gaps

Front buffer — display time

Back buffer - draw h | h I h Triple buffering
I 1t buffer Front buffer — display time
I 214 puffer Back buffer - draw &

I 15t buffer
» Shortcomings L ond puffer
More memory needed [3 buffer
Higher delay between drawing and displaying a frame
168 169
168 169

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Introduction to Graphics Michaelmas Term 2025/2026

Vertical Synchronization: V-Sync No V-Sync vs. V-Sync
» Pixels are copied from colour buffer to monitor row-by-row o ‘ . s
. . GPU | F 1 F 2 Fi 3 Fi 4
» If front & back buffer are swapped during this process: s e I o Verie 31| Fearre
Upper part of the screen contains previous frame 0
L . > Display Scan 1 | Scan 2 | Scan 3 I Scan 4 |
ower part of the screen contains current frame [e)
Result: tearing artefact ; z Tear Tear Tear Tear
» Solution:When V-Sync is enabled ’ b Time [:S] *
glwfSwapInterval(1l);) Lag
glSwapBuffers() waits until the last et [= o GPU[Frame1 | Frame2 | ——{Frame 3
row of pixels is copied to the display. e s \ \
g g Display Scan 1 | Scan 2 | Scan 3 | Scan 4 |
Stutter (same frgme displayed)
0 16 32 48
stine —_— Time [ms]
170 171
170 171
FreeSync (AMD) & G-Sync (Nvidia) Introduction to Computer Graphics
» Adaptive sync or Variable Refresh Rate (VRR)
Graphics card controls timing of the frames on the display
Can save power for 30fps video of when the screen is static
Can reduce lag for real-time graphics
GPU | Frame 1 | ‘ Frame 2 |Flrame g I | Frame 4 |
) ‘ | \ ‘ Human vision and colour,
Display Scan 1 | Scan 2 || Scan 3 | .
| tone mapping
0 16 32 48
Time [ms]
172 173
172 173

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Introduction to Graphics

The workings of the human visual system

» to understand the requirements of displays (resolution, quantisation and
colour) we need to know how the human eye works...

The lens of the eye forms
an image of the world on
the retina: the back
surface of the eye

Inverted vision
experiment

Michaelmas Term 2025/2026

Structure of the human eye

Cornea

Iris _

Pupil

Lens Vitreous body

See Animagraffs web page for an animated visualization
https://animagraffs.com/human-eye/

175

174

the is an array of light
detection cells
the is the high resolution
area of the retina
the takes signals
from the retina to the visual
cortex in the brain
and focus the light

on the retina

shrinks and expands to
control the amount of light

Retina, cones and rods

i’ Rods i{Cones

/" optical nerve
[fibers

» 2 classes of photoreceptors

are responsible for day-
light vision and colour
perception
Three types of cones: sensitive
to short, medium and long
wavelengths
are responsible for night
vison

175

» the fovea is a densely packed region in the centre
contains the highest density of cones
provides the highest resolution vision

receptors
in 1000/mm2

— Optic disc (blind spot)

Fovea, distribution of photoreceptors

of the macula

D

120 million
rod cells
vs

nose <€—

176

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Cones 60 <o 20 O\ 20 0 60 80
blind spot fovea

angle [degree]

177

Introduction to Graphics

Michaelmas Term 2025/2026

Colour perception and digital colour processing

Colour perception in
physical world

Digital colour { i
. - I
processing J ‘j v “
R,G,B,

179

179

Electromagnetic spectrum
%) o
. . . = 10| %
» Visible light T s Lo
=1 e F 4000m
Electromagnetic waves of wavelength in the Se . I~ 0m”
range 380nm to 730nm &l LI e BT
S i
Earth’s atmosphere lets through a lot of 2 (%- ol —(\1?2 w00
light in this wavelength band) B
N B
Higher in energy than thermal infrared, so 10 [
heat does not interfere with vision e o Mo
500MH1£: ki mm—chmwaves 1em
1 = 10cm
-
7-13 10°_{Radio, TV
‘\ODMHzJ M 1om
3 fwr 10|
b %
50Msz o) R
T [~ 1000 m
Long-waves
178
178
Reflectance
» Most of the light we see is reflected from objects
» These objects absorb a certain part of the light spectrum
Spectral reflectance of ceramic tiles
e e P) o T = S
osf osf Why not
red?
g os}- “ o}
0z oz} 1
ot G
—_—— - L — 1 —)
@ £ “ %o s w0 wo 7o
WAVELENGTH A (am) WAVELENGTH A (nm)
180 FE .

Reflected light
L(2) = I(A)R(1)

» Reflected light = illumination X reflectance

CIE D65
100 T———
080 EWEL i
§ 060
s
= 040
3 Xy =(03128,0.3290)
% 020 CCT =6504K
CRI= 100
0.00
3 450 S0 650 750
Wavelength (nm)
The same object may appear to have e
h ! « £ @
different colour under different WAVELENGTH A nm)

illumination.

181

180

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

.1 %
7%

181

Introduction to Graphics

Colour vision

» Cones are the photreceptors
responsible for color vision

Only daylight, we see no colors when
there is not enough light

» Three types of cones

S — sensitive to short wavelengths

M — sensitive to wavelengths e

600 650 700
L . I I h Sensitivity curves — probability that a
— sensitive to long wavelengths photon of that wavelengths will be
absorbed by a photoreceptor. S,M

and L curves are normalized in this
plot.

182

Metamers

» Even if two light spectra are different, they may appear to have the same
colour

» The light spectra that appear to have the same colour are called metamers
» Example:

Michaelmas Term 2025/2026

Perceived light

» cone response = sum(sensitivity X reflected light)

Although there is an infinite number of Formally

wavelengths, we have only three 730

photoreceptor types to sense RS = J‘SS(}”) . L(ﬂ)dﬂ
differences between light spectra

380

183 Index S for S-cones

183

184

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Practical application of metamerism

» Displays do not emit the same light spectra as real-world objects

» Yet, the colours on a display look almost identical

On the display

185

185

Introduction to Graphics

Michaelmas Term 2025/2026

Tristimulus Colour Representation

» Observation
Any colour can be matched using
three linear independent reference
colours
May require “negative” contribution to
test colour
Matching curves describe the value for
matching mono-chromatic spectral
colours of equal intensity

With respect to a certain set of primary
colours

|

. 7O 645mm

O

test source

0526 nm|
444 nm

Tristimulus Values

v observer

400 500 600 700
Wavelength, 4 (nm)

Standard Colour Space CIE-XYZ
» CIE Experiments [Guild and Wright, 1931]

Colour matching experiments

Group ~12 people with normal colour vision

2 degree visual field (fovea only)

Basis for CIE XYZ 1931 colour matching functions

» CIE 2006 XYZ
Derived from LMS color matching functions by Stockman & Sharpe
S-cone response differs the most from CIE 1931

» CIE-XYZ Colour Space

Goals
Abstract from concrete primaries used in experiment
All matching functions are positive

Primary ,,Y” is roughly proportionally to light intensity (luminance)

186

187

Standard Colour Space CIE-XYZ
» Standardised imaginary primaries CIE XYZ (1931)

Could match all physically realizable colour stimuli

Cone sensitivity curves can be obtained by a linear
transformation of CIE XYZ

3 Z=0.000L"+ -0.000M + 19355

| /\

400 450 500 550 600 650 700
Wavelength [nm]

Sensitivity

Value

T T T T T T T TTTTTTTIT

0
400 500 600

Wavelength, 2 = (nm)

CIE chromaticity diagram

» chromaticity values are defined in terms of x, y, z
X Y

x= , y= ,

X+Y+Z X+Y+2Z

ignores luminance
can be plotted as a 2D function

pure colours (single wavelength)
lie along the outer curve

all other colours are a mix of
pure colours and hence lie
inside the curve

points outside the curve do not
exist as colours

188

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

189

Introduction to Graphics Michaelmas Term 2025/2026

Achromatic/chromatic vision mechanisms Achromatic/chromatic vision mechanisms
Light spectra Light spectra

Luminance does L» Sensitivity of
the achromatic

NOT explain the mechanism
brightness of light!

[Koenderink et al.

Vision Research L.'_'D ; .

2016]

achromatic

190 191

Achromatic/chromatic vision mechanisms Achromatic/chromatic vision mechanisms
Light spectra Light spectra

M L
i & + -
Green-red Luminance Violet-yellow Green-red Luminance
chromatic achromatic chromatic chromatic achromatic
192 193

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Introduction to Graphics

Michaelmas Term 2025/2026

Achromatic/chromatic vision mechanisms
Light spectra

Violet-yellow Green-red Luminance

“ *Wavsenat o o chromatic chromatic achromatic

194

Visible vs. displayable colours

» All physically possible and visible colours form logY
a solid in XYZ space |
W | O
» Each display device can reproduce a subspace Vible | 09
lor e
of that space St 1R
5]
» A chromacity diagram is a slice taken from a 2

3D solid in XYZ space T
» Colour Gamut — the solid in a colour space 3 }V
Usually defined in XYZ to be device-independent

Luminance
» Luminance — measure of light weighted by the response of the achromatic
mechanism. Units: cd/m? (ISO) or nit
700 1
350
Light spectrum (radiance) Luminous efficiency function
(weighting)
Wavelength (nm) 400 500 600 700
195
Standard vs. High Dynamic Range
» HDR cameras/formats/displays attempt
capture/represent/reproduce (almost) all visible logY
colours | =
They represent scene colours and therefore we often \c’;"':ie ‘:;
call this representation scene-referred gmue |3
3
» SDR cameras/formats/devices attempt to 3
capture/represent/reproduce only colours of a ‘ .
standard sRGB colour gamut, mimicking the s
capabilities of CRTs monitors v
They represent display colours and therefore we often [|
call this representation display-referred A=
13 7+
197

196

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

197

Introduction to Graphics

Linear colours
floating point, e.g., 0.005 to 100000

From rendering to display

Display-encoded colours
int, e.g., 0-255

Scene-referred colours
high dynamic range

Physically-based
rendering

Tone mapping

1 —

Display-referred colours
dynamic range of the display

B =4

Display-encoding
Gamma
OETF -

Opto-Electrical

Transfer Function

Display

=

Perception

Michaelmas Term 2025/2026

198

Display encoding (EOTF) for SDR: gamma correction

» Gamma correction is often used to encode luminance or tri-stimulus color

values (RGB) in imaging systems (displays, printers, cameras, etc.)

Gamma
(usually =2.2)

_ Y
Vout =a- Vin

Gain

Luma
Digital signal (0-1)

(relative) Luminance
Physical signal
1
1 Y
Inverse: Vip = —-Voyue
a

199

1

08

Colour: the same equation
applied to red, green and blue
colour channels.

200

Why is gamma needed?

» Gamma-corrected/display-encoded pixel values give a scale of
brightness levels that is approximately perceptually uniform

» At least |2 bits (instead of 8) would be needed to encode
each color channel without gamma correction

» And accidentally it was also the response of the CRT gun

Luminance

(ewnj) anjea jaxid paposua-Ae|dsiq

200

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

199
Linear and display-encoded colour spaces
Linear colour space Display-encoded colour space
|.A&|—*l ISP pipeline + tone mapping)—*
RAW image JPEG image
|&|—'l Tone mapping + OETF }—' |A\|
HDR image SDR image
201
201

Introduction to Graphics Michaelmas Term 2025/2026

Linear and display-encoded colour spaces Luma — gray-scale pixel value

Linear colour space Display-encoded colour space » Luma - pixel brightness in gamma corrected units
L' =0.2126R" + 0.7152G’ + 0.0722B'

R',G' and B’ are gamma-corrected colour values

Values that drive displays
Physical and optical

modelling File formats

Prime symbol denotes gamma corrected
issi Most of the dataset
Floating point values TEREIESe ostotine datasets

Perceptually non-uniform Stored as integers
(e.g., 8 bits per colour channel)

Used in image/video coding

» Note that relative luminance if often approximated with

Models the mixture of lights (approx.) perceptually uniform

., EgTF ") — L =0.2126R + 0.7152G + 0.0722B = 0.2126(R')Y+0.7152(G")Y+0.0722(B")¥
nverse Gamma ot ”
)] v [l vEllues 260 &5 » R,G,and B are linear colour values
Linearly related to most commonly known
radiance [W sr' m2] and) OETF L, » Luma and luminace are different quantities despite similar formulas
luminance [cd m2] Gamma (1/y) Grayscale is called luma

‘ (not luminance)

202 203

202 203

How to transform between RGB colour spaces (SDR
Standards for display encoding and HDR)?

display-encoded li linear display-encoded
Display type EOTF Bit depth pay inear — P ";G,B,

- R'G'B bl RGB — - —
Standard Dynamic Range ITU-R 709 2.2 gamma / sSRGB 8to 10 SRGB —| mur709 |—| X2 |— | ITUR 2020 |— PQ-encoded
High Dynamic Range ITU-R 2020 ITU-R 2100 (PQ/HLG) 10to 12 [—" Devi _—
evice
Colour space Electro-Optical Transfer Function SDR -independent HDR
What is the colour of “pure” red, How to efficiently encode each primary .
Al / enco » From ITU-R 709 RGB to XYZ:
09
" e T X 0.4124 0.3576 0.1805 R
" g "f[s ! Y|[=[0.2126 0.7152 0.0722 |G
So6
g i ‘ Z 0.0193 0.1192 0.9505)r709t0xvz LBlR709
: L
: B2 = i Relative XYZ = Relative XYZ Relative XYZ Relative RGB
Zj ? 0. 0177777; = 1 10 ‘100 1000 10000 of t.he red of thF green of the blue (0- |) in the
, Luminance [cd/m?] / Radiance [W sr m?] primary primary primary R709 space
o o2 o oe o8
CEx
204 205
204 205

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Introduction to Graphics

Michaelmas Term 2025/2026

How to transform between
RGB colour spaces?

» From ITU-R 709 RGB to ITU-R 2020 RGB:

R R
G = Mxyztor2020 * Mr709t0xv2 * |G
Blr2020 Blr709
» From ITU-R 2020 RGB to ITU-R 709 RGB:
R] R
G = Mxyztor709 * Mr2020t0xvz * |G
Blr709 Blr2020
» Where:
0.4124 0.3576 0.1805
Mg709toxyz = [0.2126 0.7152 0-0722] and Myyztor700 = Mi7ootoxyz
00193 0.1192 09505

0.6370 0.1446 0.1689
Mpaoz20toxyz = [0.2627 0.6780 0.0593 | and Myyztorz020 = Mrzozotoxvz
0.0000 0.0281 1.0610

206

Exercise: Map colour to a display

» We have:
Spectrum of the colour we want to reproduce: L (Nx| vector)
XYZ sensitivities: Syy, (Nx3 matrix)

To obtain a
metameric match,
XYZ of the light
emitted from the

display and the

XYZ of the
spectrum L much

be the same

Spectra of the RGB primaries: Prp (Nx3 matrix)
Display gamma:y = 2.2
» We need to find display-encoded R’G’B’ colour values
Step |:Find XYZ of the colour
x v zI" =Sk, L
Step 2:Find a linear combination of RGB primaries
S¥vz Pros = Mpcp-xyz
Step 3: Convert and display-encode linear colour values
[R G BI" = Mpipxyz [X v 2]
[R" 6" B'1=I[rRYr ¢ BY/7]

207

206

207

Representing colour

» We need a mechanism which allows us to represent colour in the computer
by some set of numbers
A) preferably a small set of numbers which can be quantised to a fairly small
number of bits each
Display-encoded RGB, sRGB
B) a set of numbers that are easy to interpret
Munsell’s artists’ scheme
HSV, HLS

C) a set of numbers in a 3D space so that the (Euclidean) distance in that space
corresponds to approximately perceptually uniform colour differences
CIE Lab, CIE Luv

208

RGB spaces

» Most display devices that output light mix red, green and blue lights to make
colour
televisions, CRT monitors, LCD screens
» RGB colour space
Can be linear (RGB) or display-encoded (R'G’B’)
Can be scene-referred (HDR) or display-referred (SDR)

» There are multiple RGB colour spaces
ITU-R 709 (sRGB), ITU-R 2020, Adobe RGB, DCI-P3
Each using different primary colours

And different OETFs (gamma, PQ, etc.)
» Nominally, RGB space is a cube

209

208

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

209

Introduction to Graphics

Michaelmas Term 2025/2026

RGB in CIE XYZ space

» Linear RGB colour values can be
transformed into CIE XYZ
by matrix multiplication
because it is a rigid transformation
the colour gamut in CIE XYZ is
a rotate and skewed cube

RGB gamut in
XYZ colour space

» Transformation into Yxy
is non-linear (non-rigid)
colour gamut is more complicated

RGB gamut in Yxy
colour space

210

CMY space

» printers make colour by mixing coloured inks

» the important difference between inks (CMY) and lights (RGB) is that, while

lights emit light, inks absorb light
cyan absorbs red, reflects blue and green
magenta absorbs green, reflects red and blue
yellow absorbs blue, reflects green and red

» CMY is, at its simplest, the inverse of RGB
» CMY space is nominally a cube

211

210

211

CMYK space

» in real printing we use black (key) as well as
CMY
» why use black?
inks are not perfect absorbers
mixing C + M + Y gives a muddy grey, not black

lots of text is printed in black: trying to align C,
M and Y perfectly for black text would be a
Gt nightmare

C+M+Y+K

212

212

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Munsell’s colour classification system

» three axes
hue » the dominant colour
value » bright colours/dark colours
chroma » vivid colours/dull colours

can represent this as a 3D graph

213

213

Michaelmas Term 2025/2026

Introduction to Graphics

Colour spaces for user-interfaces

Munsell’s colour classification system
» RGB and CMY are based on the physical devices which produce the coloured

» any two adjacent colours are a standard “perceptual” distance apart

worked out by testing it on people output
a highly irregular space » RGB and CMY are difficult for humans to use for selecting colours
» Munsell’s colour system is much more intuitive:

e.g. vivid yellow is much brighter than vivid blue
hue — what is the principal colour?

" sy ses value — how light or dark is it?
chroma — how vivid or dull is it?
» computer interface designers have developed basic transformations of RGB
which resemble Munsell’s human-friendly system

QA

invented by Albert H. Munsell, an American artist, in 1905 in an nom e
attempt to systematically classify colours chroma
215

214

214 215

HLS: hue lightness saturation

» three axes, as with Munsell a simple variation of HSV’
+ hue and saturation have same meaning
+ the term “lightness” replaces the term “value”
designed to address the complaint that HSV has all
pure colours having the same lightness/value as white

HSV: hue saturation value

hue and value have same meaning
the term “saturation” replaces the term
“chroma”

Cyan€

Cyan

Ssaujybry

RGB

designed by Metrick in 1979

+ designed by Alvy Ray Smith in 1978

217

216

216 217

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Introduction to Graphics

Perceptually uniformity

¥ - chromaticity coordinate

650 nm
770 nm

L I I
03 04 05
x - chromaticity coordinate

01 702
380 nm

In CIE xy chromatic coordinates

218

» MacAdam ellipses & visually indistinguishable colours

Michaelmas Term 2025/2026

520 530 540
55

510m

500nmy il
0.5

218

CIE Lu'v' and uv’

oo
.
:
» Approximately perceptually uniform -
B
» UV’ chromacity -
i 4X _ 4z <
YT XF15Y+3Z | —sx+12y+3
. oY B 9y
VT X+15Y+3Z —az+izy+3

» CIE LUV

o

(%)%,

Y/Y, < (,%)3

CIE L'a’b" colour space

» Another approximately perceptually
uniform colour space

I* = 116f (Yl,,) ~16
= (s () (5
v-m(s(5) (%

Trichromatic
values of the
white point, e.g.
X, = 95.047,
Y, = 100.000,
Z, =108.883

3 ift > 6°
f#)=q 2, 4 +
® ﬁ+5 otherwise
6
)

Chroma and hue

' =TT, h® =Mctan(abj)

v

220

02 s _ 5)°
CIE 1976 4/ 116(Y/¥,) 16, Y/Y, > (29)
sil chromaticity Chromaci u' = 13L" - (v —) Colours less
‘ . ()
disgearn coordinates 7 V7 = 13L" - (v —) distinguishable
ool 1 I S [| when dark
0.0 0.1 02 0'5' 04 0.5 0.6 } Hue and chroma
Cin =1/ (w)" + (v")?
In CIE u’v’ chromatic coordinates hyy = atan2(v*, u"),
219 o o 0 ¥ e o4 035 o
Lab space
%

Adobe RGB
gamutin CIELAB
space, top View

220

v

this visualization shows those colours
in Lab space which a human can
perceive

» again we see that human perception of
colour is not uniform

perception of colour diminishes at the
white and black ends of the L axis

the maximum perceivable chroma differs
for different hues

221

221

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Introduction to Graphics

Recap: Linear and display-encoded colour

» Linear colour spaces
Examples: CIE XYZ, LMS cone responses, linear RGB
Typically floating point numbers
Directly related to the measurements of light (radiance and luminance)
Perceptually non-uniform
Transformation between linear colour spaces can be expressed as a matrix multiplication

» Display-encoded and non-linear colour spaces

Typically integers, 8-12 bits per colour channel
Intended for efficient encoding, easier interpretation of colour, perceptual uniformity

222

Examples: display-encoded (gamma-corrected, gamma-encoded) RGB, HVS, HLS, PQ-encoded RGB

Michaelmas Term 2025/2026

222

Colour - references

» Chapters ,,Light” and ,,Colour” in
Shirley, P. & Marschner, S., Fundamentals of Computer Graphics
» Textbook on colour appearance
Fairchild, M. D. (2005). Color Appearance Models (second.). John Wiley & Sons.

223

Tone-mapping problem

Mconless Sky Full Moon Sun
5 2 3 2 o 2
3-10‘ cd/m 6-10 ‘cd/m 2-10 cd/m
[T 1T T T 1T 1T 1T T T T T T T T T
-6 -4 10
10 10 0.01 1 100 10 10 10 10

luminance range [cd/m2]

human vision /@ }—————— simultaneously
) ,

} { adapted

'

conventional display \m

—

224

223

224

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

Why do we need tone mapping?

v

To reduce dynamic range

v

To customize the look (colour grading)

v

To simulate human vision (for example night vision)

v

To simulate a camera (for example motion blur)

v

To adapt displayed images to a display and viewing conditions

v

To make rendered images look more realistic

v

To map from scene- to display-referred colours

v

Different tone mapping operators achieve different combination of these goals

225

225

Introduction to Graphics

From scene- to display-referred colours

referred to display-referred colours

10000

1000

log display luminance

///
"/ SDR display minimum luminance

/ DR display minimum luminance

0.0001 0.01 1 100 10000 1000000
log scene luminance

226

Michaelmas Term 2025/2026

» The primary purpose of tone mapping is to transform an image from scene-

226

Tone mapping and display encoding

» Tone mapping is often combined with display encoding

scene-referred, display-referred, display-referred,
linear, float linear, float display-encoded, int

Display encoding
Rendered HDR Tone mapping —>| (inverse display

SDR raster
image model) buffer

Different for SDR
and HDR displays

—_

» Display encoding can model the display and account for
Display contrast (dynamic range), brightness and ambient light levels

227

Basic tone-mapping and display coding

Rd — S Scene-referred
Display-referred relative Lwhite
red value [0;1] Scene-referred
R for red, the same for green and blue luminance of white
No contrast compression, only for a moderate dynamic range
» The simplest form of display coding is the “gamma”

Prime (‘) denotes a R = (Rd)}l,

gamma-corrected value Typically y=2.2

For SDR displays only

228

227

» The simplest form of tone-mapping is the exposure/brightness adjustment:

228

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

sRGB textures and display coding

» OpenGL offers sRGB textures to automate RGB to/from sRGB conversion
sRGB textures store data in gamma-corrected space
sRGB colour values are converted to (linear) RGB colour values on texture look-up
(and filtering)
Inverse display coding
RGB to sRGB conversion when writing to sSRGB texture
with glEnable(GL_FRAMEBUFFER_SRGB)
Forward display coding

229

229

Introduction to Graphics

Michaelmas Term 2025/2026

Tone-curve

The ,,best” tone-
mapping is the
one which does

Tone-curve

alk

log displayed luminance

Display black level

But in practice
contrast (slope)
must be limited
due to display

limitations.

231

log input luminance factor (HDR image)

S 4 5

231

L
. not do anything,
(=1 + B .
= i.e. slope of the
5 tone-mapping
g =t 1 curves is equal
= to |.
=3
v
2 L]
o™
S .
Image histogram |
s | o 1 2 3 4 5
log input luminance factor {(HDR image)
230

Tone-curve
L
o
=
(=1 + 2
=
E I
= minance
i S T S——— 5
o5}
== =
=
= Global tone-
5 .
2 mapping is a
=) compromise

232

Display black level

B o 1 2 3 4

log input luminance factor {(HDR image)

between clipping
and contrast
compression.

Sigmoidal tone-curves

» Very common in
digital cameras
» Mimic the response of analog film
» Analog film has been engineered over many
years to produce good tone-reproduction

» Fast to compute

233

Shoulder

Straight-line
(log response)

0
-25 -20 -15 -1.0 -05 0.0 05 10 15
log exposure (lux-seconds)

232

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

233

Introduction to Graphics

Sigmoidal tone mapping
» Simple formula for a sigmoidal tone-curve:

. R(x,y)"
R'(x,y) = L \P

(t2) + Ry
where L,, is the geometric mean (or mean of logarithms):

1
Ly, =exp ¥ Z In(L(x, y)))

xy)
and L(x,y) is the luminance of the pixel (x,y).

-

-

o

©
o
®

8

k3
-4
&

8

S
-
S

o
N
-
N

Gamma corrected R'G'B'

o

o= s
0.001 001 0.1 1 10 100 1000 0.001 001 0.1 1 10 100 1000
Linear RGB Linear RGB

Gamma corrected R'G'B'

234

Michaelmas Term 2025/2026

234

Sigmoidal tone mapping example

a=0.25

b=0.5 : b=1 b=2
235

Thank you for attending the lectures

Background

Rendering

Graphics pipeline

Rasterisation

Graphics hardware and OpenGL

Human vision and colour & tone mapping

236

236

©1996-2025 Neil A. Dodgson, Peter Robinson & Rafal Mantiuk

235

