

Introduction to Graphics

Computer Science Tripos Part 1A

Michaelmas Term 2025/2026

Department of

Computer Science

and Technology

The Computer Laboratory

William Gates Building

 15 JJ Thomson Avenue

 Cambridge

 CB3 0FD

www.cst.cam.ac.uk

This handout includes copies of the slides that will be used in lectures.

These notes do not constitute a complete transcript of all the lectures, and

they are not a substitute for textbooks. They are intended to give a

reasonable synopsis of the subjects discussed, but they give neither

complete descriptions nor all the background material.

Selected slides contain a reference to the relevant section in the

recommended textbook for this course: Fundamentals of Computer

Graphics by Marschner & Shirley, CRC Press 2015 (4th or 5th edition). The

references are in the format [FCG A.B/C.D], where A.B is the section number

in the 4th edition and C.D is the section number in the 5th edition.

Material is copyright © Neil A Dodgson, Peter Robinson & Rafał Mantiuk,
1996‐2025, except where otherwise noted.

All other copyright material is made available under the University’s licence.
All rights reserved.

Introduction to Computer Graphics
Rafał Mantiuk

www.cl.cam.ac.uk/~rkm38

Eight lectures & two practical tasks
Part IA CST

Two supervisions suggested
Two exam questions on Paper 3

2

Visual computing pipeline

Scene
description

Digital
image

Computer
graphics

Image
capture

Image
display

Visual
perception

Image analysis &
computer vision

Computing with graphics
3

Computing without graphics

4

Why bother with CG?
All visual computer output depends on CG

 printed output (laser/ink jet/phototypesetter)
 monitor (CRT/LCD/OLED/DMD)
 all visual computer output consists of real images generated by the computer

from some internal digital image

Much other visual imagery depends on CG
 computer games
 TV & movie special effects &

post-production
 most books, magazines,

catalogues…
 VR/AR

Course Structure
Background

 What is an image? Resolution and quantisation. Storage of images in memory. [1 lecture]

Rendering
 Perspective. Reflection of light from surfaces and shading. Geometric models. Ray tracing.

[2 lectures]

Graphics pipeline
 Polygonal mesh models. Transformations using matrices in 2D and 3D. Homogeneous

coordinates. Projection: orthographic and perspective. Rasterisation. [2 lectures]

Graphics hardware and OpenGL
 GPU APIs. Vertex processing. Fragment processing. Working with meshes and textures.

[1 lecture]

Human vision, colour and tone mapping
 Colour perception. Colour spaces. Tone mapping [2 lectures]

5

6

Course books
Fundamentals of Computer Graphics

 Shirley & Marschner
CRC Press 2015 (4th or 5th edition)

 [FCG 8.1/9.1] – reference to section 3.1 in the 4th edition, 9.1
in the 5th edition

Computer Graphics: Principles & Practice
 Hughes, van Dam, McGuire, Sklar et al.

Addison-Wesley 2013 (3rd edition)

OpenGL Programming Guide:
The Official Guide to Learning OpenGL Version 4.5 with
SPIR-V
 Kessenich, Sellers & Shreiner

Addison Wesley 2016 (7th edition and later)

7

Introduction to Computer Graphics

Background
 What is an image?
 Resolution and quantisation
 Storage of images in memory

Rendering
Graphics pipeline
Rasterisation
Graphics hardware and OpenGL
Human vision and colour & tone mapping

What is a (digital) image?
A digital photograph? (“JPEG”)
A snapshot of real-world lighting?

Image

2D array of pixels 2D function

From computing
perspective
(discrete)

From mathematical
perspective
(continuous)

•To represent images in
memory

•To create image processing
software

•To express image processing
as a mathematical problem

•To develop (and understand)
algorithms

8

Image
 2D array of pixels
 In most cases, each pixel takes 3 bytes: one for each red, green and blue
 But how to store a 2D array in memory?

9

Stride
Calculating the pixel component index in memory

 For row-major order (grayscale)𝑖(𝑥, 𝑦) = 𝑥 + 𝑦 ȉ 𝑛௖௢௟௦
 For column-major order (grayscale)𝑖(𝑥, 𝑦) = 𝑥 ȉ 𝑛௥௢௪௦ + 𝑦
 For interleaved row-major (colour)𝑖 𝑥, 𝑦, 𝑐 = 𝑥 ȉ 3 + 𝑦 ȉ 3 ȉ 𝑛௖௢௟௦ + 𝑐
 General case 𝑖 𝑥, 𝑦, 𝑐 = 𝑥 ȉ 𝑠௫ + 𝑦 ȉ 𝑠௬ + 𝑐 ȉ 𝑠௖

where 𝑠௫, 𝑠௬ and 𝑠௖ are the strides for the x, y and colour dimensions

10

Padded images and stride
 Sometimes it is desirable to “pad” image with extra pixels

 for example when using operators that need to access pixels outside the image border

Or to define a region of interest (ROI)

How to address pixels for such an image and the ROI?

Allocated memory space
Image

Region of Interest
(ROI)

11

Padded images and stride

𝑖 𝑥, 𝑦, 𝑐 = 𝑖௙௜௥௦௧ + 𝑥 ȉ 𝑠௫ + 𝑦 ȉ 𝑠௬ + 𝑐 ȉ 𝑠௖
 For row-major, interleaved, colour

 𝑖௙௜௥௦௧ =
 𝑠௫ =
 𝑠௬ =
 𝑠௖ =

Allocated memory space
Image

Region of Interest
(ROI)

12

Pixel (PIcture ELement)
Each pixel (usually) consist of three values describing the colour

(red, green, blue)
For example

 (255, 255, 255) for white
 (0, 0, 0) for black
 (255, 0, 0) for red

Why are the values in the 0-255 range?
How many bytes are needed to store 5MPixel image?

(uncompressed)

13

Pixel formats, bits per pixel, bit-depth
Grayscale – single colour channel, 8 bits (1 byte)
Highcolor – 216=65,536 colors (2 bytes)

Truecolor – 224 = 16,8 million colors (3 bytes)
Deepcolor – even more colors (>= 4 bytes)

But why? 14

Colour banding
If there are not enough bits

to represent colour
Looks worse because of

the Mach band or
Chevreul illusion

Dithering (added noise) can
reduce banding
 Printers but also some LCD

displays
M

ac
h

ba
nd

s

Intensity profile
15

What is a (computer) image?
A digital photograph? (“JPEG”)
A snapshot of real-world lighting?

Image

2D array of pixels 2D function

From computing
perspective
(discrete)

From mathematical
perspective
(continuous)

•To represent images in
memory

•To create image processing
software

•To express image processing
as a mathematical problem

•To develop (and understand)
algorithms

16

Image – 2D function
Image can be seen as a function I(x,y), that gives

intensity value for any given coordinate (x,y)

17

Sampling an image
The image can be sampled on a rectangular sampling

grid to yield a set of samples. These samples are
pixels.

18

What is a pixel? (math)
A pixel is not

 a box
 a disk
 a teeny light

A pixel is a point
 it has no dimension
 it occupies no area
 it cannot be seen
 it has coordinates

A pixel is a sample

From: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture05/lecture05.pdf
19

Sampling and quantization
 Physical world is described in terms of continuous quantities
 But computers work only with discrete numbers
 Sampling – process of mapping continuous function to a

discrete one
Quantization – process of mapping continuous variable to a

discrete one

20

21

Computer Graphics & Image Processing
Background
Rendering

 Perspective
 Reflection of light from surfaces and shading
 Geometric models
 Ray tracing

Graphics pipeline
Graphics hardware and modern OpenGL
Human vision and colour & tone mapping

Depth cues
22

Rendering depth
23

24

Perspective in photographs

Gates Building – the rounded version
(Stanford)

Gates Building – the rectilinear version
(Cambridge)

Early perspective
Presentation at the

Temple
Ambrogio Lorenzetti 1342
Uffizi Gallery

Florence

25

Wrong perspective
Adoring saints
Lorenzo Monaco

1407-09
National Gallery

London

26

Renaissance perspective
Geometrical perspective

Filippo Brunelleschi 1413
Holy Trinity fresco
Masaccio (Tommaso di Ser Giovanni

di Simone) 1425
Santa Maria Novella

Florence
De pictura (On painting)

textbook by Leon Battista Alberti
1435

27

False perspective
28

Calculating
perspective

29

Ray tracing
Identify point on surface and calculate illumination
Given a set of 3D objects, shoot a ray from the eye through the

centre of every pixel and see what surfaces it hits

30

shoot a ray through each pixel whatever the ray hits determines the colour of
that pixel

[FCG 4/4]

31Ray tracing: examples

Ray tracing easily handles reflection, refraction,
shadows and blur (due to motion and optics)

Ray tracing is computationally expensive

Cozy Kitchen by Nicole Morena

Turner Whitted 1979

32

Ray tracing algorithm

select an eye point and a screen plane

FOR every pixel in the screen plane
determine the ray from the eye through the pixel’s centre
FOR each object in the scene

IF the object is intersected by the ray
IF the intersection is the closest (so far) to the eye

record intersection point and object
END IF ;

END IF ;
END FOR ;
calculate colour for the closest intersection point (if any)

END FOR ;

33

Intersection of a ray with an object 1
 plane

 polygon or disc
 intersection the ray with the plane of the polygon

 as above
 then check to see whether the intersection point lies inside the polygon

 a 2D geometry problem (which is simple for a disc)

O
D N

𝑠 = − 𝑑 + 𝑁 ȉ 𝑂𝑁 ȉ 𝐷
ray: 𝑃 = 𝑂 + 𝑠𝐷 , 𝑠 ≥ 0
plane: 𝑃 ȉ 𝑁 + 𝑑 = 0

34

Intersection of a ray with an object 2
 sphere

 cylinder, cone, torus
 all similar to sphere
 try them as an exercise

O
D C

r

𝑎 = 𝐷 ⋅ 𝐷𝑏 = 2𝐷 ⋅ 𝑂 − 𝐶𝑐 = 𝑂 − 𝐶 ⋅ 𝑂 − 𝐶 − 𝑟ଶ𝑑 = 𝑏ଶ − 4𝑎𝑐𝑠ଵ = −𝑏 + 𝑑2𝑎𝑠ଶ = −𝑏 − 𝑑2𝑎
d real d imaginary

ray: 𝑃 = 𝑂 + 𝑠𝐷,   𝑠 ≥ 0sphere:  (𝑃 − 𝐶) ⋅ (𝑃 − 𝐶) − 𝑟ଶ = 0

35

Ray tracing: shading
 once you have the intersection of a

ray with the nearest object you can
also:
 calculate the normal to the object at

that intersection point
 shoot rays from that point to all of the

light sources, and calculate the diffuse
and specular reflections off the object
at that point

 this (plus ambient illumination)
gives the colour of the object (at
that point)

O
D C

r

N

light 1

light 2

36

Ray tracing: shadows
 because you are tracing

rays from the intersection
point to the light, you can
check whether another
object is between the
intersection and the light
and is hence casting a
shadow
 also need to watch for self-

shadowing
O

D C
r

N

light 1

light 2

light 3

37

Ray tracing: reflection
 if a surface is totally or

partially reflective then
new rays can be
spawned to find the
contribution to the
pixel’s colour given by
the reflection
 this is perfect (mirror)

reflection

O

N1

light
N2

38

Ray tracing: transparency & refraction
 objects can be totally or partially

transparent
 this allows objects behind the current one to be

seen through it

 transparent objects can have refractive
indices
 bending the rays as they pass through the objects

 transparency + reflection means that a ray
can split into two parts

O

light

D0

D1

D'1

D'2

D2

Example of
a refraction

Illumination and shading
Dürer’s method allows us to calculate what part of the scene is

visible in any pixel
But what colour should it be?
Depends on:

 lighting
 shadows
 properties of surface material

39

[FCG 4.5-4.8/5]

40

How do surfaces reflect light?

    

perfect specular
reflection
(mirror)

imperfect specular
reflection

diffuse reflection
(Lambertian reflection)

Johann Lambert, 18th century German mathematician

the surface of a specular reflector is facetted,
each facet reflects perfectly but in a slightly
different direction to the other facets

41

Comments on reflection

 the surface can absorb some wavelengths of light
 e.g. shiny gold or shiny copper

 specular reflection has “interesting” properties at glancing angles
owing to occlusion of micro-facets by one another

 plastics are good examples of surfaces with:
 specular reflection in the light’s colour
 diffuse reflection in the plastic’s colour

42

Calculating the shading of a surface
 gross assumptions:

 there is only diffuse (Lambertian) reflection
 all light falling on a surface comes directly from a light source

 there is no interaction between objects
 no object casts shadows on any other

 so can treat each surface as if it were the only object in the scene
 light sources are considered to be infinitely distant from the object

 the vector to the light is the same across the whole surface

 observation:
 the colour of a flat surface will be uniform across it, dependent only on the colour & position of

the object and the colour & position of the light sources

43

Diffuse shading calculation

L is a normalised vector pointing in
the direction of the light source

N is the normal to the surface

Il is the intensity of the light source

kd is the proportion of light which is
diffusely reflected by the surface

I is the intensity of the light reflected
by the surface

L
N

use this equation to calculate the colour of a pixel

𝐼 = 𝐼௟𝑘ௗ𝑐𝑜𝑠𝜃= 𝐼௟𝑘ௗ(𝑁 ȉ 𝐿)
𝜃

44

Diffuse shading: comments
 can have different Il and different kd for different wavelengths (colours)
 watch out for cos < 0

 implies that the light is behind the polygon and so it cannot illuminate this side of
the polygon

 do you use one-sided or two-sided surfaces?
 one sided: only the side in the direction of the normal vector can be illuminated

 if cos < 0 then both sides are black
 two sided: the sign of cos determines which side of the polygon is illuminated

 need to invert the sign of the intensity for the back side

 this is essentially a simple one-parameter ( BRDF
 Bidirectional Reflectance Distribution Function

45
Imperfect specular reflection

 Phong developed an easy-to-calculate
approximation to imperfect specular
reflection

N
R

V

L

 

L is a normalised vector pointing in the direction of
the light source

R is the vector of perfect reflection
N is the normal to the surface
V is a normalised vector pointing at the viewer
Il is the intensity of the light source
ks is the proportion of light which is specularly

reflected by the surface
n is Phong’s ad hoc “roughness” coefficient
I is the intensity of the specularly reflected light

Phong Bui-Tuong, “Illumination for computer generated
pictures”, CACM, 18(6), 1975, 311–7

n=1 n=3 n=7 n=20 n=40

𝐼 = 𝐼௟𝑘௦ cos௡ 𝛼= 𝐼௟𝑘௦ 𝑅 ȉ 𝑉 ௡
𝛼𝜃 𝜃

46

Examples

diffuse reflection

specular
reflection

100% 75% 50% 25% 0%

100%

75%

50%

25%

0%

47

Shading: overall equation
 The overall shading equation can thus be considered to be the ambient

illumination plus the diffuse and specular reflections from each light source

 The equation above is computed for each colour channel (red, green and blue)
 The more lights there are in the scene, the longer this calculation will take

 


N
R

V

L𝐼 = 𝐼௔𝑘௔ + ෍ 𝐼௜𝑘ୢ 𝐿 ȉ 𝑁 + ෍ 𝐼௜𝑘ୱ 𝑅 ȉ 𝑉 ௡௜௜

48

The gross assumptions revisited
 diffuse reflection
 approximate specular reflection
 no shadows

 need to do ray tracing or shadow mapping to get shadows

 lights at infinity
 can add local lights at the expense of more calculation

 need to interpolate the L vector

 no interaction between surfaces
 cheat!

 assume that all light reflected off all other surfaces onto a given surface can be amalgamated
into a single constant term: “ambient illumination”, add this onto the diffuse and specular
illumination

49

Sampling
 we have assumed so far that each ray

passes through the centre of a pixel
 i.e. the value for each pixel is the colour of

the object which happens to lie exactly
under the centre of the pixel

 this leads to:
 stair step (jagged) edges to objects
 small objects being missed completely
 thin objects being missed completely or

split into small pieces

50

Anti-aliasing
 These artefacts (and others) are jointly known as aliasing
 Methods of ameliorating the effects of aliasing are known as anti-aliasing

 in signal processing aliasing is a precisely defined technical term for a particular kind of artefact
 in computer graphics its meaning has expanded to include most undesirable effects that can occur

in the image
 this is because the same anti-aliasing techniques which ameliorate true aliasing artefacts also

ameliorate most of the other artefacts

51

Sampling in ray tracing
 single point

 shoot a single ray through the pixel’s centre

 super-sampling for anti-aliasing
 shoot multiple rays through the pixel and average

the result
 regular grid, random, jittered, Poisson disc

 adaptive super-sampling
 shoot a few rays through the pixel, check the

variance of the resulting values, if similar enough
stop, otherwise shoot some more rays

52

Types of super-sampling 1
 regular grid

 divide the pixel into a number of sub-pixels and shoot a
ray through the centre of each

 problem: can still lead to noticeable aliasing unless a very
high resolution sub-pixel grid is used

 random
 shoot N rays at random points in the pixel
 replaces aliasing artefacts with noise artefacts

 the eye is far less sensitive to noise than to aliasing

12 8 4

53

Types of super-sampling 2
 Poisson disc

 shoot N rays at random points in the pixel
with the proviso that no two rays shall pass
through the pixel closer than  to one
another

 for N rays this produces a better looking
image than pure random sampling

 very hard to implement properly

Poisson disc pure random

54

Types of super-sampling 3
 Jittered (a.k.a. stratified sampling)

 divide pixel into N sub-pixels and shoot one
ray at a random point in each sub-pixel

 an approximation to Poisson disc sampling
 for N rays it is better than pure random

sampling
 easy to implement

jittered pure randomPoisson disc

55More reasons for wanting to take
multiple samples per pixel

 super-sampling is only one reason why we might want to take multiple samples
per pixel

 many effects can be achieved by distributing the multiple samples over some range
 called distributed ray tracing

 N.B. distributed means distributed over a range of values

 can work in two ways
each of the multiple rays shot through a pixel is allocated a random value from the relevant

distribution(s)
 all effects can be achieved this way with sufficient rays per pixel

each ray spawns multiple rays when it hits an object
 this alternative can be used, for example, for area lights

56

Examples of distributed ray tracing
 distribute the samples for a pixel over the pixel area

 get random (or jittered) super-sampling
 used for anti-aliasing

 distribute the rays going to a light source over some area
 allows area light sources in addition to point and directional light sources
 produces soft shadows with penumbrae

 distribute the camera position over some area
 allows simulation of a camera with a finite aperture lens
 produces depth of field effects

 distribute the samples in time
 produces motion blur effects on any moving objects

57

Anti-aliasing

one sample per pixel multiple samples per pixel

58

Area vs point light source

an area light source produces soft shadows a point light source produces hard shadows

59Finite aperture

1, 120

left, a pinhole camera

below, a finite aperture camera

below left, 12 samples per pixel

below right, 120 samples per pixel

note the depth of field blur: only objects
at the correct distance are in focus

60

Introduction to Computer Graphics
Background
Rendering
Graphics pipeline

 Polygonal mesh models
 Transformations using matrices in 2D and 3D
 Homogeneous coordinates
 Projection: orthographic and perspective

Rasterization
Graphics hardware and modern OpenGL
Human vision, colour and tone mapping

Unfortunately…
Ray tracing is computationally expensive

 used for super-high visual quality
Video games and user interfaces need something faster
Most real-time applications rely on rasterisation

 Model surfaces as polyhedra – meshes of polygons
 Use composition to build scenes
 Apply perspective transformation and project into the plane of the screen
 Work out which surface was closest
 Fill pixels with the colour of the nearest visible polygon

Graphics cards have hardware to support this
Ray tracing starts to appear in real-time rendering

 The new generations of GPUs offer accelerated ray-tracing
 But it is still not as efficient as rasterisation

61

Three-dimensional objects
 Polyhedral surfaces are made up from meshes of

multiple connected polygons

 Polygonal meshes
 open or closed

 Curved surfaces
 must be converted to polygons to be drawn

62

63

Surfaces in 3D: polygons
Easier to consider planar polygons

 3 vertices (triangle) must be planar
 > 3 vertices, not necessarily planar

this vertex is in
front of the other

three, which are all
in the same plane

a non-planar
“polygon” rotate the polygon

about the vertical axis

should the result be this
or this?

A
A

A

B
B

B
C

C

C

D
D

D

64

Splitting polygons into triangles
 Most Graphics Processing Units (GPUs) are optimised to draw triangles
 Split polygons with more than three vertices into triangles

which is preferable?

?

65

2D transformations
 scale

 rotate

 translate

 (shear)

why?
 it is extremely useful to be able to

transform predefined objects to an
arbitrary location, orientation, and size

 any reasonable graphics package will
include transforms
 2D  Postscript
 3D  OpenGL

[FCG 6/7]

66

Basic 2D transformations
 scale

 about origin
 by factor m

 rotate
 about origin
 by angle 

 translate
 along vector (xo,yo)

 shear
 parallel to x axis
 by factor a

𝑥ᇱ = 𝑚𝑥𝑦ᇱ = 𝑚𝑦𝑥ᇱ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃𝑦ᇱ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃𝑥ᇱ = 𝑥 + 𝑥଴𝑦ᇱ = 𝑦 + 𝑦଴𝑥ᇱ = 𝑥 + 𝑎𝑦𝑦ᇱ = 𝑦

67

Matrix representation of transformations
 scale

 about origin, factor m

 do nothing
 identity

x
y

m
m

x
y

'
'




















0

0

x
y

x
y

'
'




















1 0
0 1

x
y

a x
y

'
'




















1
0 1

 rotate
 about origin, angle 

 shear
 parallel to x axis, factor a

x
y

x
y

'
'

cos sin
sin cos





















 
 

68

Homogeneous 2D co-ordinates
 translations cannot be represented using simple 2D matrix multiplication on

2D vectors, so we switch to homogeneous co-ordinates

 an infinite number of homogeneous coordinates maps to every 2D point
 w=0 represents a point at infinity
 usually take the inverse transform to be:

 The symbol ≡ means equivalent

 (, ,) ,x y w x
w

y
w

(,) (, ,)x y x y 1

[FCG 6.3/7.3]

69

Matrices in homogeneous co-ordinates
 scale

 about origin, factor m

 do nothing
 identity

x
y
w

m
m

x
y
w

'
'
'


















































0 0
0 0
0 0 1

 rotate
 about origin, angle 

 shear
 parallel to x axis, factor a

x
y
w

x
y
w

'
'
'

cos sin
sin cos


















































 
 

0
0

0 0 1

x
y
w

a x
y
w

'
'
'


















































1 0
0 1 0
0 0 1

x
y
w

x
y
w

'
'
'


















































1 0 0
0 1 0
0 0 1

70

Translation by matrix algebra

x
y
w

x
y

x
y
w

o'
'
'


















































1 0
0 1
0 0 1

0

w w'y y wyo' x x wxo' 

x
w

x
w

x'
'
  0 0'

' y
w
y

w
y



In conventional coordinates

In homogeneous coordinates

71

Concatenating transformations
 often necessary to perform more than one transformation on the same object
 can concatenate transformations by multiplying their matrices

e.g. a shear followed by a scaling:

x
y
w

m
m

x
y
w

x
y
w

a x
y
w

' '
' '
' '

'
'
'

'
'
'



































































































0 0
0 0
0 0 1

1 0
0 1 0
0 0 1

x
y
w

m
m

a x
y
w

m ma
m

x
y
w

' '
' '
' '



































































































0 0
0 0
0 0 1

1 0
0 1 0
0 0 1

0
0 0
0 0 1

shearscale

shearscale both

72

Transformation are not commutative
be careful of the order in which you concatenate transformations

rotate by 45°

scale by 2
along x axis

rotate by 45°

scale by 2
along x axis

2
2

2
2

1
2

1
2

2
2

1
2

2
2

1
2

1
2

1
2

1
2

1
2

0
0

0 0 1

2 0 0
0 1 0
0 0 1

0
0

0 0 1

0
0

0 0 1



 

































































scale

rotatescale then rotate

rotate then scale

73

Scaling about an arbitrary point
 scale by a factor m about point (xo,yo)

(1) translate point (xo,yo) to the origin
(2) scale by a factor m about the origin
(3) translate the origin to (xo,yo)

(xo,yo)

(0,0)

x
y
w

x
y

x
y
w

o

o

'
'
'





















































1 0
0 1
0 0 1

x
y
w

m
m

x
y
w

' '
' '
' '

'
'
'


















































0 0
0 0
0 0 1

x
y
w

x
y

x
y
w

o

o

' ' '
' ' '
' ' '

' '
' '
' '


















































1 0
0 1
0 0 1

x
y
w

x
y

m
m

x
y

x
y
w

o

o

o

o

' ' '
' ' '
' ' '





















































































1 0
0 1
0 0 1

0 0
0 0
0 0 1

1 0
0 1
0 0 1

Exercise: show how to
perform rotation about
an arbitrary point

(1) (2) (3)

74

3D transformations
 3D homogeneous co-ordinates

 3D transformation matrices
(, , ,) (, ,)x y z w x

w
y
w

z
w

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



















m
m

m

x

y

z

0 0 0
0 0 0
0 0 0
0 0 0 1



















1 0 0
0 1 0
0 0 1
0 0 0 1

t
t
t

x

y

z



















cos sin
sin cos

 
 



















0 0
0 0

0 0 1 0
0 0 0 1

1 0 0 0
0 0
0 0
0 0 0 1

cos sin
sin cos

 
 




















cos sin

sin cos

 

 

0 0
0 1 0 0

0 0
0 0 0 1





















translation identity

scale

rotation about x-axis

rotation about y-axisrotation about z-axis

75

3D transformations are not commutative

x

y
z

x

x
z

z

x

y
z

90° rotation
about z-axis

90° rotation
about x-axis

90° rotation
about z-axis

90° rotation
about x-axis

opposite
faces







76

Model transformation 1
 the graphics package Open Inventor defines a cylinder to be:

 centre at the origin, (0,0,0)
 radius 1 unit
 height 2 units, aligned along the y-axis

 this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

 we want to draw a cylinder of:
 radius 2 units
 the centres of its two ends

located at (1,2,3) and (2,4,5)
 its length is thus 3 units

 what transforms are required?
and in what order should they be applied?

x

y

2

2

Model transformation 2
order is important:

 scale first
 rotate
 translate last

scaling and translation are straightforward

77

x

y

2

2

x

y

3

4





















1000
0200
005.10
0002

S




















1000
4100
3010
5.1001

T

translate centre of
cylinder from (0,0,0) to
halfway between (1,2,3)

and (2,4,5)

scale from
size (2,2,2)

to size (4,3,4)

S

Model transformation 3
rotation is a multi-step process

 break the rotation into steps, each of which is rotation about a principal axis
 work these out by taking the desired orientation back to the original axis-

aligned position

 the centres of its two ends located at (1,2,3) and (2,4,5)

 desired axis: (2,4,5)–(1,2,3) = (1,2,2)

 original axis: y-axis = (0,1,0)

78

Model transformation 4
 desired axis: (2,4,5)–(1,2,3) = (1,2,2)
 original axis: y-axis = (0,3,0)

 zero the z-coordinate by rotating about the x-axis

79

22

1

22
2arcsinθ

1000
0θcosθsin0
0θsinθcos0
0001























R

y

z

)2,2,1(

 
)0,8,1(

0,22,1 22







Model transformation 5

 then zero the x-coordinate by rotating about the z-axis
 we now have the object’s axis pointing along the y-axis

80

22

2

81

1arcsinφ

1000
0100
00φcosφsin
00φsinφcos




















 

R

x

y
)0,8,1(

)0,3,0(

0,81,0
22









 



Model transformation 6
the overall transformation is:

 first scale
 then take the inverse of the rotation we just calculated
 finally translate to the correct position

81































w
z
y
x

w
z
y
x

SRRT 1
2

1
1

'
'
'
'

Application: display multiple instances
 transformations allow you to define an object at one location and then place

multiple instances in your scene

82

83

3D  2D projection
to make a picture

 3D world is projected to a 2D image
 like a camera taking a photograph
 the three dimensional world is projected onto a plane

The 3D world is described as a set
of (mathematical) objects

e.g. sphere radius (3.4)
centre (0,2,9)

e.g. box size (2,4,3)
centre (7, 2, 9)
orientation (27º, 156º)

84

Types of projection
parallel

 e.g.
 useful in CAD, architecture, etc
 looks unrealistic

perspective
 e.g.
 things get smaller as they get farther away
 looks realistic

 this is how cameras work

(, ,) (,)x y z x y

(, ,) (,)x y z x
z

y
z

85

Geometry of perspective projection

y

z

d

(, ,)x y z
(' , ' ,)x y d

x x d
z

y y d
z

'

'





(, ,)0 0 0

86

Projection as a matrix operation

x x d
z

y y d
z

'

'



























































10/100
/1000
0010
0001

/
/1 z

y
x

d
d

dz
d
y
x

z
z 1'

This is useful in the z-buffer
algorithm where we need to
interpolate 1/z values rather
than z values.



































wz
wy
wx

w
z
y
x

/
/
/

 remember

87
Perspective projection

with an arbitrary camera
 we have assumed that:

 screen centre at (0,0,d)
 screen parallel to xy-plane
 z-axis into screen
 y-axis up and x-axis to the right
 eye (camera) at origin (0,0,0)

 for an arbitrary camera, we can either:
 work out equations for projecting objects about an arbitrary point onto an arbitrary plane
 transform all objects into our standard coordinate system (viewing coordinates) and use the

above assumptions

88

A variety of transformations

 the modelling transform and viewing transform can be multiplied together to produce a single
matrix, taking an object directly from object coordinates into viewing coordinates

 either or both of the modelling transform and viewing transform matrices can be the identity
matrix

 e.g. objects can be specified directly in viewing co-ordinates, or directly in world co-ordinates
 this is a useful set of transforms, not a hard and fast model of how things should be done

object in
world

co-ordinates

object in
viewing

co-ordinatesviewing
transform

object in
2D screen

co-ordinatesprojection

object in
object

co-ordinates modelling
transform

Model, View, Projection matrices

Object coordinates

Object centred at the
origin

World coordinates

Model
matrix

To position each
object in the scene.
Could be different
for each object.

89

Model, View, Projection matrices

World coordinates

View matrix

View (camera)
coordinates

Camera at the origin,
pointing at -z

To position all objects
relative to the camera

90

90

Model, View, Projection matrices

Projection
matrix

View (camera)
coordinates

Screen coordinates
or Normalised Device Coordinates (NDC)

x and y must be in the range
-1 and 1

To project 3D
coordinates to a 2D
plane. Note that z
coordinate is retained
for depth testing.

91

The default OpenGL
coordinate system is

right-handed

91

All together

3D world
vertex

coordinates

Screen
coordinates

xs/ws and
ys/ws must be

between
-1 and 1

Projection, view and
model matrices

92

92

𝑥௦𝑦௦𝑧௦𝑤௦ = 𝑃 ȉ 𝑉 ȉ 𝑀 ȉ 𝑥𝑦𝑧𝑤

Viewing transform: look at
 Task: find a viewing transform so that the camera centre is at 𝒄, is

directed towards 𝒍 and vector 𝒖 is the “up” direction

93

𝒗ෝ = 𝒍 − 𝒄𝒍 − 𝒄
𝒓ො = 𝒗ෝ × 𝒖𝒗ෝ × 𝒖𝒖ෝ = 𝒓ො × 𝒗ෝ

Unit vector

𝑉 = 𝑟̂௫ 𝑟̂௬ 𝑟̂௭ 0𝑢ො௫ 𝑢ො௬ 𝑢ො௭ 0𝑣ො௫ 𝑣ො௬ 𝑣ො௭ 00 0 0 1
1 0 0 −𝑐௫0 1 0 −𝑐௬0 0 1 −𝑐௭0 0 0 1 =

𝑟̂௫ 𝑟̂௬ 𝑟̂௭ −𝒄 ȉ 𝒓ො𝑢ො௫ 𝑢ො௬ 𝑢ො௭ −𝒄 ȉ 𝒖ෝ𝑣ො௫ 𝑣ො௬ 𝑣ො௭ −𝒄 ȉ 𝒗ෝ0 0 0 1
change of basis translation

Note: In OpenGL, vector 𝒗ෝ
is pointing away from 𝒍
(right-handed coordinate
system). Therefore, the signs
and cross produced must
be updated accordingly

For a left-handed
coordinate system:

Transforming normal vectors
 Transformation by a nonorthogonal

matrix does not preserve angles

 Since:

We can find that:
 Derivation shown in the lecture

𝑁 ȉ 𝑇 = 0𝑁ᇱ ȉ 𝑇ᇱ = 𝐺𝑁 ȉ MT = 0Normal transform

Vertex position
transformTransformed normal

and tangent vector 𝐺 = 𝑀ିଵ ்

1 0 00 2 00 0 1

94

[FCG 6.2.2/7.2.2]

Scene construction
We will build a robot from basic parts
Body transformation

𝑀௕௢ௗ௬ =
Arm1 transformation

𝑀௔௥௠ଵ =
Arm2 transformation

𝑀௔௥௠ଶ =

95

Body

Arm1
Arm2

Pa
rt

s

Fi
na

l s
ce

ne

Object
coordinates

World
coordinates

Scene construction
Body transformation𝐸௕௢ௗ௬ = 𝑠𝑐𝑎𝑙𝑒 12𝑇௕௢ௗ௬ = 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 𝑥଴𝑦଴ ȉ 𝑟𝑜𝑡𝑎𝑡𝑒(30௢)𝑀௕௢ௗ௬ = 𝑇௕௢ௗ௬𝐸௕௢ௗ௬
Arm1 transformation𝑇௔௥௠ଵ = 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 11.75 ȉ 𝑟𝑜𝑡𝑎𝑡𝑒(−90௢)𝑀௔௥௠ଵ = 𝑇௕௢ௗ௬𝑇௔௥௠ଵ
Arm2 transformation𝑇௔௥௠ଶ = 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒 02 ȉ 𝑟𝑜𝑡𝑎𝑡𝑒(−90௢)𝑀௔௥௠ଶ = 𝑇௕௢ௗ௬𝑇௔௥௠ଵ𝑇௔௥௠ଶ

96

Body

Arm1
Arm2

Scene Graph
A scene can be drawn by traversing a

scene graph:

traverse(node, T_parent) {
M = T_parent * node.T * node.E
node.draw(M)
for each child {

traverse(child, T_parent * node.T)
}

}

97

[FCG 12.2/12.2]

Introduction to Computer Graphics

98

Background
Rendering
Graphics pipeline
Rasterisation
Graphics hardware and OpenGL
Human vision and colour & tone mapping

Rasterisation algorithm(*)

99

Set model, view and projection (MVP) transformations

FOR every triangle in the scene
transform its vertices using MVP matrices
IF the triangle is within a view frustum

clip the triangle to the screen border
FOR each fragment in the triangle

interpolate fragment position and attributes between vertices
compute fragment colour
IF the fragment is closer to the camera than any pixel drawn so far, update

the screen pixel with the fragment colour
END IF ;

END FOR ;
END IF ;

END FOR ;

(*) simplified

fragment – a candidate
pixel in the triangle

Illumination & shading
 Drawing polygons with uniform colours

gives poor results

100

 Interpolate colours across polygons

Rasterisation
 Efficiently draw (thousands of) triangles

 Interpolate vertex attributes inside the triangle

101

 Homogeneous barycentric
coordinates are used to
interpolate colours, normals,
texture coordinates and other
attributes inside the triangle

[FCG 2.7/2.9]

Homogenous barycentric coordinates
 Find barycentric coordinates of the

point (x,y)
 Given the coordinates of the vertices
 Derivation in the lecture

102

𝛼 = ௙೎್(௫,௬)௙೎್(௫ೌ,௬ೌ) 𝛽 = ௙ೌ ೎(௫,௬)௙ೌ ೎(௫್,௬್)𝑓௔௕ 𝑥, 𝑦 is the implicit line equation:

𝑓௔௕ 𝑥, 𝑦 = 𝑦௔ − 𝑦௕ 𝑥 + 𝑥௕ − 𝑥௔ 𝑦 + 𝑥௔𝑦௕ − 𝑥௕𝑦௔

Triangle rasterisation

 Optimisation: the barycentric coordinates will change by the same amount
when moving one pixel right (or one pixel down), regardless of the
position
 Precompute increments Δ𝛼, Δ𝛽, Δ𝛾 and use them instead of computing barycentric

coordinates when drawing pixels sequentially

103

for y=ymin to ymax do
for x=xmin to xmax do𝛼 = 𝑓௖௕(𝑥, 𝑦)/𝑓௖௕(𝑥௔, 𝑦௔)𝛽 = 𝑓௔௖(𝑥, 𝑦)/𝑓௔௖(𝑥௕, 𝑦௕)𝛾 = 1 − 𝛼 − 𝛽

if (𝛼 > 0 and 𝛽 > 0 and 𝛾 > 0) then𝑐 = 𝛼𝑐௔ + 𝛽𝑐௕ + 𝛾𝑐௖
draw pixels (x,y) with colour c

Surface normal vector interpolation
 for a polygonal model, interpolate normal vector between the vertices

 Calculate colour (Phong reflection model) for each pixel
 Diffuse component can be either interpolated or computed for each pixel

 N.B. Phong’s approximation to
specular reflection ignores
(amongst other things) the
effects of glancing incidence
(the Fresnel term)

104

[(' , '), , (, ,),]x y z r g b1 1 1 1 1 1 1N

[(' , ') , ,
(, ,),]
x y z
r g b
2 2 2

2 2 2 2N

[(' , ') , , (, ,) ,]x y z r g b3 3 3 3 3 3 3N

Occlusions (hidden surfaces)

105

Simple case

More difficult cases

[FCG 8.2.3/9.2.3]

Z-Buffer - algorithm

 Initialise the depth buffer and image buffer for all pixels
colour(x, y) = Background_colour,
depth(x, y) = zmax // position of the far clipping plane

 For every triangle in a scene do
 For every fragment (x, y) in this triangle do

 Calculate z for current (x, y)
 if (z < depth(x, y)) and (z > zmin) then

 depth(x, y) = z
 colour(x, y) = fragment_colour(x, y)

106

Colour
buffer

Depth
buffer

View frustum and Z-buffer
 Z-buffer must store depth with sufficient precision

 24 or 32 bit
 Integer or float

 Often ଵ௭ instead of 𝑧

Far-clipping plane

Near-clipping plane

107

Range of values mapped to
the Z-Buffer

Z-fighting

Introduction to Computer Graphics

108

Background
Rendering
Graphics pipeline
Rasterisation
Graphics hardware and OpenGL

 GPU & APIs
 OpenGL Rendering pipeline
 GLSL
 Textures
 Raster buffers

Human vision, colour & tone mapping

What is a GPU?
 Graphics Processing Unit
 Like CPU (Central Processing Unit)

but for processing graphics
 Optimised for floating-point

operations on large arrays of data
 Vertices, normals, pixels, etc.

109

What does a GPU do
 Performs all low-level tasks & a lot of high-level tasks

 Clipping, rasterisation, hidden surface removal, …
 Essentially draws millions of triangles very efficiently

 Procedural shading, texturing, animation, simulation, …
 Ray tracing (ray traversal, acceleration data structures)
 Video rendering, de- and encoding, ...
 Physics engines

 Full programmability at several pipeline stages
 fully programmable
 but optimized for massively parallel operations

110

What makes GPU so fast?
 3D rendering can be very efficiently parallelized

 Millions of pixels
 Thousands of triangles
 Many operations executed independently at the same time

 This is why modern GPUs
 Contain between hundreds and thousands of SIMD processors

 Single Instruction Multiple Data – operate on large arrays of data

 >>1000 GB/s memory access
 This is much higher bandwidth than CPU
 But peak performance can be expected for very specific operations

111

GPU APIs
(Application Programming Interfaces)

OpenGL
 Multi-platform
 Open standard API
 Focus on general 3D applications

 Open GL driver manages the
resources

 No ray tracing extensions

DirectX
 Microsoft Windows / Xbox
 Proprietary API
 Focus on games

 Application manages resources

112

One more API
 Vulkan – cross platform, open standard
 Low-overhead API for high performance 3D graphics
 Compared to OpenGL / DirectX

 Reduces CPU load
 Better support of multi-CPU-core architectures
 Finer control of GPU

 But
 The code for drawing a few primitives can take 1000s line of code
 Intended for game engines and code that must be very well optimized

113

And one more
 Metal (Apple iOS8)

 low-level, low-overhead 3D GFX and compute shaders API
 Support for Apple chips, Intel HD and Iris, AMD, Nvidia
 Similar design as modern APIs, such as Vulcan
 Swift or Objective-C API
 Used mostly on iOS

114

GPGPU - general purpose computing
 OpenGL and DirectX are not meant to be used for general purpose

computing
 Example: physical simulation, machine learning

 CUDA – Nvidia’s architecture for parallel computing
 C-like programming language
 With special API for parallel instructions
 Requires Nvidia GPU

 OpenCL – Similar to CUDA, but open standard
 Can run on both GPU and some CPUs
 Supported by AMD, Intel and NVidia, Qualcomm, Apple, …

115

GPU and mobile devices
 OpenGL ES 1.0-3.2

 Stripped version of OpenGL
 Removed functionality that is not strictly necessary on mobile devices

 Devices
 iOS: iPhone, iPad
 Android phones
 PlayStation 3
 Nintendo 3DS
 and many more

OpenGL ES 2.0 rendering (iOS)

116

WebGL and WebGPU
 WebGL (since ~2007)

 JavaScript library for 3D rendering in a web browser
 WebGL 1.0 - based on OpenGL ES 2.0
 WebGL 2.0 – based on OpenGL ES 3.0
 Used in 3D JavaScipt libraries

 https://threejs.org/, WebXR

 WebGPU (since ~2017)
 Provides access to Vulcan, Metal, DirectX 12
 Own shading language WGSL (similar to Rust)

http://zygotebody.com/

117

OpenGL History
 Proprietary library IRIS GL by SGI

 OpenGL 1.0 (1992)

 OpenGL 1.2 (1998)

 OpenGL 2.0 (2004)
 GLSL
 Non-power-of-two (NPOT) textures

 OpenGL 3.0 (2008)
 Major overhaul of the API
 Many features from previous versions

depreciated

 OpenGL 3.2 (2009)
 Core and Compatibility profiles
 Geometry shaders

 OpenGL 4.0 (2010)
 Catching up with Direct3D 11

 OpenGL 4.5 (2014)
 OpenGL 4.6 (2017)

 SPIR-V shaders

118

How to learn OpenGL?
 Lectures – algorithms behind OpenGL, general principles
 References

 OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4.5
with SPIR-V by John Kessenich, Graham Sellers, Dave Shreiner ISBN-10: 0134495497

 OpenGL quick reference guide
https://www.opengl.org/documentation/glsl/

 Google search: „man gl......”

119

OpenGL rendering pipeline

OpenGL programming model

CPU code GPU code

 gl* functions that
 Create OpenGL objects
 Copy data CPU<->GPU
 Modify OpenGL state
 Enqueue operations
 Synchronize CPU & GPU

 C99 library
 Wrappers in most programming

language

 Fragment shaders
 Vertex shaders
 and other shaders
 Written in GLSL

 Similar to C
 From OpenGL 4.6 could be written in

other language and compiled to SPIR-V

121

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

122

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

Processing of vertices, normals,
uv texture coordinates.

123

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
setup[Optional] Create new

primitives by tessellating existing
primitives (patches).

124

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

[Optional] Operate on tessellated
geometry. Can create new primitives.

125

fur shadow volumes

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

Organises vertices into
primitives and prepares them for

rendering.

126

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

Remove or modify vertices so
that they all lie within the
viewport (view frustum).

127

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClippingRasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

Generates fragments (pixels) to
be drawn for each primitive.

Interpolates vertex attributes.

scanlines

128

OpenGL rendering pipeline

Vertex
data

Vertex
shader

Tessellation
control shader

Tessellation
evaluation shader

Geometry
shaderClipping

Rasterization

Fragment
shader

Screen
buffer

Programmable
stages Fixed stages

Primitive
assembly

Computes colour per each fragment (pixel). Can lookup
colour in the texture. Can modify pixels’ depth value.

Also used for tone mapping.

129

Non-Photorealistic-Rendering
shader

Physically accurate
materials

Example: preparing vertex data for a cube

130

Indices

0, 1, 2

…

NormalsPositionsInd

0, 0, -10, 0, 00

………

Vertex attributes

Primitives (triangles)

Geometry objects in OpenGL (OO view)

131

GLSL - fundamentals

Shaders
 Shaders are small programs executed on a GPU

 Executed for each vertex, each pixel (fragment), etc.

 They are written in GLSL (OpenGL Shading Language)
 Similar to C and Java
 Primitive (int, float) and aggregate data types (ivec3, vec3)
 Structures and arrays
 Arithmetic operations on scalars, vectors and matrices
 Flow control: if, switch, for, while
 Functions

133

Example of a vertex shader
#version 330

in vec3 position; // vertex position in local space

in vec3 normal; // vertex normal in local space

out vec3 frag_normal; // fragment normal in world space

uniform mat4 mvp_matrix; // model-view-projection matrix

void main()

{

// Typicaly normal is transformed by the model matrix

// Since the model matrix is identity in our case, we do not modify normals

frag_normal = normal;

// The position is projected to the screen coordinates using mvp_matrix

gl_Position = mvp_matrix * vec4(position, 1.0);

}
Why is this piece
of code needed?

134

Data types
 Basic types

 float, double, int, uint, bool

 Aggregate types
 float: vec2, vec3, vec4; mat2, mat3, mat4
 double: dvec2, dvec3, dvec4; dmat2, dmat3, dmat4
 int: ivec2, ivec3, ivec4
 uint: uvec2, uvec3, uvec4
 bool: bvec2, bvec3, bvec4

vec3 V = vec3(1.0, 2.0, 3.0); mat3 M = mat3(1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
7.0, 8.0, 9.0);

135

Indexing components in aggregate types
 Subscripts: rgba, xyzw, stpq (work exactly the same)

 float red = color.r;
 float v_y = velocity.y;
but also
 float red = color.x;
 float v_y = velocity.g;

 With 0-base index:
 float red = color[0];
 float m22 = M[1][1]; // second row and column

// of matrix M

136

Swizzling
You can select the elements of the aggregate type:
vec4 rgba_color(1.0, 1.0, 0.0, 1.0);
vec3 rgb_color = rgba_color.rgb;
vec3 bgr_color = rgba_color.bgr;
vec3 grayscale = rgba_color.ggg;

137

Arrays
 Similar to C
float lut[5] = float[5](1.0, 1.42, 1.73, 2.0, 2.23);

 Size can be checked with “length()”
for(int i = 0; i < lut.length(); i++) {

lut[i] *= 2;
}

138

Storage qualifiers
 const – read-only, fixed at compile time
 in – input to the shader
 out – output from the shader
 uniform – parameter passed from the application (Java), constant for the

drawn geometry
 buffer – GPU memory buffer (allocated by the application), both read and

write access
 shared – shared with a local work group (compute shaders only)

 Example: const float pi=3.14;

139

Shader inputs and outputs

Vertex
shader

Fragment
shader

out vec3
frag_normal

in vec3 frag_normal

Vertex attribute
interpolation

in vec3 position

in vec3 normal

out vec3 colour

ArrayBuffer (vertices)

ArrayBuffer (normals)glGetAttribLocation
glBindBuffer
glVertexAttribPointer
glEnableVertexAttribArray

FrameBuffer (pixels)
[optional]
glBindFragDataLocation
or
layout(location=?) in GLSL

140

GLSL Operators
 Arithmetic: + - ++ --

 Multiplication:
 vec3 * vec3 – element-wise
 mat4 * vec4 – matrix multiplication (with a column vector)

 Bitwise (integer): <<, >>, &, |, ^
 Logical (bool): &&, ||, ^^
 Assignment:
float a=0;
a += 2.0; // Equivalent to a = a + 2.0

 See the quick reference guide at: https://www.opengl.org/documentation/glsl/

141

GLSL Math
 Trigonometric:

 radians(deg), degrees(rad), sin, cos, tan, asin, acos, atan, sinh, cosh,
tanh, asinh, acosh, atanh

 Exponential:
 pow, exp, log, exp2, log2, sqrt, inversesqrt

 Common functions:
 abs, round, floor, ceil, min, max, clamp, …

 Graphics
 reflect, refract, inversesqrt

 And many more

 See the quick reference guide at: https://www.opengl.org/documentation/glsl/

142

GLSL flow control
if(bool) {
// true

} else {
// false

}

switch(int_value) {
case n:
// statements
break;

case m:
// statements
break;

default:
}

for(int i = 0; i<10; i++) {
...

}

while(n < 10) {
...
}

do {
...
} while (n < 10)

143

Simple OpenGL application - flow
 Initialize rendering window & OpenGL context

 Send the geometry (vertices, triangles, normals) to the
GPU

 Load and compile Shaders

Initialize OpenGL

Set up inputs

Draw a frame

 Clear the screen buffer

 Set the model-view-projection matrix

 Render geometry

 Flip the screen buffers

Free resources

144

Rendering geometry
 To render a single object with OpenGL
1. glUseProgram() – to activate vertex & fragment shaders
2. glVertexAttribPointer() – to indicate which Buffers with vertices and
normals should be input to the vertex shader
3. glUniform*() – to set uniforms (parameters of the fragment/vertex shader)
4. glBindTexture() – to bind the texture
5. glBindVertexArray() – to bind the vertex array
6. glDrawElements() – to queue drawing the geometry
7. Unbind all objects
 OpenGL API is designed around the idea of a state-machine – set the state & queue

drawing command

145

Textures

(Most important) OpenGL texture types

1D
s0 1

2D
s

t

0 1
0

1

s

t

p

3D

Texture can have any size but the sizes that
are powers of two (POT, 2n) may give better
performance.

CUBE_MAP Used for environment
mapping

0

0

1
1

1

0

Texel

147

Texture mapping
 1. Define your texture function (image)

T(u,v)
 (u,v) are texture coordinates

148

0 1
0

1

Texture mapping
 2. Define the correspondence between

the vertices on the 3D object and the
texture coordinates

149

Texture mapping
 3. When rendering, for every surface point compute texture coordinates. Use

the texture function to get texture value. Use as colour or reflectance.

150

Sampling

Up-sampling
More pixels than texels
Values need to be interpolated

Down-sampling
Fewer pixels than texels
Values need to be averaged
over an area of the texture
(usually using a mipmap)

Texturev

u

151

Nearest neighbor vs.
bilinear interpolation (upsampling)

A B

C DX

Interpolate first along
x-axis between AB
and CD, then along
y-axis between the
interpolated points.

152

A B

C DX

N
ea

re
st

 n
ei

gh
bo

ur

Bi
lin

ea
r

in
te

rp
ol

at
io

n

Pick the nearest
texel: D

Texel

153

Texture mapping examples

nearest-
neighbour

bilinear

u

v

154

Up-sampling

nearest-
neighbour

blocky
artefacts

bilinear

blurry
artefacts

u

v  if one pixel in the texture map covers
several pixels in the final image, you
get visible artefacts

 only practical way to prevent this is
to ensure that texture map is of
sufficiently high resolution that it does
not happen

155

Down-sampling

 if the pixel covers quite a large area of the
texture, then it will be necessary to average the
texture across that area, not just take a sample
in the middle of the area

Mipmap
 Textures are often stored at multiple resolutions as a

mipmap
 Each level of the pyramid is half the size of the lower level
 Mipmap resolution is always power-of-two (1024, 512,

256, 128, ...)

 It provides pre-filtered texture (area-averaged) when
screen pixels are larger than the full resolution texels

 Mipmap requires just an additional 1/3 of the original
texture size to store

 OpenGL can generate a mipmap with
glGenerateMipmap(GL_TEXTURE_2D)

156

This image is an illustration showing
only 1/3 increase in storeage.
Mipmaps are stored differently in the
GPU memory.

Down-sampling
without area averaging with area averaging

157

Texture tiling
 Repetitive patterns can be represented as texture tiles.
 The texture folds over, so that

 T(u=1.1, v=0) = T(u=0.1, v=0)

158

Gimp and other drawing software often offer plugins for creating tiled textures

Multi-surface UV maps
 A single texture is often used for multiple surfaces and objects

Example from: http://awshub.com/blog/blog/2011/11/01/hi-poly-vs-
low-poly/

159

Bump mapping and normal mapping
 Special kind of texture that modifies

surface normal
 Surface normal is a vector that is

perpendicular to a surface

 The surface is still flat but shading
appears as on an uneven surface

 Easily done in fragment shaders

160

Displacement mapping
 Texture that modifies surface
 Better results than bump mapping since

the surface is not flat
 Requires geometry shaders

161

Environment mapping
 To show environment reflected by

an object
 Assumption: infinite distance to the

source of reflection

162

Environment mapping
 Environment cube
 Each face captures environment in

that direction

163

CUBE_MAP

face 2

face 4

face 1face 3 face 6

Texture objects in OpenGL

164

Texture parameters
//Setup filtering, i.e. how OpenGL will interpolate the pixels when scaling up or down
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);

//Setup wrap mode, i.e. how OpenGL will handle pixels outside of the expected range
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);

How to
interpolate in

2D

How to interpolate
between mipmap

levels

165

Raster buffers (colour, depth, stencil)

Render buffers in OpenGL

GL_FRONT GL_BACKColour:

Depth:

GL_FRONT_LEFT GL_FRONT_RIGHT

GL_BACK_LEFT GL_BACK_RIGHT

DEPTH

Stencil: STENCIL

In stereo:

Four components:
RGBA

Typically 8 bits per
component

To block rendering selected pixels
Single component, usually 8 bits.

To resolve occlusions (see Z-buffer algorithm)
Single component, usually >8 bits

167

Double buffering
 To avoid flicker, tearing
 Use two buffers (rasters):

 Front buffer – what is shown on the screen
 Back buffer – not shown, GPU draws into that buffer

 When drawing is finished, swap front- and back-buffers

Front buffer – display
Back buffer - draw

1st buffer
2nd buffer

time

168

Triple buffering
 Do not wait for swapping to start drawing the next frame

 Shortcomings
 More memory needed
 Higher delay between drawing and displaying a frame

Front buffer – display
Back buffer - draw

1st buffer
2nd buffer

time

Front buffer – display
Back buffer - draw

time

3rd buffer

Double buffering

Get rid of these gaps

Triple buffering

169

Vertical Synchronization: V-Sync
 Pixels are copied from colour buffer to monitor row-by-row
 If front & back buffer are swapped during this process:

 Upper part of the screen contains previous frame
 Lower part of the screen contains current frame
 Result: tearing artefact

 Solution: When V-Sync is enabled
 glwfSwapInterval(1);

glSwapBuffers() waits until the last
row of pixels is copied to the display.

170

No V-Sync vs. V-Sync

171

N
o

V-
Sy

nc
V-

Sy
nc

FreeSync (AMD) & G-Sync (Nvidia)
 Adaptive sync or Variable Refresh Rate (VRR)

 Graphics card controls timing of the frames on the display
 Can save power for 30fps video of when the screen is static
 Can reduce lag for real-time graphics

172

Introduction to Computer Graphics

173

Background
Rendering
Graphics pipeline
Rasterisation
Graphics hardware and OpenGL
Human vision and colour,

tone mapping

174

The workings of the human visual system
 to understand the requirements of displays (resolution, quantisation and

colour) we need to know how the human eye works...

The lens of the eye forms
an image of the world on
the retina: the back
surface of the eye

Inverted vision
experiment

175

Structure of the human eye
 the retina is an array of light

detection cells
 the fovea is the high resolution

area of the retina
 the optic nerve takes signals

from the retina to the visual
cortex in the brain

 cornea and lens focus the light
on the retina

 pupil shrinks and expands to
control the amount of light

See Animagraffs web page for an animated visualization
https://animagraffs.com/human-eye/

Retina, cones and rods
 2 classes of photoreceptors

 Cones are responsible for day-
light vision and colour
perception
 Three types of cones: sensitive

to short, medium and long
wavelengths

 Rods are responsible for night
vison

176

Fovea, distribution of photoreceptors

177

 the fovea is a densely packed region in the centre of the macula
 contains the highest density of cones
 provides the highest resolution vision

Electromagnetic spectrum
 Visible light

 Electromagnetic waves of wavelength in the
range 380nm to 730nm

 Earth’s atmosphere lets through a lot of
light in this wavelength band

 Higher in energy than thermal infrared, so
heat does not interfere with vision

178

Colour perception and digital colour processing

179

Colour perception in
physical world

Digital colour
processing

Reflectance
 Most of the light we see is reflected from objects
 These objects absorb a certain part of the light spectrum

Spectral reflectance of ceramic tiles

Why not
red?

180

Reflected light

 Reflected light = illumination × reflectance

The same object may appear to have
different colour under different
illumination.

181

)()()( RIL 

Colour vision
 Cones are the photreceptors

responsible for color vision
 Only daylight, we see no colors when

there is not enough light

 Three types of cones
 S – sensitive to short wavelengths
 M – sensitive to medium wavelengths
 L – sensitive to long wavelengths Sensitivity curves – probability that a

photon of that wavelengths will be
absorbed by a photoreceptor. S,M
and L curves are normalized in this
plot.

182

Perceived light
 cone response = sum(sensitivity × reflected light)

Although there is an infinite number of
wavelengths, we have only three
photoreceptor types to sense
differences between light spectra  

730

380

)()( dLSR SS

Formally

183 Index S for S-cones

Metamers
 Even if two light spectra are different, they may appear to have the same

colour
 The light spectra that appear to have the same colour are called metamers
 Example:

*

*

= [L1, M1, S1]

= [L2, M2, S2]

=

184

Practical application of metamerism
 Displays do not emit the same light spectra as real-world objects
 Yet, the colours on a display look almost identical

On the display

In real world

*

*

=

= [L1, M1, S1]

= [L2, M2, S2]

185

 Observation
 Any colour can be matched using

three linear independent reference
colours

 May require “negative” contribution to
test colour

 Matching curves describe the value for
matching mono-chromatic spectral
colours of equal intensity
 With respect to a certain set of primary

colours

186

Tristimulus Colour Representation

Standard Colour Space CIE-XYZ
 CIE Experiments [Guild and Wright, 1931]

 Colour matching experiments
 Group ~12 people with normal colour vision
 2 degree visual field (fovea only)
 Basis for CIE XYZ 1931 colour matching functions

 CIE 2006 XYZ
 Derived from LMS color matching functions by Stockman & Sharpe
 S-cone response differs the most from CIE 1931

 CIE-XYZ Colour Space
 Goals

 Abstract from concrete primaries used in experiment
 All matching functions are positive
 Primary „Y” is roughly proportionally to light intensity (luminance)

187

Standard Colour Space CIE-XYZ
 Standardised imaginary primaries CIE XYZ (1931)

 Could match all physically realizable colour stimuli
 Cone sensitivity curves can be obtained by a linear

transformation of CIE XYZ

188

CIE chromaticity diagram
 chromaticity values are defined in terms of x, y, z

 ignores luminance
 can be plotted as a 2D function

 pure colours (single wavelength)
lie along the outer curve

 all other colours are a mix of
pure colours and hence lie
inside the curve

 points outside the curve do not
exist as colours

189

x X
X Y Z

y Y
X Y Z

z Z
X Y Z

x y z
 


 


 

   , , 1

FvDFH Fig 13.24
Colour plate 2

580n
m

600n
m

700n
m

560n
m

540n
m

520n
m

500n
m

490n
m

510n
m

480n
m

460n
m 410n

m

Achromatic/chromatic vision mechanisms

190

Light spectra

Achromatic/chromatic vision mechanisms

191

Light spectra

Sensitivity of
the achromatic
mechanism

Luminance does
NOT explain the
brightness of light!
[Koenderink et al.
Vision Research
2016]

Achromatic/chromatic vision mechanisms

192

Light spectra

Achromatic/chromatic vision mechanisms

193

Light spectra

Achromatic/chromatic vision mechanisms

194

Light spectra

Rods

Luminous efficiency function
(weighting)

Light spectrum (radiance)

Luminance
 Luminance – measure of light weighted by the response of the achromatic

mechanism. Units: cd/m2 (ISO) or nit

Luminance

195

𝐿௏ = න 𝑘𝐿 𝜆 𝑉 𝜆 𝑑𝜆଻଴଴
ଷହ଴ 𝑘 = 1683.002

 All physically possible and visible colours form
a solid in XYZ space

 Each display device can reproduce a subspace
of that space

 A chromacity diagram is a slice taken from a
3D solid in XYZ space

 Colour Gamut – the solid in a colour space
 Usually defined in XYZ to be device-independent

196

Visible vs. displayable colours

 HDR cameras/formats/displays attempt
capture/represent/reproduce (almost) all visible
colours
 They represent scene colours and therefore we often

call this representation scene-referred

 SDR cameras/formats/devices attempt to
capture/represent/reproduce only colours of a
standard sRGB colour gamut, mimicking the
capabilities of CRTs monitors
 They represent display colours and therefore we often

call this representation display-referred



197

Standard vs. High Dynamic Range

From rendering to display

198

Physically-based
rendering

Tone mapping Display-encoding
Gamma
OETF -

Opto-Electrical
Transfer Function

Display Perception

Scene-referred colours
high dynamic range

Display-referred colours
dynamic range of the display

Linear colours
floating point, e.g., 0.005 to 100000

Display-encoded colours
int, e.g., 0-255

Display encoding (EOTF) for SDR: gamma correction
 Gamma correction is often used to encode luminance or tri-stimulus color

values (RGB) in imaging systems (displays, printers, cameras, etc.)

Luma
Digital signal (0-1)

(relative) Luminance
Physical signal

Gamma
(usually =2.2)

Gain

Inverse:

Colour: the same equation
applied to red, green and blue
colour channels.

199

V୭୳୲ = a ȉ 𝑉௜௡ఊ
V୧୬ = 1𝑎 ȉ 𝑉௢௨௧ ଵఊ

Why is gamma needed?

 Gamma-corrected/display-encoded pixel values give a scale of
brightness levels that is approximately perceptually uniform

 At least 12 bits (instead of 8) would be needed to encode
each color channel without gamma correction

 And accidentally it was also the response of the CRT gun

D
isplay-encoded pixel value (lum

a)

Lu
m

in
an

ce

200

Display-encoded colour spaceLinear colour space

Linear and display-encoded colour spaces

RAW image JPEG image

ISP pipeline + tone mapping

HDR image SDR image

Tone mapping + OETF

201

Display-encoded colour spaceLinear colour space

Linear and display-encoded colour spaces

Physical and optical
modelling File formats

OETF
Gamma (1/𝛾)

Transmission Most of the datasets

“pixel values” 0-255 as
most commonly known

Floating point values
Stored as integers

(e.g., 8 bits per colour channel)
Perceptually non-uniform

(approx.) perceptually uniformModels the mixture of lights

Linearly related to
radiance [W sr-1 m-2] and

luminance [cd m-2] Grayscale is called luma
(not luminance)

Values that drive displays

202

EOTF
Inverse Gamma (𝛾)

Luma – gray-scale pixel value
 Luma - pixel brightness in gamma corrected units𝐿ᇱ = 0.2126𝑅ᇱ + 0.7152𝐺ᇱ + 0.0722𝐵ᇱ

 𝑅ᇱ, 𝐺ᇱ and 𝐵ᇱ are gamma-corrected colour values
 Prime symbol denotes gamma corrected
 Used in image/video coding

 Note that relative luminance if often approximated with𝐿 = 0.2126𝑅 + 0.7152𝐺 + 0.0722𝐵 = 0.2126(𝑅ᇱ)ఊ+0.7152(𝐺ᇱ)ఊ+0.0722(𝐵ᇱ)ఊ
 𝑅, 𝐺, and 𝐵 are linear colour values
 Luma and luminace are different quantities despite similar formulas

203

Standards for display encoding
Bit depthEOTFColour spaceDisplay type

8 to 102.2 gamma / sRGBITU-R 709Standard Dynamic Range

10 to 12ITU-R 2100 (PQ/HLG)ITU-R 2020High Dynamic Range

204

Colour space
What is the colour of “pure” red,

green and blue

Electro-Optical Transfer Function
How to efficiently encode each primary

colour

How to transform between RGB colour spaces (SDR
and HDR)?

 From ITU-R 709 RGB to XYZ:𝑋𝑌𝑍 = 0.4124 0.3576 0.18050.2126 0.7152 0.07220.0193 0.1192 0.9505 ோ଻଴ଽ௧௢௑௒௓ ȉ 𝑅𝐺𝐵 ோ଻଴ଽ

205

RGB
ITU-R 709

RGB
ITU-R 2020XYZ

SDR HDRDevice
-independent

Relative XYZ
of the red
primary

Relative XYZ
of the green

primary

Relative XYZ
of the blue

primary

Relative RGB
(0-1) in the
R709 space

R’G’B’
sRGB

R’G’B’
PQ-encoded

linearlinear display-encodeddisplay-encoded

How to transform between
RGB colour spaces?

 From ITU-R 709 RGB to ITU-R 2020 RGB:𝑅𝐺𝐵 ோଶ଴ଶ଴ = 𝑀௑௒௓௧௢ோଶ଴ଶ଴ ȉ 𝑀ோ଻଴ଽ௧௢௑௒௓ ȉ 𝑅𝐺𝐵 ோ଻଴ଽ
 From ITU-R 2020 RGB to ITU-R 709 RGB:𝑅𝐺𝐵 ோ଻଴ଽ = 𝑀௑௒௓௧௢ோ଻଴ଽ ȉ 𝑀ோଶ଴ଶ଴௧௢௑௒௓ ȉ 𝑅𝐺𝐵 ோଶ଴ଶ଴
 Where:𝑀ோ଻଴ଽ௧௢௑௒௓ = 0.4124 0.3576 0.18050.2126 0.7152 0.07220.0193 0.1192 0.9505 and 𝑀௑௒௓௧௢ோ଻଴ଽ = 𝑀ோ଻଴ଽ௧௢௑௒௓ିଵ
𝑀ோଶ଴ଶ଴௧௢௑௒௓ = 0.6370 0.1446 0.16890.2627 0.6780 0.05930.0000 0.0281 1.0610 and 𝑀௑௒௓௧௢ோଶ଴ଶ଴ = 𝑀ோଶ଴ଶ଴௧௢௑௒௓ିଵ

206

Exercise: Map colour to a display
 We have:

 Spectrum of the colour we want to reproduce: 𝐿 (Nx1 vector)
 XYZ sensitivities: 𝑆௑௒௓ (Nx3 matrix)
 Spectra of the RGB primaries: 𝑃ோீ஻ (Nx3 matrix)
 Display gamma: 𝛾 = 2.2

 We need to find display-encoded R’G’B’ colour values
 Step 1: Find XYZ of the colour𝑋 𝑌 𝑍 ் = 𝑆௑௒௓் 𝐿
 Step 2: Find a linear combination of RGB primaries𝑆௑௒௓் 𝑃ோீ஻ = 𝑀ோீ஻→௑௒௓
 Step 3: Convert and display-encode linear colour values𝑅 𝐺 𝐵 ் = 𝑀ோீ஻→௑௒௓ିଵ 𝑋 𝑌 𝑍 ்𝑅′ 𝐺′ 𝐵′ = 𝑅ଵ/ఊ 𝐺ଵ/ఊ 𝐵ଵ/ఊ

207

To obtain a
metameric match,
XYZ of the light
emitted from the
display and the

XYZ of the
spectrum L much

be the same

Representing colour
 We need a mechanism which allows us to represent colour in the computer

by some set of numbers
 A) preferably a small set of numbers which can be quantised to a fairly small

number of bits each
 Display-encoded RGB, sRGB

 B) a set of numbers that are easy to interpret
 Munsell’s artists’ scheme
 HSV, HLS

 C) a set of numbers in a 3D space so that the (Euclidean) distance in that space
corresponds to approximately perceptually uniform colour differences
 CIE Lab, CIE Luv

208

RGB spaces
 Most display devices that output light mix red, green and blue lights to make

colour
 televisions, CRT monitors, LCD screens

 RGB colour space
 Can be linear (RGB) or display-encoded (R’G’B’)
 Can be scene-referred (HDR) or display-referred (SDR)

 There are multiple RGB colour spaces
 ITU-R 709 (sRGB), ITU-R 2020, Adobe RGB, DCI-P3

 Each using different primary colours

 And different OETFs (gamma, PQ, etc.)

 Nominally, RGB space is a cube

209

RGB in CIE XYZ space
 Linear RGB colour values can be

transformed into CIE XYZ
 by matrix multiplication
 because it is a rigid transformation

the colour gamut in CIE XYZ is
a rotate and skewed cube

 Transformation into Yxy
 is non-linear (non-rigid)
 colour gamut is more complicated

210

R
G

B
ga

m
ut

 in

XY
Z

co
lo

ur
 s

pa
ce

R
G

B
ga

m
ut

 in
 Y

xy
co

lo
ur

 s
pa

ce

CMY space
 printers make colour by mixing coloured inks
 the important difference between inks (CMY) and lights (RGB) is that, while

lights emit light, inks absorb light
 cyan absorbs red, reflects blue and green
 magenta absorbs green, reflects red and blue
 yellow absorbs blue, reflects green and red

 CMY is, at its simplest, the inverse of RGB
 CMY space is nominally a cube

211

212

CMYK space

 in real printing we use black (key) as well as
CMY

 why use black?
 inks are not perfect absorbers
 mixing C + M + Y gives a muddy grey, not black
 lots of text is printed in black: trying to align C,
M and Y perfectly for black text would be a
nightmare

213

Munsell’s colour classification system
 three axes

 hue  the dominant colour
 value  bright colours/dark colours
 chroma  vivid colours/dull colours

 can represent this as a 3D graph

214

Munsell’s colour classification system
 any two adjacent colours are a standard “perceptual” distance apart

 worked out by testing it on people
 a highly irregular space

 e.g. vivid yellow is much brighter than vivid blue

invented by Albert H. Munsell, an American artist, in 1905 in an
attempt to systematically classify colours

215

Colour spaces for user-interfaces
 RGB and CMY are based on the physical devices which produce the coloured

output
 RGB and CMY are difficult for humans to use for selecting colours
 Munsell’s colour system is much more intuitive:

 hue — what is the principal colour?
 value — how light or dark is it?
 chroma — how vivid or dull is it?

 computer interface designers have developed basic transformations of RGB
which resemble Munsell’s human-friendly system

216

HSV: hue saturation value
 three axes, as with Munsell

 hue and value have same meaning
 the term “saturation” replaces the term

“chroma”

 designed by Alvy Ray Smith in 1978
Video from:
https://en.wikipedia.org/wiki/File:RG
B_2_HSV_conversion_with_grid.ogg

217

HLS: hue lightness saturation
a simple variation of HSV

 hue and saturation have same meaning
 the term “lightness” replaces the term “value”

designed to address the complaint that HSV has all
pure colours having the same lightness/value as white

designed by Metrick in 1979
Video from:
https://upload.wikimedia.org/wikipedia/commons
/4/46/RGB_2_HSL_conversion_with_grid.ogg

Perceptually uniformity
 MacAdam ellipses & visually indistinguishable colours

218

In CIE xy chromatic coordinates In CIE u’v’ chromatic coordinates

CIE L*u*v* and u’v’

219

sRGB in CIE L*u*v*

 Approximately perceptually uniform
 u’v’ chromacity

 CIE LUV

 Hue and chroma

Lightness

Chromacity
coordinates

Colours less
distinguishable

when dark

CIE L*a*b* colour space
 Another approximately perceptually

uniform colour space

 Chroma and hue

220

Trichromatic
values of the

white point, e.g.

221

Lab space

 this visualization shows those colours
in Lab space which a human can
perceive

 again we see that human perception of
colour is not uniform
 perception of colour diminishes at the

white and black ends of the L axis
 the maximum perceivable chroma differs

for different hues

Recap: Linear and display-encoded colour
 Linear colour spaces

 Examples: CIE XYZ, LMS cone responses, linear RGB
 Typically floating point numbers
 Directly related to the measurements of light (radiance and luminance)
 Perceptually non-uniform
 Transformation between linear colour spaces can be expressed as a matrix multiplication

 Display-encoded and non-linear colour spaces
 Examples: display-encoded (gamma-corrected, gamma-encoded) RGB, HVS, HLS, PQ-encoded RGB
 Typically integers, 8-12 bits per colour channel
 Intended for efficient encoding, easier interpretation of colour, perceptual uniformity

222

Colour - references
 Chapters „Light” and „Colour” in

 Shirley, P. & Marschner, S., Fundamentals of Computer Graphics

 Textbook on colour appearance
 Fairchild, M. D. (2005). Color Appearance Models (second.). John Wiley & Sons.

223

Tone-mapping problem

luminance range [cd/m2]

conventional display

simultaneouslyhuman vision
adapted

Tone mapping

224

Why do we need tone mapping?
 To reduce dynamic range
 To customize the look (colour grading)
 To simulate human vision (for example night vision)
 To simulate a camera (for example motion blur)
 To adapt displayed images to a display and viewing conditions
 To make rendered images look more realistic
 To map from scene- to display-referred colours

 Different tone mapping operators achieve different combination of these goals

225

From scene- to display-referred colours
 The primary purpose of tone mapping is to transform an image from scene-

referred to display-referred colours

226

scene-referred,
linear, float

Tone mapping and display encoding
 Tone mapping is often combined with display encoding

 Display encoding can model the display and account for
 Display contrast (dynamic range), brightness and ambient light levels

227

Rendered HDR
image

Tone mapping
Display encoding
(inverse display

model)

SDR raster
buffer

Different for SDR
and HDR displays

display-referred,
linear, float

display-referred,
display-encoded, int

Basic tone-mapping and display coding
 The simplest form of tone-mapping is the exposure/brightness adjustment:𝑅ௗ = 𝑅௦𝐿௪௛௜௧௘

 R for red, the same for green and blue
 No contrast compression, only for a moderate dynamic range

 The simplest form of display coding is the “gamma”𝑅ᇱ = (𝑅ௗ)ଵఊ
 For SDR displays only

Prime (‘) denotes a
gamma-corrected value Typically 𝛾=2.2

228

Display-referred relative
red value [0;1]

Scene-referred

Scene-referred
luminance of white

sRGB textures and display coding
 OpenGL offers sRGB textures to automate RGB to/from sRGB conversion

 sRGB textures store data in gamma-corrected space
 sRGB colour values are converted to (linear) RGB colour values on texture look-up

(and filtering)
 Inverse display coding

 RGB to sRGB conversion when writing to sRGB texture
 with glEnable(GL_FRAMEBUFFER_SRGB)
 Forward display coding

229

Tone-curve

Image histogram

The „best” tone-
mapping is the

one which does
not do anything,
i.e. slope of the
tone-mapping
curves is equal

to 1.

230

Tone-curve

But in practice
contrast (slope)
must be limited
due to display

limitations.

231

Tone-curve

Global tone-
mapping is a
compromise

between clipping
and contrast
compression.

232

Sigmoidal tone-curves
 Very common in

digital cameras
 Mimic the response of analog film
 Analog film has been engineered over many

years to produce good tone-reproduction

 Fast to compute

233

Sigmoidal tone mapping
 Simple formula for a sigmoidal tone-curve:𝑅′(𝑥, 𝑦) = 𝑅(𝑥, 𝑦)௕𝐿௠𝑎 ௕ + 𝑅(𝑥, 𝑦)௕
where 𝐿௠ is the geometric mean (or mean of logarithms):𝐿௠ = 𝑒𝑥𝑝 1𝑁 ෍ ln (𝐿 𝑥, 𝑦)(௫,௬)
and 𝐿 𝑥, 𝑦 is the luminance of the pixel 𝑥, 𝑦 .

234

Sigmoidal tone mapping example

a=0.25

a=1

a=4

b=0.5 b=1 b=2
235

Thank you for attending the lectures

236

Background
Rendering
Graphics pipeline
Rasterisation
Graphics hardware and OpenGL
Human vision and colour & tone mapping

