EE UNIVERSITY OF

.bﬁ..

%» CAMBRIDGE

Introduction to Graphics

Computer Science Tripos Part 1A
Michaelmas Term 2025/2026

Department of

Computer Science

and Technology

The Computer Laboratory

William Gates Building
15 JJ Thomson Avenue
Cambridge

CB3 OFD

www.cst.cam.ac.uk

This handout includes copies of the slides that will be used in lectures.
These notes do not constitute a complete transcript of all the lectures, and
they are not a substitute for textbooks. They are intended to give a
reasonable synopsis of the subjects discussed, but they give neither
complete descriptions nor all the background material.

Selected slides contain a reference to the relevant section in the
recommended textbook for this course: Fundamentals of Computer
Graphics by Marschner & Shirley, CRC Press 2015 (4" or 5" edition). The
references are in the format [FCG A.B/C.D], where A.B is the section number
in the 4™ edition and C.D is the section number in the 5 edition.

Material is copyright © Neil A Dodgson, Peter Robinson & Rafat Mantiuk,
1996-2025, except where otherwise noted.

All other copyright material is made available under the University’s licence.
All rights reserved.

Introduction to Computer Graphics
Rafat Mantiuk

www.cl.cam.ac.uk/~rkm38

Eight lectures & two practical tasks

Part IA CST
Two supervisions suggested

Two exam questions on Paper 3

Visual computing pipeline

Scene

description

Computer
graphics

|

|

Image analysis &
computer vision

Digital
image

Image
capture

Image
display

Visual
perception

Computing without graphics

[PSC:\> Get-Childlten ’MediaCen Music’ —rec |
GhovelSionoths PSlsContalios i and! S rtansion _-match *unatnp3

>> Heasure-Object —property length —sum —min -

>>

1387
5491276 .09563887
2172897857

95267

Length

[PS C:\> Get-WniObject CIM_BIOSElement ! select biosux, man*, ser* ! Format-List

BIOSVersion <TOSCPL - 6840090, Uer 1.8@PARTTBL)
Manufacturer : TOSHIBA
[SerialNunber : M821116H

Ps C:\> (IumiSearcherler
» FROM CIM_Joh

ority
D> ’@>.get<> | Format-Custom
>

((:lass ManagementOhject#root\cimu2\Win32_PrintJob
Document = Monad Manifesto — Public
Jobld = 6

JobStatus

Ouner lL‘er

Priority

Size 1.27588

Name = Epson Stylus COLOR 74@ ESC/P 2, 6

sUrl = ’http://blogs.msdn.con/powershell/rss.aspx’
ps Cix> hloy = [xnll<new-obgect System.Net.Mehclients.DownloadString(SrssUrl>
[PS C:\> $blog.rss.channel.iten | select title —first 3

title
at’s Coming In PowerShell U2
Puuershell Prosence at
Systen Center Foundation Technologies
5 1# 5

Computing with graphics

Why bother with CG?

+ All visual computer output depends on CG
printed output (laser/ink jet/phototypesetter)
monitor (CRT/LCD/OLED/DMD)
all visual computer output consists of real images generated by the computer
from some internal digital image
+ Much other visual imagery depends on CG

computer games

TV & movie special effects &
post-production

most books, magazines,
catalogues...

VR/AR

Course Structure

+ Background
What is an image? Resolution and quantisation. Storage of images in memory. [| lecture]
+ Rendering

Perspective. Reflection of light from surfaces and shading. Geometric models. Ray tracing.
[2 lectures]

+ Graphics pipeline

Polygonal mesh models. Transformations using matrices in 2D and 3D. Homogeneous
coordinates. Projection: orthographic and perspective. Rasterisation. [2 lectures]

+ Graphics hardware and OpenGL

GPU APIs. Vertex processing. Fragment processing. Working with meshes and textures.
[l lecture]

+ Human vision, colour and tone mapping
Colour perception. Colour spaces. Tone mapping [2 lectures]

Course books

+ Fundamentals of Computer Graphics

Shirley & Marschner
CRC Press 2015 (4t or 5™ edition)

[FCG 8.1/9.1] — reference to section 3.1 in the 4% edition, 9.1
in the 5™ edition
+ Computer Graphics: Principles & Practice
Hughes, van Dam, McGuire, Sklar et al.
Addison-Wesley 2013 (3¢ edition)
+ OpenGL Programming Guide:
The Official Guide to Learning OpenGL Version 4.5 with
SPIR-V

Kessenich, Sellers & Shreiner
Addison Wesley 2016 (7t edition and later)

Fundamentals

COMPUTER GRAPHICS

PRINCIPLES AND PRACTICE

Introduction to Computer Graphics

+ Background
+ What is an image!
+ Resolution and quantisation

+ Storage of images in memory
+Rendering
+ Graphics pipeline
+ Rasterisation
+ Graphics hardware and OpenGL
+Human vision and colour & tone mapping

What is a (digital) image?

+ A digital photograph? (“|PEG”)
+ A snapshot of real-world lighting?

From computing [Imace] From mathematical
perspective & perspective
(discrete) / \ (continuous)
[2D array of pixelsj [2D function]
*To represent images in To express image processing
memory as a mathematical problem
*To create image processing *To develop (and understand)

software algorithms

Image

+ 2D array of pixels

+ In most cases, each pixel takes 3 bytes: one for each red, green and blue
+ But how to store a 2D array in memory?

row-major column-major interleaved, row-major
Nc'1 0 Nc-l
0 N.-1
0 e i [0
— T — ’:’ ,:' :" ,1’ ,:I ,/’ ’II 1’, 0 A A A A /1 2
R LA ke - = !]] !] !] ! % idl i I —/ ‘{'/
— =" = N (- II II II ,I ll 'I ll II 7 [P 5 2zl =~
N,-1 Y Al : > N,-1 \' v' ‘ V‘ r' v‘ ' r‘ / N.-1 -1~ ~ I 7| BZ |7

Stride

+ Calculating the pixel component index in memory
For row-major order (grayscale)
(oY) =x+Y - Neors
For column-major order (grayscale)
((0,y) =X Npows T Y
For interleaved row-major (colour)
i(x,y,c)=x:3+y-3 n,s+cC
General case
i(x,y,c) =x-sy+y-s,+c-s.

where s, Sy and s, are the strides for the x, y and colour dimensions

10

Padded images and stride

+ Sometimes it is desirable to “pad” image with extra pixels

for example when using operators that need to access pixels outside the image border

+ Or to define a region of interest (ROI)

Allocated memory space
Image

Region of Interest
(ROI)

+ How to address pixels for such an image and the ROI?
I

Padded images and stride

Allocated memory space
Image

Region of Interest
(ROI)

i(x,y,¢) = lfipst T XSy +y-5,+c 5.
+ For row-major, interleaved, colour

Lrirst =

Pixel (Plcture ELement)

+ Each pixel (usually) consist of three values describing the colour
(red, green, blue)

+ For example
(255, 255, 255) for white
(0, 0, 0) for black
(255, 0, 0) for red

+ Why are the values in the 0-255 range?

+ How many bytes are needed to store 5MPixel image?
(uncompressed)

Pixel formats, bits per pixel, bit-depth

+ Grayscale — single colour channel, 8 bits (| byte)
+ Highcolor — 2'=65,536 colors (2 bytes)

Sample Length: 5 6 5
Channel Membership: Red Green Blue

Bit Number: 15 14 13121110 9 8 7 6 5 4 3 2 1 0

RGBAX R.G.B. A. X
Sample Length Notation: 56500

+ Truecolor — 2% = 16,8 million colors (3 bytes)

+ Deepcolor — even more colors (>= 4 bytes)

Sample Length: 2 10 10 10
Channel Membership: None Red Green Blue

Bit Number: 31 30 29 28 27 26 25 24 23 22 21 20191817 161514131211 10 9 8 7 6 5 4 3 2 1 0
RGBAX R.G.B.A. X

Sample Length Notation: 10.10.10.0.2

+ But why? !

Colour banding
+ If there are not enough bits
to represent colour
+ Looks worse because of
the Mach band or
Chevreul illusion

. . . 8-bit gradient 8-bit gradient, 24-bit gradient
+ Dithering (added noise) can Jithered

reduce banding

Printers but also some LCD
displays

Mach bands

Intensity profile \
15

What is a (computer) image?

+ A digital photograph? (“|PEG”)
+ A snapshot of real-world lighting?

From computing [Imace] From mathematical
perspective & perspective
(discrete) / \ (continuous)
[2D array of pixelsj [2D function]
*To represent images in To express image processing
memory as a mathematical problem
*To create image processing *To develop (and understand)

software algorithms

Image - 2D function

+ Image can be seen as a function I(x,y), that gives
intensity value for any given coordinate (x,y)

Sampling an image

+ The image can be sampled on a rectangular sampling
grid to yield a set of samples. These samples are
pixels.

u“ !I l!'h ‘ '
{ Jr 1! 1t

'F

\\t..h

f\

1p “ﬂhh‘!“

What is a pixel? (math)

+ A pixel is not
a box
a disk
a teeny light

+ A pixel is a point
it has no dimension
it occupies no area
it cannot be seen

it has coordinates

+ A pixel is a sample

19
From: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture05/lecture05.pdf

not a
box!

circle!

Sampling and quantization

+ Physical world is described in terms of continuous quantities
+ But computers work only with discrete numbers

+ Sampling — process of mapping continuous function to a
discrete one

+ Quantization — process of mapping continuous variable to a
discrete one

~

1) M/

[

X

=Y

20

Computer Graphics & Image Processing

+Background
+ Rendering

+ Perspective
+ Reflection of light from surfaces and shading
+ Geometric models

+ Ray tracing
+ Graphics pipeline
+ Graphics hardware and modern OpenGL
+Human vision and colour & tone mapping

21

(O

Occlusion

Relative Si1ze

Shadow and Foreshortening

Distance to Horizon

Depth cues

& @

Familiar Size

@

Shading

Colour

Relative Brightness

Atmosphere

Focus

Left Eye Raght Eye

Focal depth

22

Rendering depth

23

Perspective in photographs

Gates Building — the rounded version
(Stanford)

Gates Building — the rectilinear version
(Cambridge)

24

Early perspective

4+ Presentation at the
Temple

Ambrogio Lorenzetti 1342

Uffizi Gallery
Florence

+ +

25

Wrong perspective

+ Adoring saints

4+ Lorenzo Monaco
1407-09

+ National Gallery
London

26

Renaissance perspective

+ Geometrical perspective
Filippo Brunelleschi 1413

+ Holy Trinity fresco

+ Masaccio (Tommaso di Ser Giovanni
di Simone) 1425

+ Santa Maria Novella
Florence

+ De pictura (On painting)
textbook by Leon Battista Alberti
1435

27

28

False perspective

Calculating
perspective

Ray tracing

+ Identify point on surface and calculate illumination

+ Given a set of 3D objects, shoot a ray from the eye through the
centre of every pixel and see what surfaces it hits

1 7/
AN

p

shoot a ray through each pixel whatever the ray hits determines the colour of
that pixel

[FCG 4/4]

30

Ray tracing: exa

Turner Whitted 1979

Ray tracing easily handles reflection, refraction,
shadows and blur (due to motion and optics)

Ray tracing is computationally expensive

mples

31

Ray tracing algorithm

select an eye point and a screen plane

FOR every pixel in the screen plane
determine the ray from the eye through the pixel’s centre
FOR each object in the scene
IF the object is intersected by the ray
IF the intersection is the closest (so far) to the eye
record intersection point and object
END IF ;
END IF ;
END FOR ;
calculate colour for the closest intersection point (if any)
END FOR ;

32

Intersection of a ray with an object |

plane

rayP=0+sD, s=0
plane:P - N +d =0

d+N-0

STTTND

polygon or disc
® intersection the ray with the plane of the polygon
as above
m then check to see whether the intersection point lies inside the polygon

a 2D geometry problem (which is simple for a disc)

33

Intersection of a ray with an object 2

sphere

D
O

ray: P = 0 + sD,

s=0

sphere: (P—C)-(P—-C)—r?=

—0 — 0O

d real

cylinder, cone, torus
® all similar to sphere

® try them as an exercise

d imaginary

a=D-D
b=2D-(0=C)
c=(0-C)-(0-C)—1r?

d =+ b? — 4ac
_—b+d
1= 2a
_—b—d
52 = 2a

34

Ray tracing: shading

light 2

once you have the intersection of a
ray with the nearest object you can
also:

® calculate the normal to the object at
that intersection point

® shoot rays from that point to all of the
light sources, and calculate the diffuse
and specular reflections off the object
at that point

this (plus ambient illumination)
gives the colour of the object (at
that point)

35

36

Ray tracing: shadows

light 2

because you are tracing
rays from the intersection
point to the light, you can
check whether another
object is between the
intersection and the light
and is hence casting a
shadow

® also need to watch for self-
shadowing

Ray tracing: reflection

if a surface is totally or
partially reflective then
new rays can be
spawned to find the
contribution to the
pixel’s colour given by
the reflection

m this is perfect (mirror)
reflection

37

Ray tracing: transparency & refraction

Example of

= | a refraction

objects can be totally or partially
transparent

m this allows objects behind the current one to be
seen through it

transparent objects can have refractive
indices
® bending the rays as they pass through the objects

transparency + reflection means that a ray
can split into two parts

38

lllumination and shading

+ Diurer’s method allows us to calculate what part of the scene is
visible in any pixel

4+ But what colour should it be?

+ Depends on:
lighting
shadows

properties of surface material

[FCG 4.5-4.8/5]

39

How do surfaces reflect light?

:66: 010 :6

/

perfect specular /) imperfect specular diffuse reflection
reflection N reflection (Lambertian reflection)
(mirror) 'l
'
I
¥

the surface of a specular reflector is facetted,
each facet reflects perfectly but in a slightly
different direction to the other facets

Johann Lambert, |8 century German mathematician

40

41

Comments on reflection

the surface can absorb some wavelengths of light
m e.g. shiny gold or shiny copper

specular reflection has “interesting” properties at glancing angles
owing to occlusion of micro-facets by one another

plastics are good examples of surfaces with:
m specular reflection in the light’s colour

m diffuse reflection in the plastic’s colour

Calculating the shading of a surface

gross assumptions:
® there is only diffuse (Lambertian) reflection
m all light falling on a surface comes directly from a light source
there is no interaction between objects
® no object casts shadows on any other
so can treat each surface as if it were the only object in the scene
m light sources are considered to be infinitely distant from the object

the vector to the light is the same across the whole surface

observation:

m the colour of a flat surface will be uniform across it, dependent only on the colour & position of
the object and the colour & position of the light sources

42

Diffuse shading calculation

N L is a normalised vector pointing in
the direction of the light source

o) N is the normal to the surface

1, is the intensity of the light source

_ k, is the proportion of light which is
I'=1lkqcoso diffusely reflected by the surface
I is the intensity of the light reflected

by the surface

use this equation to calculate the colour of a pixel

43

44
Diffuse shading: comments

can have different I, and different k, for different wavelengths (colours)

watch out for ¢osO <0

implies that the light is behind the polygon and so it cannot illuminate this side of
the polygon

do you use one-sided or two-sided surfaces!?
one sided: only the side in the direction of the normal vector can be illuminated
if cosO < 0 then both sides are black
two sided: the sign of cosO determines which side of the polygon is illuminated

need to invert the sign of the intensity for the back side

this is essentially a simple one-parameter (6) BRDF

Bidirectional Reflectance Distribution Function

Imperfect specular reflection \%%

+ Phong developed an easy-to-calculate L is a normalised vector pointing in the direction of

approximation to imperfect specular the light source
reflection R is the vector of perfect reflection
N N is the normal to the surface
L R V'is a normalised vector pointing at the viewer
0| o 1, is the intensity of the light source

V k, is the proportion of light which is specularly
reflected by the surface

n is Phong’s ad hoc “roughness” coefficient
I =Lk, cos" a

Lk.(R-V)" Tis the intensity of the specularly reflected light
— liRks)

©COOe66

Phong Bui-Tuong, “lllumination for computer generated
pictures”, CACM, 18(6), 1975,311-7

Examples

100%

o000
CO000-

75% 50% 25%

diffuse reflection

0%

100%

75%

0% specular

reflection

25%

46

47
Shading: overall equation

The overall shading equation can thus be considered to be the ambient
illumination plus the diffuse and specular reflections from each light source

I =1k, + Zzikd@ N) + Zliks(R Rk o —
[[

® The equation above is computed for each colour channel (red, green and blue)

® The more lights there are in the scene, the longer this calculation will take

The gross assumptions revisited

diffuse reflection
approximate specular reflection

no shadows

® need to do ray tracing or shadow mapping to get shadows
lights at infinity

® can add local lights at the expense of more calculation

need to interpolate the L vector

no interaction between surfaces
® cheat!

assume that all light reflected off all other surfaces onto a given surface can be amalgamated
into a single constant term: “ambient illumination”, add this onto the diffuse and specular
illumination

48

Sampling

we have assumed so far that each ray
passes through the centre of a pixel

i.e. the value for each pixel is the colour of
the object which happens to lie exactly
under the centre of the pixel

this leads to:
stair step (jagged) edges to objects
small objects being missed completely

thin objects being missed completely or
split into small pieces

i\\
7
ARD i
L\

iz /
V1 V
N /N
Al
<1l <
\J ,//
P

49

50
Anti-aliasing

These artefacts (and others) are jointly known as aliasing

Methods of ameliorating the effects of aliasing are known as anti-aliasing

in signal processing dliasing is a precisely defined technical term for a particular kind of artefact
in computer graphics its meaning has expanded to include most undesirable effects that can occur
in the image
this is because the same anti-aliasing techniques which ameliorate true aliasing artefacts also
ameliorate most of the other artefacts

Sampling in ray tracing

single point

m shoot a single ray through the pixel’s centre
super-sampling for anti-aliasing

m shoot multiple rays through the pixel and average

the result

® regular grid, random, jittered, Poisson disc
adaptive super-sampling

m shoot a few rays through the pixel, check the

variance of the resulting values, if similar enough
stop, otherwise shoot some more rays

Types of super-sampling |

regular grid
m divide the pixel into a number of sub-pixels and shoot a
ray through the centre of each
m problem: can still lead to noticeable aliasing unless a very
high resolution sub-pixel grid is used
random
® shoot N rays at random points in the pixel
® replaces aliasing artefacts with noise artefacts

the eye is far less sensitive to noise than to aliasing

Poisson disc

® shoot N rays at random points in the pixel
with the proviso that no two rays shall pass
through the pixel closer than € to one
another

m for N rays this produces a better looking
image than pure random sampling

® very hard to implement properly

. .

..........
.

.......

. R

Poisson disc

pure random

Types of super-sampling 3

Jittered (a.k.a. stratified sampling)

[]
= divide pixel into NV sub-pixels and shoot one - °le
. . . []
ray at a random point in each sub-pixel .° L
ol ©
¥ an approximation to Poisson disc sampling . o
® o
m for N rays it is better than pure random
sampling
W easy to implement
® o ® o o o o = °
° o f © ¢ ¢ o ©®©
.. ¢ y ® O ¢ . o o o
o o ° o ° °o® .0 °
* o ‘o ® o ¢ o *
jittered Poisson disc pure random

: 55
More reasons for wanting to take

multiple samples per pixel

super-sampling is only one reason why we might want to take multiple samples

per pixel

many effects can be achieved by distributing the multiple samples over some range
w called distributed ray tracing

N.B. distributed means distributed over a range of values
can work in two ways

O each of the multiple rays shot through a pixel is allocated a random value from the relevant
distribution(s)

all effects can be achieved this way with sufficient rays per pixel
@ each ray spawns multiple rays when it hits an object

this alternative can be used, for example, for area lights

Examples of distributed ray tracing

m distribute the samples for a pixel over the pixel area
get random (or jittered) super-sampling
used for anti-aliasing
m distribute the rays going to a light source over some area
allows area light sources in addition to point and directional light sources
produces soft shadows with penumbrae
m distribute the camera position over some area
allows simulation of a camera with a finite aperture lens
produces depth of field effects
m distribute the samples in time

produces motion blur effects on any moving objects

56

one sample per pixel

Anti-aliasing

multiple samples per pixel

57

Area vs point light source

an area light source produces soft shadows

a point light source produces hard shadows

58

Finite aperture

left, a pinhole camera
below, a finite aperture camera
below left, |2 samples per pixel

below right, 120 samples per pixel

note the depth of field blur: only objects
at the correct distance are in focus

59

Introduction to Computer Graphics

+Background
+Rendering
+ Graphics pipeline
Polygonal mesh models
Transformations using matrices in 2D and 3D

Homogeneous coordinates

Projection: orthographic and perspective
+ Rasterization
+ Graphics hardware and modern OpenGL

+Human vision, colour and tone mapping

60

Unfortunately...

+ Ray tracing is computationally expensive
used for super-high visual quality
+ Video games and user interfaces need something faster

+ Most real-time applications rely on rasterisation

Model surfaces as polyhedra — meshes of polygons
Use composition to build scenes
Apply perspective transformation and project into the plane of the screen

Work out which surface was closest
Fill pixels with the colour of the nearest visible polygon
+ Graphics cards have hardware to support this

+ Ray tracing starts to appear in real-time rendering
The new generations of GPUs offer accelerated ray-tracing
But it is still not as efficient as rasterisation

61

Three-dimensional objects

Polyhedral surfaces are made up from meshes of
multiple connected polygons

Polygonal meshes

® open or closed

Curved surfaces

® must be converted to polygons to be drawn

62

Surfaces in 3D: polygons

+ Easier to consider planar polygons

3 vertices (triangle) must be planar

> 3 vertices, not necessarily planar

a non-planar

B
polygon rotate the polygon A
A about the vertical axis
€ should the result be this—/A
D or this? ‘\
A

this vertex is in
front of the other
three, which are all
in the same plane

63

Splitting polygons into triangles

Most Graphics Processing Units (GPUs) are optimised to draw triangles

Split polygons with more than three vertices into triangles

//r 0 which is preferable?

N o

?

64

4+ scale

4+ rotate

4+ translate

+ (shear)

65
2D transformations

why?

D D ¢ it is extremely useful to be able to
transform predefined objects to an

arbitrary location, orientation, and size

+ any reasonable graphics package will
D Q include transforms

m 2D =>» Postscript

D /D m 3D = OpenGL

e

1 [7

[FCG 6/7]

Basic 2D transformations

scale
m about origin
m by factor m
rotate
® about origin
m by angle 6
translate

= along vector (x,.p,)

shear
m parallel to x axis

w by factor a

X =mx
y =my

X =xcosf —ysinb
y =xsinf + ycosf

X =X+ Xxg
y =Y+ Yo

x'=x+ay
y' =y

66

Matrix representation of transformations

+ scale 4+ rotate

about origin, factor m about origin, angle 0
x'| |m 0] x x'| |cos® —sinb | x
y| [0 m|y y'| |sin® cos® |y

+ do nothing + shear

identity parallel to x axis, factor a

M I S P

67

Homogeneous 2D co-ordinates

translations cannot be represented using simple 2D matrix multiplication on
2D vectors, so we switch to homogeneous co-ordinates

_ y
(X, J/,W) — (%9%)
an infinite number of homogeneous coordinates maps to every 2D point

w=0 represents a point at infinity

usually take the inverse transform to be:

(x,y) = (x, y,1)

The symbol = means equivalent

[FCG 6.3/7.3]

68

Matrices in homogeneous co-ordinates
+ scale

+ rotate
about origin, factor m about origin, angle 6
(x'| [m 0 Of x| [x'| [cos® —sin® O] x|
yi =0 m Oy y'|=|sinB® cos® Oy
w10 0 1]w W | 0 0 1w
+ do nothing + shear
identity parallel to x axis, factor «
x' I 0 O x' 1 a 0 x
yiI=(0 1 0]y yi(i=/0 1 0y
w' |0 0 T]w] w0 0 1jw

69

Translation by matrix algebra

'\<.
]

-)
oS = O
=
<

In homogeneous coordinates
'__ '__ ' _
X'=X+wx, y=y+wy, w=w

In conventional coordinates
1

'
X' x Yoy
Tt =t
w w w w

Concatenating transformations

often necessary to perform more than one transformation on the same object

can concatenate transformations by multiplying their matrices
e.g. a shear followed by a scaling:

scale shea

r
" m 0 0] x' x' 1 a 0| x
"I=10 m O yi=(0 1 0|y
" 0 0 1 ' w' 0O 0 1|w

scale shea

x" m 0 O1 a
y'=/0 m 00 1
w'' O 0 110 O

s <

71

Transformation are not commmutative

+ be careful of the order in which you concatenate transformations

rotate then scale) scale)
|F Y5 Y5 0 2 00
rotate by 45° scale by 2 y V2 y J2 0 0O 1 O
along x axis O O 1 | _O O 1 |

Y Y O [V a0
F [O |
scale by 2 rotate by 45 O O 1 O O 1

along x axis | _ - .
scale then rotate rotate

Scaling about an arbitrary point

scale by a factor m about point (x,,y,)

(I) translate point (x,,y,) to the origin
(2) scale by a factor m about the origin

(3) translate the origin to (x,,y,)

><<
—~

w
~

w <

(D[~ 1 0 —-x, |x (2)[x"] [m 0 0 1 0 x, |x
V=10 =y YHELO om0y YE=I0 Ly "
w' 0 0 1 |w w" 0O 0 1w w'" 0 0 1 |w"
" 1 0 x,||lm O Ol 0 —x, |x
y'l=l0 1 y [0 m 0/0 1 —y |y Exercise: show how to
W 00 110 o 1lo o 1w perform rotatlo.n about

an arbitrary point

73

3D transformations

3D homogeneous co-ordinates
(x7yﬁzﬁw) % (ﬁ)%’é)

3D transformation matrices

translation identity rotation about x-axis
1 0 0 ¢] 1 0 0 O] 10 0 0]
0 1 0 2, 01 00 0 cos® —sin® O
0 0 1 ¢ 0 01 0 0 smb cos® O
00 0 1] 00 0 1] 0 0 0 1
i scale i rotation about z-axis rotation about y-axis
m, 0 0 O cos@ —sin® 0 O cosO 0 sin® O
0 m, 0 0 sin@ cos® 0 0 0 I 0 0
0 0 m O 0 0 1 0 —smB 0 cos® 0
(0 0 0 1] 0 0 0 1] 0 0 0 1

3D transformations are not commutative

90° rotation
about z-axis

ﬁ o

90° rotation
about x-axis

90° rotation
about x-axis

& iy

90° rotation
about z-axis

opposite
faces

* o B

o a8

Ve @ @ =

75

Model transformation

m the graphics package Open Inventor defines a cylinder to be:
centre at the origin, (0,0,0)
radius | unit
height 2 units, aligned along the y-axis

u this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

= we want to draw a cylinder of:
radius 2 units

the centres of its two ends
located at (1,2,3) and (2,4,5)
< its length is thus 3 units

® what transforms are required?
and in what order should they be applied!?

76

Model transformation 2

+ order is important:

scale first
rotate

translate last

+ scaling and translation are straightforward

2 0 0
0 15 0
0 0 2
0 0 0

scale from
size (2,2,2)
to size (4,3,4)

_—o O O

(1 0 0 1.5]

01 0 3
T =

0 01 4

0 0 0 1

translate centre of
cylinder from (0,0,0) to
halfway between (1,2,3)
and (2,4,5)

Model transformation 3

+ rotation is a multi-step process

break the rotation into steps, each of which is rotation about a principal axis

work these out by taking the desired orientation back to the original axis-
aligned position

the centres of its two ends located at (1,2,3) and (2,4,5)

desired axis: (2,4,5)—(1,2,3) = (1,2,2)

original axis: y-axis = (0,1,0)

78

Model transformation 4

desired axis: (2,4,5)—(1,2,3) = (1,2,2)

original axis: y-axis = (0,3,0)

zero the z-coordinate by rotating about the x-axis

1 0 0 0
0 cosO —sin® O

R, = .
0O sin® cos® O
0 0 0 1
0 = —arcsin 2

N22+2°

z

/.\a,z,z)

' Y
(LW ,o)
=(1.7/8,0)

79

Model transformation 5

then zero the x-coordinate by rotating about the z-axis

we now have the object’s axis pointing along the y-axis

(cosp —sing 0
sin COS 0
R, - ¢ ¢
0 0 1
0 0 0
: 1
¢ = arcsin

12+\/§2

_— o O O

y
(o,\/l%r 82,0j & . (1430
=(03,0)
L b

Model transformation 6

4+ the overall transformation is:

first scale

then take the inverse of the rotation we just calculated

finally translate to the correct position

S N e =R

'

=T><R1_1><R2_1><S><

T N e ow

8l

Application: display multiple instances

+ transformations allow you to define an object at one location and then place
multiple instances in your scene

82

3D = 2D projection

+ to make a picture
3D world is projected to a 2D image

® like a camera taking a photograph

m the three dimensional world is projected onto a plane

The 3D world is described as a set
of (mathematical) objects

e.g. sphere radius (3.4)
centre (0,2,9)

G e.g. box size (2,4,3)
centre (7, 2, 9)
orientation (27°, 156°)

83

Types of projection

+ parallel
e.g. (x,y,Z)—>(X,y)
useful in CAD, architecture, etc

looks unrealistic
+ perspective
e.g. (x,y,2) > (£,7
things get smaller as they get farther away

looks realistic

m this is how cameras work

Parallel to X axis

Cavalier projection

X

Parallel to Y axis

&
Y,

84

<&

Cabinet projection

&

Parallel to Z axis

(0,0,0) ¢

Geometry of perspective projection

85

Projection as a matrix operation

X 1 0 0 0 [[x x'=
y | (01 0 0 |y
1/d| |0 0 0 1/d|:z 5
z/d| |0 0 1/d 0 |1 a
This is useful in the z-buffer

interpolate 1/z values rather
than z values.

yv/iw

N xR

z/w

remember [

} algorithm where we need to '
{x/w}
%

=

Perspective projection
with an arbitrary camera

we have assumed that:
m screen centre at (0,0,d)
m screen parallel to xy-plane
W z-axis into screen
® y-axis up and x-axis to the right
m eye (camera) at origin (0,0,0)
for an arbitrary camera, we can either:
m work out equations for projecting objects about an arbitrary point onto an arbitrary plane

m transform all objects into our standard coordinate system (viewing coordinates) and use the
above assumptions

87

A variety of transformations

object in
object
co-ordinates

é

modelling

the modelling transform and viewing transform can be multiplied together to produce a single

object in
world
co-ordinates

viewing

transform

transform

é

object in
viewing
co-ordinates

projection

é

object in
2D screen
co-ordinates

matrix, taking an object directly from object coordinates into viewing coordinates

either or both of the modelling transform and viewing transform matrices can be the identity

matrix

e.g. objects can be specified directly in viewing co-ordinates, or directly in world co-ordinates

this is a useful set of transforms, not a hard and fast model of how things should be done

88

89
Model, View, Projection matrices

+y YA
-7 -Z
- v/

-X < +X E>[Model]E> -X 7 +x
> .
matrix
+7 tZ
To position each
-y object in the scene. -y

Object coordinates Could be different World coordinates

for each object.

Object centred at the
origin

Model, View, Projection matrices

+yA +yA

-Z

-Z
w”
-X 7+X E>[. .]E> x / N
View matrix 2] >

To position all objects
-y relative to the camera

=
o _,_Z/i
-y

World coordinates)
View (camera)

coordinates

Camera at the origin,

ointing at -z
90 P g

90

Model, View, Projection matrices

+yA

-X P
)
+z/

-y

View (camera)
coordinates

|:> Projection |:> -
matrix

To project 3D
coordinates to a 2D
plane. Note that z
coordinate is retained
for depth testing.

91

The default OpenGL

coordinate system is
right-handed

Screen coordinates
or Normalised Device Coordinates (NDC)

x and y must be in the range
-1 and |

All together

_ 3D |d
(" Screen) _X,'S wor

. vertex
coordinates
Vs

x/w, and p— P . V . M .

yJ/w, must be YA S
between
_ -land | Wq

coordinates

Projection, view and
model matrices

92

Viewing transform: look at

+ Task: find a viewing transform so that the camera centre is at c, is

directed towards I and vector u is the “up” direction

For a left-handed

coordinate system:

R l-c
v:

Il — cl|
R vXu
Y = ——

| X ul|
U=7TXpD

V

L)

change of basis

o O O

v

0 0 -—c
1 0 —Cy
0 1 -—c
0 O 1
translation

Note: In OpenGL, vector v
is pointing away from [
(right-handed coordinate
system). Therefore, the signs
and cross produced must
be updated accordingly

[]
a0
S =

94

Transforming normal vectors

+ Transformation by a nonorthogonal
Scale

matrix does not preserve angles N
1 00

[0 2 0]

\ 0 0 1

<+ Since:

Normal transform]

N-T=0 [/

N'-T'"=(GN)-(MT) =0

Vertex position

Transformed normal
transform
and tangent vector

+ We can find that: ¢ = (M~ 1)T

Derivation shown in the lecture

[FCG 6.2.2/7.2.2]

Scene construction

box arm

+ We will build a robot from basic parts o
+ Body transformation &
1 1
4
Mypoay = Object Nb'2s

coordinates

4+ Arml transformation
Arml

Arm?2
Myrm1 =

+ Arm2 transformation Body

Final scene

Mayrmz =

World \/

coordinates

96
Scene construction

+Body transformation o i
Epoay = scale B]
Tyoay = translate l;g] - rotate(30°) 1 1 f\
Mpoay = TbodayEboay o2

+ Arml transformation
1
T,rm1 = translate l1.75] - rotate(—90°)

Mgyrma = TbodyTarml

Body <
4+ Arm2 transformation
T, rm> = translate [(2)] - rotate(—90°)

Mgrmz = Tho dy TormiTarm2

Scene Graph

+ A scene can be drawn by traversing a
scene graph:

traverse(node, T_parent) {
M =T parent * node.T * node.E
node.draw(M)
for each child {
traverse(child, T_parent * node.T)

[FCG 12.2/12.2]

Tbody Ebody

N

u ght-arml

Tleft-arm 1

n ght-arm2

l Tleft-arm2

i
i

97

Introduction to Computer Graphics

+Background

+ Rendering

+ Graphics pipeline

“+ Rasterisation

+ Graphics hardware and OpenGL
+Human vision and colour & tone mapping

Rasterisation algorithm/(¥)

Set model, view and projection (MVP) transformations

FOR every triangle in the scene
transform its vertices using MVP matrices
IF the triangle is within a view frustum
clip the triangle to the screen border
FOR each fragment in the triangle

compute fragment colour

END IF ;

END FOR ;
END IF ;
END FOR ;

fragment — a candidate
pixel in the triangle

interpolate fragment position and attributes between vertices

IF the fragment is closer to the camera than any pixel drawn so far, update
the screen pixel with the fragment colour

(*) simplified
99

[llumination & shading

Drawing polygons with uniform colours Interpolate colours across polygons
gives poor results

100

Rasterisation

» Efficiently draw (thousands of) triangles
Interpolate vertex attributes inside the triangle

» Homogeneous barycentric

coordinates are used to

, a=0;=0;7y=1
interpolate colours, normals, RGB=[1 0 0]
texture coordinates and other RGB=[? 7 7]

attributes inside the triangle

RGB=[1 0.5 0]
a=0;8=1;7v=0

RGB=[11 0]
a=15=0v=0

I [FCG 2.7/2.9]

Homogenous barycentric coordinates

» Find barycentric coordinates of the
point (X,y)
Given the coordinates of the vertices

Derivation in the lecture

a = fep(X,y) ,8 — fac(x,y)
feb(XaYa) fac(Xp,Yb)

fap (X, y) is the implicit line equation:

far (0, ¥) = Vg —Yp)x + (Xp — X0)Y + XaYVp — XpVa

102

Triangle rasterisation

for y=y,i, to Y., do
for x=x,, t0 X, dO

a = fer (6, ¥)/ feb(Xar Va)
B = fac(6,Y)/ fac(xp, yb)
y=1-a-p
if(e>0and 8 >0andy > 0) then
c=ac, + fcp + yc,
draw pixels (x,y) with colour ¢

Optimisation: the barycentric coordinates will change by the same amount
when moving one pixel right (or one pixel down), regardless of the
position
Precompute increments Aa, A, Ay and use them instead of computing barycentric
coordinates when drawing pixels sequentially

103

Surface normal vector interpolation

for a polygonal model, interpolate normal vector between the vertices
Calculate colour (Phong reflection model) for each pixel
Diffuse component can be either interpolated or computed for each pixel

’ i i ez, (n, &,0,), N
N.B. Phong’s approximation to [Cxi's 310520, (715 81, 51), NA]

specular reflection ignores
(amongst other things) the
effects of glancing incidence
(the Fresnel term)

[(x,"5,"),2,,
(r2:g2’b2)’N2]

[(x3',93'),25,(r5,85,05), N5]

104

Occlusions (hidden surfaces)

Simple case

More difficult cases R

105 [FCG 8.2.3/9.2.3]

Z-Buffer - algorithm

Depth

buffer '

Colour
buffer

» Initialise the depth buffer and image buffer for all pixels

colour(x, y) = Background_colour,
depth(x, y) =z, // position of the far clipping plane

» For every triangle in a scene do
For every fragment (x, y) in this triangle do

Calculate z for current (x, y)

if (z < depth(x, y)) and (z > z,,) then
depth(x, y) = z
colour(x, y) = fragment_colour(x, y)

106

View frustum and Z-buffer

» Z-buffer must store depth with sufficient precision
24 or 32 bit

Range of values mapped to
Integer or float $ i

the Z-Buffer

1.
Often - instead of z

/

Near-clipping plane

A

Far-clipping plane
107

Z-fighting

Introduction to Computer Graphics

Graphics hardware and OpenGL
¢ GPU & APIs

¢ OpenGL Rendering pipeline

¢ GLSL

¢ Textures

+ Raster buffers

108

What is a GPU?

» Graphics Processing Unit

» Like CPU (Central Processing Unit)
but for processing graphics

» Optimised for floating-point
operations on large arrays of data

Vertices, normals, pixels, etc.

109

What does a GPU do

» Performs all low-level tasks & a lot of high-level tasks

Clipping, rasterisation, hidden surface removal, ...

Essentially draws millions of triangles very efficiently
Procedural shading, texturing, animation, simulation, ...
Ray tracing (ray traversal, acceleration data structures)
Video rendering, de- and encoding, ...

Physics engines

» Full programmability at several pipeline stages
fully programmable

but optimized for massively parallel operations

110

What makes GPU so fast?

» 3D rendering can be very efficiently parallelized
Millions of pixels
Thousands of triangles
Many operations executed independently at the same time

» This is why modern GPUs

Contain between hundreds and thousands of SIMD processors

Single Instruction Multiple Data — operate on large arrays of data

>>1000 GB/s memory access
This is much higher bandwidth than CPU

But peak performance can be expected for very specific operations

GPU APIs
(Application Programming Interfaces)

Micrgsoft‘

OpenGL penGL. DirectX DirectX

» Multi-platform » Microsoft Windows / Xbox

» Open standard API » Proprietary API

» Focus on general 3D applications » Focus on games
Open GL driver manages the Application manages resources
resources

» No ray tracing extensions

112

One more API !vu I i(a n ™

» Vulkan — cross platform, open standard
» Low-overhead API for high performance 3D graphics
» Compared to OpenGL / DirectX

Reduces CPU load

Better support of multi-CPU-core architectures
Finer control of GPU

» But
The code for drawing a few primitives can take 1000s line of code
Intended for game engines and code that must be very well optimized

13

A
And one more &

» Metal (Apple iOS8)
low-level, low-overhead 3D GFX and compute shaders API
Support for Apple chips, Intel HD and Iris, AMD, Nvidia
Similar design as modern APIs, such as Vulcan
Swift or Objective-C API
Used mostly on iOS

I 14

GPGPU - general purpose computing

» OpenGL and DirectX are not meant to be used for general purpose
computing
Example: physical simulation, machine learning
» CUDA — Nvidia’s architecture for parallel computing .
C-like programming language NVIDIA

With special API for parallel instructions CUDA

Requires Nvidia GPU

» OpenCL — Similar to CUDA, but open standard & };
Can run on both GPU and some CPUs)
Supported by AMD, Intel and NVidia, Qualcomm, Apple, ...

OpenCL

15

GPU and mobile devices

» OpenGL ES 1.0-3.2 @GL‘ES
Stripped version of OpenGL

Removed functionality that is not strictly necessary on mobile devices

» Devices
iOS: iPhone, iPad
Android phones
PlayStation 3
Nintendo 3DS

and many more

OpenGL ES 2.0 rendering (iOS)

116

WebGL and WebGPU
» WebGL (since ~2007)

JavaScript library for 3D rendering in a web browser
WebGL [.0 - based on OpenGL ES 2.0
WebGL 2.0 — based on OpenGL ES 3.0

Used in 3D JavaScipt libraries
https://threejs.org/,WebXR

» WebGPU (since ~2017)

Provides access to Vulcan, Metal, DirectX 12

Own shading language WGSL (similar to Rust)

117

{ ’ /“ l ‘»‘
'I,V. 1 N
JeNia N o N
L] .‘
- }" - . [LA
-/ 2 el [p

http://zygoteb

OpenGL History

» Proprietary library IRIS GL by SGI » OpenGL 4.0 (2010)
» OpenGL 1.0 (1992) Catching up with Direct3D 1|
» OpenGL 1.2 (1998) » OpenGL 4.5 (2014)
» OpenGL 2.0 (2004) » OpenGL 4.6 (2017)
GLSL

SPIR-V shaders
Non-power-of-two (NPOT) textures

» OpenGL 3.0 (2008)
Major overhaul of the API

Many features from previous versions
depreciated

» OpenGL 3.2 (2009)

Core and Compatibility profiles

Geometry shaders

118

How to learn OpenGL?

» Lectures — algorithms behind OpenGL, general principles
» References

OpenGL Programming Guide: The Official Guide to Learning OpenGL,Version 4.5
with SPIR-V by John Kessenich, Graham Sellers, Dave Shreiner ISBN-10: 0134495497

OpenGL quick reference guide
https://www.opengl.org/documentation/glsl/

Google search: ,,man gl......

119

OpenGL rendering pipeline

OpenGL programming model

» gI* functions that
Create OpenGL objects
Copy data CPU<->GPU
Modify OpenGL state
Enqueue operations
Synchronize CPU & GPU

» C99 library

» Wrappers in most programming
language

121

» Fragment shaders
» Vertex shaders

» and other shaders
» Written in GLSL

Similar to C

From OpenGL 4.6 could be written in
other language and compiled to SPIR-V

OpenGL rendering pipeline

Vertex Vertex Tessellation Tessellation

data shader control shader evaluation shader

N
L . Primitive Geometry

[Rasterlzatlon H Clipping]<—[— }—[<hader J

Vv

Fragment Screen
shader buffer

[Programmable] [S s]
stages

122

OpenGL rendering pipeline

123

Vertex
data

Rasten

Fragi
sha

Vertex Tessellation Tessellation
shader control shader evaluation shader

\

~
\

Primitive Geometry
assembly shader

Processing of vertices, normals,
uv texture coordinates.

J

[

Programmable] [S s]
stages

OpenGL rendering pipeline

Vertex
shader
[Rasterization Clipp

124

Vertex
data

A4

[

Fragment
shader

Tessellation Tessellation
control shader evaluation shader
]

(
|

N = //\1;\)]
.K gometry
[Optional] Create new hader

primitives by tessellating existing
primitives (patches).

—

Scree
buffe

[Programmable] [S s]
stages

OpenGL rendering pipeline

/ [Optional] Operate on tessellated \

geometry. Can create new primitives.

Verte ’ Tessellation
data , evaluation shader

Raster Geometry
shader
\ fur shadow volumes

A4

Fragment Screen
shader buffer

[Programmable] [S s]
stages

125

4)

Organises vertices into
primitives and prepares them for
rendering.

Vertex Vertex ssellation

data shader aluation shader
N

| Rasteriacion || Clpping Jo—]| Frmive | { Geomer |

Vv

Fragment Screen
shader buffer

OpenGL rendering pif

[Programmable] [S s]
stages

126

4 N

Remove or modify vertices so
that they all lie within the
viewport (view frustum).

Vertex Tessellation

data ader evaluation shader

N
L . Primitive Geometry

[Rasterlzatlon]<—[Clipping]<—[— }—[<hader]

Vv

Fragment Screen
shader buffer

OpenGL rende

[Programmable] [S s]
stages

127

OpenGL red

128

/Generates fragments (pixels) to\
be drawn for each primitive.
Interpolates vertex attributes.

Verte

Tessellation]

evaluation shader

[Rasterization

bllation) l
data \\ - /f/ol shader

Clipping]<—[

Primitive
assembly

\

y

[

Fragment Screen
shader buffer

\

Geometry
shader

[

Programmable
stages

] [Fixed stages]

OpenGL rende

Vertex | ~
data

-z

omputes colour per each fragment (pixel). Can Iookup\
colour in the texture. Can modify pixels’ depth value.

[Rasterization

A4

[Fragment

shader

129

Physically accurate
materials

Also used for tone mapping. /

Non-Photorealistic-Rendering
shader

buffer

[Programmable] [el sz]
stages

Example: preparing vertex data for a cube

(0;1,1)]/

(031’0) / 5;
2 3/1.,1,0)
y
Z 4‘
X 07000 17(1,0,0)

130

(1.11)
Primitives (triangles)
o,1,2
6
1,0,1)

Vertex attributes

Ind | Positions | Normals
0 0,0,0 0,0, -1

Geometry objects in OpenGL (OO view)

131

bound VertexArray

GLContext

myVertexArray : VertexArray

0..

e |

VertexArray

1

bound Buffer 0%
Buffer d""’/’/

1

ElementArrayBuffer

ArrayBuffer

vertices : ArrayBuffer

\

indices : ElementArrayBuffer

normals : ArrayBuffer

GLSL - fundamentals

Shaders

» Shaders are small programs executed on a GPU

Executed for each vertex, each pixel (fragment), etc.

» They are written in GLSL (OpenGL Shading Language)

133

Similar to C and Java

Primitive (int, float) and aggregate data types (ivec3, vec3)
Structures and arrays

Arithmetic operations on scalars, vectors and matrices
Flow control: if, switch, for, while

Functions

Example of a vertex shader

#version 330

in vec3 position; Il vertex position in local space

in vec3 normal; Il vertex normal in local space
out vec3 frag_normal; Il fragment normal in world space
uniform mat4 mvp_matrix; /I model-view-projection matrix
void main()

{

// Typicaly normal is transformed by the model matrix
/I Since the model matrix is identity in our case, we do not modify normals

frag_normal = normal;

/I The position is projected to the screen coordinates using mvp_matrix

gl_Position = mvp_matrix * vec4(position, |.0);

Why is this piece
of code needed?

134

Data types

» Basic types
float, double, int, uint, bool
» Aggregate types
float: vec2, vec3, vec4; mat2, mat3, mat4
double: dvec?2, dvec3, dvec4; dmat2, dmat3, dmat4
int: ivec2, ivec3, ivec4
uint: uvec2, uvec3, uvec4

bool: bvec?, bvec3, bvec4

vec3V =vec3(1.0,2.0,3.0); mat3 M = mat3(1.0, 2.0, 3.0,
4.0,5.0, 6.0,
7.0,8.0,9.0);

135

Indexing components in aggregate types

» Subscripts: rgba, xyzw, stpq (work exactly the same)
float red = color.r;
float v_y = velocity.y;
but also
float red = color.Xx;
float v_y = velocity.g;

» With 0-base index:
float red = color[0];
float m22 = M[1][1]; /I second row and column
/] of matrix M

136

Swizzling

You can select the elements of the aggregate type:
vec4 rgba color(1.0, 1.0, 0.0, 1.0);

vec3 rgb_color = rgba _color.rgb;

vec3 bgr color = rgba color.bgr;

vec3 grayscale = rgba _color.ggg;

137

Arrays

» Similar to C
float lut[5] = float[5](1.0, 1.42, 1.73, 2.0, 2.23);

» Size can be checked with “length()”
for(int 1 = @; i < lut.length(); i++) {
lut[i] *= 2;

138

Storage qualifiers

const — read-only, fixed at compile time
in —input to the shader
out — output from the shader

vV Vv Vv Vv

uniform — parameter passed from the application (Java), constant for the
drawn geometry

» buffer — GPU memory buffer (allocated by the application), both read and
write access

» shared — shared with a local work group (compute shaders only)

» Example: const float pi=3.14;

139

Shader inputs and outputs

140

glGetAttribLocation

glBindBuffer
glVertexAttribPointer

glEnableVertexAttribArray

r

ArrayBuffer (normals)

L

ArrayBuffer (vertices)

J

h

in vec3 position

out vec3
frag normal

Vertex

shader

in vec3 normal

Vertex attribute
interpolation

out vec3 colour

Fragment
shader

in vec3 frag_normal

[FrameBuffer (pixels) J<—

[optional]
glBindFragDatal.ocation
or

layout(location=?) in GLSL

GLSL Operators

» Arithmetic: + - ++ --
Multiplication:

vec3 * vec3 - element-wise

mat4 * vec4 — matrix multiplication (with a column vector)
» Bitwise (integer): <<, >>, &, |, *
» Logical (bool): &&, ||, ~*

» Assignment:
float a=0;
a += 2.0; // Equivalent to a = a + 2.0

» See the quick reference guide at:

141

GLSL Math

» Trigonometric:

radians(deg), degrees(rad), sin, cos, tan, asin, acos, atan, sinh, cosh,
tanh, asinh, acosh, atanh

» Exponential:

pow, exp, log, exp2, log2, sqrt, inversesqgrt
» Common functions:

abs, round, floor, ceil, min, max, clamp, ..

» Graphics
reflect, refract, inversesqgrt

» And many more

» See the quick reference guide at:

142

GLSL flow control

if(bool) {
// true

} else {
// false

switch(int_value) {

case n:
// statements
break;

case m:
// statements
break;

default:

143

for(int i = 0; i<10; i++) {

while(n < 10) {

do {

} while (n < 10)

Simple OpenGL application - flow

[Initialize OpenGL]_<

A4

Set up inputs

A4

Draw a frame

Vv

—

Free resources

144

4

4

Initialize rendering window & OpenGL context

Send the geometry (vertices, triangles, normals) to the
GPU

Load and compile Shaders

Clear the screen buffer
Set the model-view-projection matrix
Render geometry

Flip the screen buffers

Rendering geometry

» To render a single object with OpenGL
|.glUseProgram() — to activate vertex & fragment shaders

2.glVertexAttribPointer() — to indicate which Buffers with vertices and
normals should be input to the vertex shader

3.glUniform*() - to set uniforms (parameters of the fragment/vertex shader)
4.g1BindTexture() - to bind the texture

5.glBindVertexArray() - to bind the vertex array

6.glDrawElements() — to queue drawing the geometry

7. Unbind all objects

» OpenGL API is designed around the idea of a state-machine — set the state & queue
drawing command

|45

Textures

(Most important) OpenGL texture types

0 S
1D LI 11T
op °

[
1‘7
3Do"
t
1" _O/P'

147

CUBE_MAP

Texture can have any size but the sizes that
are powers of two (POT, 2") may give better
performance.

Used for environment
mapping

Texture mapping

» |. Define your texture function (image)
T(u,v)

» (u,v) are texture coordinates

148

Texture mapping

» 2. Define the correspondence between
the vertices on the 3D object and the
texture coordinates

149

Texture mapping

» 3.When rendering, for every surface point compute texture coordinates. Use
the texture function to get texture value. Use as colour or reflectance.

150

Sampling

P UNIVERSITY C
V| |C AM BRID G

RATORY

T or 1 Texture
|

Up-sampling
More pixels than texels
Values need to be interpolated

Down-sampling
Fewer pixels than texels
Values need to be averaged
over an area of the texture
(usually using a mipmap)

151

Nearest neighbor vs.
bilinear interpolation (upsampling)

 —0 0 90

$——&

A‘ ’B 'i Texel |
X

‘9o

*—0 ©°

Nearest neighbour

Pick the nearest

texel: D

152

Bilinear

S —& —&—6
S
EOAQX B
@]
S o o loe
()]
<
o—0 90 9

Interpolate first along
x-axis between AB
and CD, then along
y-axis between the
interpolated points.

Texture mapping examples

nearest-
neighbour

bilinear

Up-sampling

if one pixel in the texture map covers

nearest- e e e
neighbour sevelfa. pixels in the final image, you
get visible artefacts
blocky

u artefacts : -
only practical way to prevent this is

to ensure that texture map is of
sufficiently high resolution that it does

bilinear not happen

blurry
artefacts

154

Down-sampling

» if the pixel covers quite a large area of the
texture, then it will be necessary to average the
texture across that area, not just take a sample

in the middle of the area

155

Mipmap

4

Textures are often stored at multiple resolutions as a
mipmap
Each level of the pyramid is half the size of the lower level

Mipmap resolution is always power-of-two (1024, 512,
256, 128, ..)

It provides pre-filtered texture (area-averaged) when
screen pixels are larger than the full resolution texels

Mipmap requires just an additional 1/3 of the original
texture size to store

OpenGL can generate a mipmap with
glGenerateMipmap(GL_TEXTURE_2D)

156

This image is an illustration showing
only 1/3 increase in storeage.
Mipmaps are stored differently in the
GPU memory.

Down-sampling

without area averaging with area averaging

711 00

222N »
ﬁ!’ 7!_1“‘.' R X 3 :

157

Texture tiling

» Repetitive patterns can be represented as texture tiles.

» The texture folds over, so that
» T(u=1.1,v=0) =T(u=0.1, v=0)

Multi-surface UV maps

» A single texture is often used for multiple surfaces and objects

Example from: http://awshub.com/blog/blog/2011/11/01/hi-poly-vs-
low-poly/

159

Bump mapping and normal mapping

From Computer Desktop Encyclopedia

» Special kind of texture that modifies © 2001 eeryaph Compaer Sysems
surface normal

Surface normal is a vector that is
perpendicular to a surface

» The surface is still flat but shading
appears as on an uneven surface

» Easily done in fragment shaders

160

Displacement mapping

» Texture that modifies surface

» Better results than bump mapping since
the surface is not flat

» Requires geometry shaders

161

Environment mapping

» To show environment reflected by
an object

Assumption: infinite distance to the
source of reflection

162

Environment mapping

» Environment cube

» Each face captures environment in
that direction

face 2

face 6

face 4

163

CUBE_MAP

face 2

A

face 5

-
face 3

face 1

face 4

Texture objects in OpenGL

|64

Stores texture data AN

T
]
i

Hardware unit for BN
reading texture in
fragment shader

L]

Texture b
MipMap - mm_ﬂl_ter :.|r_1t Texturelnit
- ma_filter ; int B> R
-wrap_s: int | bound to 0+ = HiEel
-wrap_t:int
Texture1D Texture2D Texture3D Sampler
- width : int - width © int - width © int Cen
- height : int - height : int Sl '_”.“
= - mag_filter ; int
- depth : int s
- wrap_s :int
-wrap_t:int

SamplerUnit

F
-
s

2

Defines how the texels are
looked up in Textures

bound ta br - index :int
l

Hardware units that
performs sampling

Texture parameters

//Setup filtering, i.e. how OpenGL will interpolate the pixels when scaling up or down
glTexParameteri(GL_TEXTURE_ 2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN FILTER, GL_LINEAR MIPMAP_ NEAREST);

How to

interpolate in
2D

//Setup wrap mode, i.e. how OpenGL will handle pixels outside of the expected range
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO EDGE);

How to interpolate
between mipmap
levels

165

Raster buffers (colour, depth, stencil)

Render buffers in OpenGL

Colour:

In stereo:

Depth:

Stencil:

167

GL_FRONT

Four components:
GL BACK RGBA

Typically 8 bits per

GL_FRONT_LEFT

component
GL _FRONT_ RIGHT

GL_BACK_LEFT

GL_BACK_RIGHT

DEPTH

STENCIL

To resolve occlusions (see Z-buffer algorithm)
Single component, usually >8 bits

To block rendering selected pixels
Single component, usually 8 bits.

Double buffering

» To avoid flicker, tearing

» Use two buffers (rasters):
Front buffer — what is shown on the screen
Back buffer — not shown, GPU draws into that buffer

» When drawing is finished, swap front- and back-buffers

Front buffer — display | ‘ time

Back buffer - draw M
B st puffer
| 2nd puffer

168

Triple buffering

» Do not wait for swapping to start drawing the next frame
Double buffering
Front buffer — display time
Back buffer - draw i l ! i I ! i

Get rid of these gaps

Triple buffering
Front buffer — display time
Back buffer - draw H—)
. B 1st buffer
» Shortcomings L ond puffer
More memory needed I 3¢ buffer

Higher delay between drawing and displaying a frame

169

Vertical Synchronization: V-Sync

» Pixels are copied from colour buffer to monitor row-by-row

» If front & back buffer are swapped during this process:
Upper part of the screen contains previous frame
Lower part of the screen contains current frame

Result: tearing artefact

» Solution:When V-Sync is enabled
glwfSwapInterval(1l);

glSwapBuffers() waits until the last =

Line 2

Line 3

row of pixels is copied to the display. _";;’T‘—'_'_"';'—

Lk e

170

No V-Sync vs. V-Sync

171

GPU

Display

No V-Sync

GPU

Display

V-Sync

Frame 1 Frame 2 Frame 3 Frame 4
\ Y 1
Scanl Scan 2 Scan 3 Scan 4
Tear Tear Tear Tear \
32 48 /
Time [ms]
L Lag
Frame 1 Frame 2 Frame 3
Scanl Scan 2 Scan 3 Scan 4
Stutter (same frgme displayed)\

32

Time [ms]

48

/

FreeSync (AMD) & G-Sync (Nvidia)
» Adaptive sync or Variable Refresh Rate (VRR)

Graphics card controls timing of the frames on the display
Can save power for 30fps video of when the screen is static
Can reduce lag for real-time graphics

GPU Frame 1 Frame 2 Frame 3 Frame 4

Display Scan 1l Scan 2 Scan 3

0 16 32 48
Time [ms]

172

N4

Introduction to Computer Graphics

Background

Rendering

Graphics pipeline

Rasterisation

Graphics hardware and OpenGL

Human vision and colour,
tone mapping

173

The workings of the human visual system

» to understand the requirements of displays (resolution, quantisation and
colour) we need to know how the human eye works...

The lens of the eye forms
an image of the world on
the retina: the back
surface of the eye

Inverted vision
experiment

Structure of the human eye

Cornea Retina

gy

Iris
\

Pupil

Macula

Le ns Vitreous body

See Animagraffs web page for an animated visualization
https://animagraffs.com/human-eye/

the retina is an array of light
detection cells

the fovea is the high resolution
area of the retina

the optic nerve takes signals
from the retina to the visual
cortex in the brain

cornea and lens focus the light
on the retina

pupil shrinks and expands to
control the amount of light

Retina, cones and rods

Horizontal cell

Ganglion
cell

» 2 classes of photoreceptors

» Cones are responsible for day-
light vision and colour
perception

Three types of cones: sensitive
to short, medium and long
wavelengths

» Rods are responsible for night
vison

Fovea, distribution of photoreceptors

» the fovea is a densely packed region in the centre of the macula
» contains the highest density of cones
» provides the highest resolution vision

receptors
in 1000/mm?2

Macula & fovea

150 4
Optic disc (blind spot)
100 4
rods
50 -
; —— :
¥ T T) T F T ¥) L] L] T L L] J
- 120 million S 60 ¢0 20 0\ 20 40 60 &0
rod cells ' 7
s blind spot fovea
6 million < angle [degree]
cone cells nose

Electromagnetic spectrum
» Visible light

178

Electromagnetic waves of wavelength in the
range 380nm to 730nm

Earth’s atmosphere lets through a lot of
light in this wavelength band

Higher in energy than thermal infrared, so
heat does not interfere with vision

RS

D

o

[

&
£ £
S =
ISl
QS
w o

1000 MHz —
E UHF

500 MHz -
10 VHF
7-13
100 MHz—_ FM
71 VHF
1 26

50 MHz +

N <
< S
) 9
g =
L
Gamma-rays [~ 0.1A
1019
1A
107 0.1 nm
X-rays L 4 i
1017_]
— 10n
10"%_|
Ultraviolet
— 400 nm
1015_|
| Visible 1000 nm
Near IR 1um
1014_| ¥
Infra-red — 10
1013
Thermal IR — 100 um
10"2_|
Far IR _{1000 um
10m_| 1 mm
Microwaves [~ 1cm
10| -
Radar
— 10 cm
10°
—1m
10% _Radio, TV
10m
107 _|
— 100 m
106 _| AM
— 1000 m
Long-waves

400 nm

500 nm

600 nm

700 nm

Colour perception and digital colour processing

Colour perception in

physical world a

LMSR
Digital colour a«
' - Colour
processing 7 J r . ,
g R, G, B, RGB R'G'B'
1 A o)+ t «
v CD
LMSR

179

Reflectance

» Most of the light we see is reflected from objects
» These objects absorb a certain part of the light spectrum

Spectral reflectance of ceramic tiles

180

o8

REFLECTANCE
(=]
kS

©
~

02

1 | 1

WAVELENGTH A (am)

REFLECTANCE

(=]
-

1.0 ey — —— T

08} Wh)’ not =
red? ‘

06~ ﬁ

02

WAVELENGTH X (nm)

Reflected light
L(A) =I(A)R(A)

» Reflected light = illumination X reflectance

CIE D65

000 p—— —

350 450 550 650 750

1.00
B T e e e —————
0.80 -
5
3 0.60
o o8
(0]
2 0.40 -
Ko} X,y =(0.3128, 0.3290)
T 0.20 CCT = 6504 K % 06
CRI =100 i

(=]
-

Wavelength (nm)

02

The same object may appear to have = :
different colour under different WAVELENGTH X (ae)
illumination.

181

Colour vision

» Cones are the photreceptors
responsible for color vision

Only daylight, we see no colors when
there is not enough light

» Three types of cones

S — sensitive to short wavelengths /A

400 450 500 550 600 650 700

M — sensitive to wavelengths
Sensitivity curves — probability that a

L — sensitive to long wavelengths photon of that wavelengths will be

absorbed by a photoreceptor. S,M
and L curves are normalized in this
plot.

182

Perceived light

» cone response = sum(sensitivity X reflected light)

GaN or InGaN LED

400 450 500 550 600 650 700

Wavelength (nanometers)

Although there is an infinite number of Formally
wavelengths, we have only three 730
photoreceptor types to sense R, = J.SS (A)-L(A)dA
differences between light spectra 130

183 Index S for S-cones

Metamers

» Even if two light spectra are different, they may appear to have the same
colour

» The light spectra that appear to have the same colour are called metamers
» Example:

=[Ly, My, 4]

=[Ly, My, S)

PL
a_

400

184

Practical application of metamerism

» Displays do not emit the same light spectra as real-world objects

» Yet, the colours on a display look almost identical

On the display

400 700

LA BY, |
* N

[T

- ‘ ' 400 700
In real world

185

Tristimulus Colour Representation

» Observation “
Any colour can be matched using [NG
. . ? o 645 nm
three linear independent reference O \ S0
test source O 526 nm
colours 444 nm
May require “negative” contribution to

test colour vaserver
Matching curves describe the value for t

04 — Bl Fﬂ,
matching mono-chromatic spectral
colours of equal intensity 252
With respect to a certain set of primary 3
=
colours g
.
E 7 g =
02 4c|)c;r 5(1)0 LDeclm '\7cl)o A

Wavelength, A (nm)

186

Standard Colour Space CIE-XYZ
» CIE Experiments [Guild and Wright, 193 1]

Colour matching experiments

Group ~12 people with normal colour vision

2 degree visual field (fovea only)

Basis for CIE XYZ 1931 colour matching functions

» CIE 2006 XYZ

Derived from LMS color matching functions by Stockman & Sharpe

S-cone response differs the most from CIE 1931

» CIE-XYZ Colour Space

Goals
Abstract from concrete primaries used in experiment
All matching functions are positive

Primary ,,Y” is roughly proportionally to light intensity (luminance)

187

Standard Colour Space CIE-XYZ
» Standardised imaginary primaries CIE XYZ (1931)

Could match all physically realizable colour stimuli

»

Cone sensitivity curves can be obtained by a linear
transformation of C|IE XYZ

wWomMwhrUuION®O

-]

eNeoNoNoloNoNoNe]

“NWPAPrOTOON®

L T T T T T T T TTTT1TT1T1TT1TT1
x|

O = = =

Value

3F Z=0.000L"+ -0.000 M + 1.9359

Z

|
ok 400 500 600 700
Wavelength, 4 = (nm)

Sensitivity
o

400 450 500 550 600 650 700
Wavelength [nm]
188

CIE chromaticity diagram

» chromaticity values are defined in terms of x, y, z

X Y /
X = 9 y = 9 zZ = x+y+Z:1
X+Y+Z7Z X+Y+Z7Z X+Y+7

ignores luminance

can be plotted as a 2D function

pure colours (single wavelength)
lie along the outer curve

all other colours are a mix of
pure colours and hence lie
inside the curve

points outside the curve do not
exist as colours

189

Achromatic/chromatic vision mechanisms
7_Light spectra

1.5
1 '
0.5
[}
400 500 600 700

S M L

190

Achromatic/chromatic vision mechanisms
ﬂLight spectra

1.5
1 '
0.5
[}
400 500 600 700

A

M

I
100 450 500 550 600 650 700

Sensitivity of

Luminance does the achromatic
NOT explain the mechanism
brightness of light!
[Koenderink et al.
Vision Research .(_)D e
2016] Luminance wo w0 w0 70

achromatic

191

Achromatic/chromatic vision mechanisms
ﬂLight spectra

S M L

400 450 500 550 600 650 700

BB Bl
Green-red Luminance

chromatic achromatic

192

Achromatic/chromatic vision mechanisms
ﬂLight spectra

Violet-yellow Green-red Luminance

chromatic chromatic achromatic

193

Achromatic/chromatic vision mechanisms
ﬂLight spectra

0.8/

2 0.6

D g4l

Violet-yellow Green-red Luminance

0.2

0 0 . . .
400 o PR = chromatic chromatic achromatic

194

Luminance

» Luminance — measure of light weighted by the response of the achromatic
mechanism. Units: cd/m? (ISO) or nit

700 .
Luminance — Ly = j kL)Y (D)dA k= 683.002
% \
Light spectrum (radiance) Luminous efficiency function
(weighting)
350 400 4;0 500 A 800 | 1 |
Wavelength [nm] 400 500 600 700

195

Visible vs. displayable colours

» All physically possible and visible colours form
a solid in XYZ space

» Each display device can reproduce a subspace
of that space

» A chromacity diagram is a slice taken from a
3D solid in XYZ space

» Colour Gamut — the solid in a colour space
Usually defined in XYZ to be device-independent

196

o
oQ
~

2durUIWN| 30|

7

Standard vs. High Dynamic Range

>

HDR cameras/formats/displays attempt
capture/represent/reproduce (almost) all visible
colours
They represent scene colours and therefore we often
call this representation scene-referred
SDR cameras/formats/devices attempt to
capture/represent/reproduce only colours of a
standard sRGB colour gamut, mimicking the
capabilities of CRTs monitors

They represent display colours and therefore we often
call this representation display-referred

197

Visible
color
gamut

sRGp
gamyg

o
oQ
~

2durUIWN| 20|

7

From rendering to display

Linear colours Display-encoded colours
floating point, e.g., 0.005 to 100000 int, e.g., 0-255
[\ —

Scene-referred colours Display-referred colours

high dynamic range dynamic range of the display

| | l '

7 h mﬁﬂrﬂ‘” H H‘ H H ” H H H hﬂﬂﬂ‘ﬁ‘vﬂm rrrerrrrrd] _ ;r/
Physically-based Tone mapping Display-encoding Display

rendering Gamma
OETF -

Opto-Electrical
Transfer Function

198

Perception

Display encoding (EOTF) for SDR: gamma correction

» Gamma correction is often used to encode luminance or tri-stimulus color
values (RGB) in imaging systems (displays, printers, cameras, etc.)

2

/
- Gamma 08| |
G
o (usually =2.2)
" 0.6}
_ 14 " ol
VO ut — d Vln .
0.2t L
(relative) Luminance Luma R M TR T 08 1
Physical signal Digital signal (0-1) Vin

1 Colour: the same equation

y applied to red, green and blue
Inverse: Vi, = (—+ Vot colour channels.
a

199

Why is gamma needed?

» Gamma-corrected/display-encoded pixel values give a scale of
brightness levels that is approximately perceptually uniform

» At least |12 bits (instead of 8) would be needed to encode
each color channel without gamma correction

» And accidentally it was also the response of the CRT gun

200

Luminance

06

07

08

0.9

(ewn)]) enjeA |jexid pepoous-Ae|dsi(

Linear and display-encoded colour spaces

Linear colour space Display-encoded colour space

& *»| ISP pipeline + tone mapping >

RAW image JPEG image

AX > Tone mapping + OETF .

HDR image SDR image

201

Linear and display-encoded colour spaces

Linear colour space Display-encoded colour space

Values that drive displays
Physical and optical

modelling File formats

iSsi Most of the datasets
Floating point values Transmission

Perceptually non-uniform Stored as integers
(e.g., 8 bits per colour channel)

Models the mixture of lights — (approx.) perceptually uniform

Inverse Gamma (y) “pixel values” 0-255 as

Linearly related to most commonly known
radiance [W sr’ m?2] and _ OETF .
luminance [cd m2] Gamma (1/y) Grayscale is called luma

(not luminance)

202

Luma - gray-scale pixel value

» Luma - pixel brightness in gamma corrected units
L' =0.2126R" + 0.7152G" + 0.0722B’

R',G" and B’ are gamma-corrected colour values
Prime symbol denotes gamma corrected
Used in image/video coding

» Note that relative luminance if often approximated with
L = 0.2126R + 0.7152G + 0.0722B = 0.2126(R")Y +0.7152(G")Y +0.0722(B’)¥

» R,G,and B are linear colour values

» Luma and luminace are different quantities despite similar formulas

203

Standards for display encoding

Standard Dynamic Range ITU-R 709 2.2 gamma / sSRGB 8to |0
High Dynamic Range ITU-R 2020 ITU-R 2100 (PQ/HLG) 10 to 12

Electro-Optical Transfer Function
How to efficiently encode each primary

Colour space
What is the colour of “pure” red,

green and blue colour
0.9
—&—[TU-R BT.709
0.8l & —&—ITU-R BT.2020 g
s i SDR: Gamma 2.2 |
s sl SDR: sRGB |
, . HDR: PQ |
0.6 B |
m
06
.. 0.5 2 [
= o A
O 0.4 B 04t l
e [
(0 |
0.3 o | e |
0.2 __.——'_"__',__:'-_'—-'_":‘_ﬂ_ﬂ-‘-—‘:':I i : I i
- 0.01 0.1 1 10 100 1000 10000
Luminance [cd/m?] / Radiance [W sr'! mZ]

204

0.8

How to transform between RGB colour spaces (SDR
and HDR)?

display-encoded linear linear display-encoded
R'G’B’ — RGB RGB — R'G’B’
sRGB | ITU-R 709 ITU-R 2020 |[+— | PQ-encoded

| xyz |~

\ J

Device HDR

SDR .
-independent
» From ITU-R 709 RGB to XYZ:
X 0.4124 0.3576 0.1805 R
Y|=10.2126 0.7152 0.0722 |G
Z 0.0193 0.1192 0.95051g709t0xyz LBlRr709
Relative XYZ Relative XYZ Relative XYZ Relative RGB
of the red of the green of the blue (0-1 in the

primary primary primary R709 space

205

How to transform between
RGB colour spaces?

» From ITU-R 709 RGB to ITU-R 2020 RGB:

R R

G = Mxvyztor2020 * Mr709toxyz * |G

B R2020 B R709
» From ITU-R 2020 RGB to ITU-R 709 RGB:

R R

G = Mxvyztor709 * Mr2020t0xvz * |G

Blgr709 Blr2020
» Where:

0.4124 0.3576 0.1805
Mg709toxyz = |0.2126 0.7152 0.0722| and Myyztor709 = Mg7ootoxyz
0.0193 0.1192 0.9505
0.6370 0.1446 0.1689
Mgoo20toxyz = [0.2627 0.6780 0.0593 and Mxyztor2020 = MRr2020t0xv2
0.0000 0.0281 1.0610

206

Exercise: Map colour to a display
» We have:

Spectrum of the colour we want to reproduce: L (Nx| vector)
XYZ sensitivities: Syyz (Nx3 matrix)
Spectra of the RGB primaries: Prgp (Nx3 matrix)
Display gamma:y = 2.2
» We need to find display-encoded R’G’B’ colour values
Step |: Find XYZ of the colour
X v ZI"=S%,L

Step 2: Find a linear combination of RGB primaries

S;YZ Pree = Mpgp-xyz
Step 3: Convert and display-encode linear colour values

[R G Bl" =Mpgpoxyz [X Y ZI”
[R" G¢' B'|=[RrYY gi/v pBl/v]

207

To obtain a
metameric match,
XYZ of the light
emitted from the

display and the

XYZ of the
spectrum L much

be the same

Representing colour

» We need a mechanism which allows us to represent colour in the computer
by some set of humbers
A) preferably a small set of numbers which can be quantised to a fairly small
number of bits each
Display-encoded RGB, sRGB
B) a set of numbers that are easy to interpret
Munsell’s artists’ scheme

HSV, HLS

C) a set of numbers in a 3D space so that the (Euclidean) distance in that space
corresponds to approximately perceptually uniform colour differences
CIE Lab, CIE Luv

208

RGB spaces

» Most display devices that output light mix red, green and blue lights to make
colour

televisions, CRT monitors, LCD screens
» RGB colour space

Can be linear (RGB) or display-encoded (R'G’B’)

Can be scene-referred (HDR) or display-referred (SDR)
» There are multiple RGB colour spaces

ITU-R 709 (sRGB), ITU-R 2020, Adobe RGB, DCI-P3

Each using different primary colours

And different OETFs (gamma, PQ, etc.)
» Nominally, RGB space is a cube

209

RGB 1in CIE XYZ space

» Linear RGB colour values can be
transformed into CIE XYZ
by matrix multiplication

because it is a rigid transformation
the colour gamut in CIE XYZ is
a rotate and skewed cube

» Transformation into Yxy
is non-linear (non-rigid)

colour gamut is more complicated

210

RGB gamut in Yxy
colour space

RGB gamut in

XYZ colour space

Y

e
n

e
b

=
w

o
N

e
o

CMY space

» printers make colour by mixing coloured inks
» the important difference between inks (CMY) and lights (RGB) is that, while
lights emit light, inks absorb light
cyan absorbs red, reflects blue and green
magenta absorbs green, reflects red and blue
yellow absorbs blue, reflects green and red

» CMY is, at its simplest, the inverse of RGB

» CMY space is nominally a cube

211

CMYK space

:
M

C+M+Y+K

» in real printing we use black (key) as well as
CMY

» why use black?
inks are not perfect absorbers
mixing C + M + Y gives a muddy grey, not black

lots of text is printed in black: trying to align C,
M and Y perfectly for black text would be a
nightmare

212

Munsell’s colour classification system

» three axes

hue » the dominant colour

value » bright colours/dark colours

chroma > vivid colours/dull colours e

can represent this as a 3D graph

213

Munsell’s colour classification system

» any two adjacent colours are a standard “perceptual” distance apart
worked out by testing it on people
a highly irregular space

e.g. vivid yellow is much brighter than vivid blue

white 5Y 5PB

18EEEAD il
INRNERENERNEEEN
HERNNRENERNEREED
INRNNRENNRNNEEN
INRNNRNNREEEN
INRNNREEED
INNRNEE

value

o N ¢ 20

black
invented by Albert H. Munsell, an American artist, in 1905 in an 20 M6 M2 /8 4 O 4 8 M2 M6 120

attempt to systematically classify colours chroma

214

Colour spaces for user-interfaces

» RGB and CMY are based on the physical devices which produce the coloured
output

» RGB and CMY are difficult for humans to use for selecting colours
» Munsell’s colour system is much more intuitive:
hue — what is the principal colour?

value — how light or dark is it?

chroma — how vivid or dull is it?

» computer interface designers have developed basic transformations of RGB
which resemble Munsell’s human-friendly system

215

HSV: hue saturation value

» three axes, as with Munsell

hue and value have same meaning

the term “saturation” replaces the term
“chroma”

+ designed by Alvy Ray Smith in 1978

216

HLS: hue lightness saturation

a simple variation of HSV

+ hue and saturation have same meaning
+ the term “lightness” replaces the term “value”

designed to address the complaint that SV has all
pure colours having the same lightness/value as white

Cyan &

ssaujy |

designed by Metrick in 1979

217

Perceptually uniformity

» MacAdam ellipses & visually indistinguishable colours

530 nm CIE 1931 x. y chromaticity diagram

i 0.6
L 510n
2 deg : 2 GO0
e > 610620
500nm 640 680n

0.7 050
‘E 0.6 490nm
2 0.4
g 0.5

v

£ 03
= 04
g
2
-:‘I‘ 03 20 nm 0.2
- 650 nm al | = 'y

490_ 970 CIE 19?6- n:l.

0.2 0.1 chromaticity

diagram
0-1 380 nm -
0.0 L | |
0.0 470 nma_# 0.0 0.1 0.2 0.3 0.4 0.5 0.6
e i O Y S S N ' W A A u
0.0 0.1 / 0.2 0.3 0.4 0.5 0.6 0.7 0.8
380nm . _ chromaticity coordinate
In CIE xy chromatic coordinates In CIE u’v’ chromatic coordinates

218

CIE L'u’v: and u’v’ “

» Approximately perceptually uniform w
» U’V chromacity .
r_ 4X _ 4x _9;2"
YEXI15Y 482 2 2z +i2y+3 s
r 9Y B 9y
T X+15v+3Z 2 —2r+12y+3
» CIE LUV
4 ‘2_5} 3 i 3
Lightness L I = (3) Y,{Ym Yf{Yn < (29)3
116(Y/Y,)"* — 16, Y/Y. > (3)

® * = L |

(Chromacity 'u‘ - ISL* (u" un) Colours less

| coordinates /¥ = 13L7 - (v — vn) distinguishable
when dark

» Hue and chroma

Civ = /(") + (v")?

hyy = atan2(v*,u"),

219

CIE L'a™d” colour space

» Another approximately perceptually
uniform colour space

L* =116f (%) — 16 Trichromatic \
“X v values of the
a* = 500 (f (E) - F (?n white point, e.g.
N Y 7 Xn = 95.047,
b* = 200 (f (?n) —uf (Z_n)) Y, = 100.000,
Z, = 108.883 J
£0) vt if ¢t > &
— i 4 4 A
o g otherwise
6 3
= ﬁ X L
L\ <
» Chroma and hue (=Lt &

C* = +/a*? +b*2, h° =arctan(z—*)

Adobe RGB
gamut in CIELAB
space, top view

220

Lab space

» this visualization shows those colours
in Lab space which a human can
perceive

» again we see that human perception of
colour is not uniform

perception of colour diminishes at the
white and black ends of the L axis

the maximum perceivable chroma differs
for different hues

221

Recap: Linear and display-encoded colour

» Linear colour spaces
Examples: CIE XYZ, LMS cone responses, linear RGB

Typically floating point numbers
Directly related to the measurements of light (radiance and luminance)

Perceptually non-uniform
Transformation between linear colour spaces can be expressed as a matrix multiplication

» Display-encoded and non-linear colour spaces
Examples: display-encoded (gamma-corrected, gamma-encoded) RGB, HVS, HLS, PQ-encoded RGB

Typically integers, 8-12 bits per colour channel
Intended for efficient encoding, easier interpretation of colour, perceptual uniformity

222

Colour - references

» Chapters ,,Light” and ,,Colour” in
Shirley, P. & Marschner, S., Fundamentals of Computer Graphics

» Textbook on colour appearance
Fairchild, M. D. (2005). Color Appearance Models (second.). John Wiley & Sons.

223

Tone-mapping problem

Moonless Sky Full Moon Sun
-5 2 3 2 9 2
310 cd/m 610 cd/m 210 cd/m
YT T T 1T T T 1T 1T T T T_ T 1.1 1.T 1>
-6 -4 10
10 10 0.01 1 100 10 10 10 10

luminance range [cd/m2]

(&> | | simultaneously
! | adapted

conventional display

Why do we need tone mapping?

To reduce dynamic range

To customize the look (colour grading)

To simulate human vision (for example night vision)

To simulate a camera (for example motion blur)

To adapt displayed images to a display and viewing conditions
To make rendered images look more realistic

v Vv Vv Vv Vv Vv ©9

To map from scene- to display-referred colours

» Different tone mapping operators achieve different combination of these goals

225

From scene- to display-referred colours

» The primary purpose of tone mapping is to transform an image from scene-
referred to display-referred colours

10000

HDR display maximum luminance =
.'.',.-"'...--
1000 ¢ rd
-
,‘f/
EU e
LJd - . P ¥
SDR display maximyim luminance
5 100} Pax i 2. i A ——
= i e
= o
= //' >
=
m 10 F ﬂ{{__.«/
3 d
S P
o o
E 1 ,.f"/ // g 3
b ~ SDR display minimum luminance
o
o
01f
,// HDR display minimum [uminance
i i | |
0.0001 0.01 1 100 10000 1000000

log scene luminance

226

Tone mapping and display encoding

» Tone mapping is often combined with display encoding

» Display encoding can model the display and account for

227

scene-referred,

linear, float

display-referred,
linear, float

Rendered HDR

image

A4

Tone mapping

\

Display encoding
(inverse display
model)

display-referred,
display-encoded, int

/| SDR raster

buffer

Different for SDR
and HDR displays

Display contrast (dynamic range), brightness and ambient light levels

Basic tone-mapping and display coding

» The simplest form of tone-mapping is the exposure/brightness adjustment:

R, = RS Scene-referred
qd=

Display-referred relative Lwhite

red value [0;1] Scene-referred

luminance of white
R for red, the same for green and blue

No contrast compression, only for a moderate dynamic range

» The simplest form of display coding is the “gamma”
1

Prime (‘) denotes a R' = (Rd)?

gamma-corrected value Typically y=2.2

For SDR displays only

228

sRGB textures and display coding

» OpenGL offers sRGB textures to automate RGB to/from sRGB conversion
sRGB textures store data in gamma-corrected space

sRGB colour values are converted to (linear) RGB colour values on texture look-up
(and filtering)

Inverse display coding

RGB to sRGB conversion when writing to sRGB texture
with glEnable(GL_FRAMEBUFFER_SRGB)

Forward display coding

229

Tone-curve

230

Image histogram

log displayed luminance

log input luminance factor (HDR image)

The ,,best” tone-
mapping is the
one which does
not do anything,
i.e. slope of the
tone-mapping
curves is equal
to |.

Tone-curve

231

log displayed luminance

Display peak luminance

|
ﬂi Display black level

-1 o 1 = 3 4

log input luminance factor (HDR image)

But in practice
contrast (slope)
must be limited
due to display
limitations.

Tone-curve

log displayed luminance

232

Display peak luminance

Display black level

log input luminance factor (HDR image)

Global tone-
mapping is a
compromise
between clipping
and contrast
compression.

Sigmoidal tone-curves

» Very common in

A D
i 2.0
digital cameras Shoulder __max

» Mimic the response of analog film 1.5 Straight-line

(log response)
» Analog film has been engineered over many 1.0
years to produce good tone-reproduction 05

Density

» Fast to compute 0 .
-25 -20 1.5 -1.0 -05 00 05 1.0 15
log exposure (lux-seconds)

233

Sigmoidal tone mapping

» Simple formula for a sigmoidal tone-curve:

: _ Ry
R (X, y) - Lm b)
(7) + R(xry)

where L,, is the geometric mean (or mean of logarithms):

1
L,, = exp (N Z In(L(x, y)))

xy)

and L(x,y) is the luminance of the pixel (x, y).

=

2] .

R @ 1 . — -

o o

Xos8} © g8 |

o -]

8]

0 0.6} to6f —b=0.511

: : —b-2

©0.4r so.al b=2 |

b o

o @

g0.2 £0.2} |

£ £

] 0 . N . g 0= el L L L

Y 0.001 001 0.1 1 10 100 1000 0.001 0.01 0.1 1 10 100 1000
Linear RGB Linear RGB

234

Sigmoidal tone mapping example

a=0.25

235

Thank you for attending the lectures

Background

Rendering

Graphics pipeline

Rasterisation

Graphics hardware and OpenGL

Human vision and colour & tone mapping

236

