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Computer Graphics
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Geometry Animation

Rendering

Goal:

understand the fundamentals of 
representing and rendering 
scenes for computer aided 
image generation



Lectures & Tick
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Geometry Representations
Discrete Differential Geometry
Geometry Processing
Animation I
Animation II
The Rendering Equation
Distributed Ray Tracing
Inverse Rendering

Tick:
Approximately 2 weeks
Two coding exercises
Deadline: 
Thursday, October 30, 12:00 noon



Lectures & Tick

4

Lecture notes with detailed notes 
for each slide shown in the 

lectures will be available via the 
course webpage and Moodle.
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Geometry in Graphics
Geometry comes in many forms.
Examples, left to right: points, lines, continuous surfaces, surface meshes. 
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Applications

Engineering/Product designGames/Movies
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Applications

Medicine/Biology Architecture

Geometry of Multi-layer Freeform Structures for Architecture
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Figure 1: This architectural free form structure – built of beams of constant height meeting in optimized nodes and covered with planar glass
facets – was designed using the theory and algorithms presented in this paper. Our method also allows for the construction of secondary
parallel offsets at a variable distance, here physically realized as a structure designed to cast shadows which is optimized to reduce heat load
for particular sun positions.

Abstract

The geometric challenges in the architectural design of freeform
shapes come mainly from the physical realization of beams and
nodes. We approach them via the concept of parallel meshes, and
present methods of computation and optimization. We discuss pla-
nar faces, beams of controlled height, node geometry, and multi-
layer constructions. Beams of constant height are achieved with
the new type of edge offset meshes. Mesh parallelism is also the
main ingredient in a novel discrete theory of curvatures. These
methods are applied to the construction of quadrilateral, pentago-
nal and hexagonal meshes, discrete minimal surfaces, discrete con-
stant mean curvature surfaces, and their geometric transforms. We
show how to design geometrically optimal shapes, and how to find
a meaningful meshing and beam layout for existing shapes.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems; I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object represen-
tations

Keywords: discrete differential geometry, surfaces in architec-
ture, offset mesh, support structure, multi-layer construction, paral-
lel mesh, curvatures, edge offset, hexagonal mesh, Koebe polyhe-
dron.
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1 Introduction

Freeform shapes in architecture is an area of great engineering chal-
lenges and novel design ideas. Obviously the design process, which
involves shape, feasible segmentation into discrete parts, function-
ality, materials, statics, and cost, at every stage benefits from a com-
plete knowledge of the complex interrelations between geometry
requirements and available degrees of freedom. Triangle meshes
– the most basic, convenient, and structurally stable way of repre-
senting a smooth shape in a discrete way – do not support desirable
properties of meshes relevant to building construction (most impor-
tantly, “torsion-free” nodes). Alternatives, namely quad-dominant
and hexagonal meshes tend to have less weight, and can be con-
structed with geometrically optimized nodes and beams. However,
the geometry of such meshes is more difficult. Especially challeng-
ing are aesthetic layout of edges and the geometric constraints of
planar faces and optimized nodes.

Only recently, researchers have become interested in the geometric
basics of single- and multilayer freeform structures which are not
based on triangle meshes. Existing literature has been motivated
by problems in the fabrication of steel/glass and other structures
and mostly aims at the realizations of freeform shapes by meshes
with planar faces [Glymph et al. 2002; Schober 2003; Cutler and
Whiting 2007; Liu et al. 2006]. The latter paper introduced con-
ical meshes which have planar faces and possess offset meshes at
constant face-face distance from the base mesh. They can serve as
the basis of multi-layer constructions, and so for the first time the
problem of multilayered realization of a freeform surface by means
of planar parts was solved in principle.

Until now the wealth of interesting geometry relevant to the con-
struction of freeform structures in architecture has been explored
only to a small extent. It is the aim of the present paper to show
how the local structure of single- and multi-layer constructions can
be analyzed with mesh parallelism as the main tool. This con-
cept allows us to encode the existence of node axes and offsets
in a discrete Gauss image, and to define discrete curvatures in a
natural way. Optimization in the linear space of meshes parallel
to a given mesh yields a modeling tool. A particularly important
and interesting type of meshes are those possessing edge offsets.
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Sources of Geometry
• Acquired real-world objects

3D Scanning
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Sources of Geometry
• Digital 3D modeling
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Geometry Representations
• Considerations

– Storage
– Acquisition of shapes
– Creation of shapes
– Editing shapes
– Rendering shapes
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Geometry Representations
The surface is represented as a map from (in this case) a 2D plane to a surface in 3D.
We thus have m degrees of freedom, although the object is embedded in an n - dimensional space.

• Parametric curves & surfaces

f : X → Y,X ⊆ Rm, Y ⊆ Rn
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p(t) = (x(t), y(t))

• Parametric curves & surfaces

f : X → Y,X ⊆ Rm, Y ⊆ Rn m = 1, n = 2

Planar Curves
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Geometry Representations
As another simple example, we have m = 1 and n = 2 for curves on a plane.
As we change t from 0 to 1, we trace a curve in 2D.

t = 0

t = 0.5

t = 0.75

t = 1



• Parametric curves & surfaces

p : R→ R2

t �→ p(t) = (x(t), y(t))

p(t) = r (cos(t), sin(t)) t ∈ [0, 2π)

Circle

14

Geometry Representations
A special case of a planar curve is a circle.
As we change t from 0 to 2 pi, we trace a circle on a plane.
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p(t)

• Parametric curves & surfaces

s(t) =
n�

i=0

piB
n
i (t)

Bezier Curves

Bn
i (t) =

�
n

i

�
ti(1− t)n−i
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Geometry Representations
A more complex case is a Bezier curve, where we have a weighted combination of basis functions.
The weights pi , also called control points, are vectors in 2D.
Note: We always denote vectors with boldface lowercase letters.
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p(t)

• Parametric curves & surfaces

f : X → Y,X ⊆ Rm, Y ⊆ Rn

m = 1, n = 3
s(t) = (x(t), y(t), z(t))

Space Curves in 3D
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Geometry Representations
We can similarly define a curve in 3D by having three functions, one for each coordinate.
For each t, we have a different point in 3D on the curve.  
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p(u, v)

• Parametric curves & surfaces
Surfaces

f : X → Y,X ⊆ Rm, Y ⊆ Rn m = 2, n = 3

v

u

s(u, v) = (x(u, v), y(u, v), z(u, v))
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Geometry Representations
If we set m = 2, we get two degrees of freedom, which defines a surface.
Denoting the parameter space with u and v, each point on the surface in 3D is given by three functions x, y, z.



• Parametric curves & surfaces

s : R2 → R3

(u, v) ∈ [0, 2π)× [−π/2,π/2]

s(u, v) = r (cos(u) cos(v), sin(u) cos(v), sin(v))

Sphere
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Geometry Representations
A special case of a 2-surface embedded in 3D is a sphere.
Note the ranges of the (u, v) pair.
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p(u, v)
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• Parametric curves & surfaces

Bezier Surfaces

s(u, v) =
m�

i=0

n�

j=0

pi,jB
m
i (u)Bn

j (v)
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Geometry Representations
A surface with Bezier basis functions can be defined similarly to a Bezier curve.
Of course, this time we have two parameters, u and v, and the weights pi,j are 3 dimensional vectors.
These weights are the control points and define the control polygon.
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p(u, v)



• Parametric curves & surfaces
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Geometry Representations
Perhaps the most important local feature of a surface is a tangent plane.
It is defined as the plane spanned by the vectors computed by taking the derivatives w.r.t. u and v. 
The surface normal n is defined as the vector orthogonal to the tangent plane.

n(u, v) =
pu × pv

�pu × pv�

pu × pv �= 0
Regular parametrization:

p(u,v)
pu =

∂p(u, v)

∂u
, pv =

∂p(u, v)

∂v
pu =

∂p(u, v)

∂u
, pv =

∂p(u, v)

∂v
pu =

∂p(u, v)

∂u
, pv =

∂p(u, v)

∂v

n(u, v) =
pu × pv

�pu × pv�



• Parametric curves & surfaces

f : X → Y,X ⊆ Rm, Y ⊆ Rn

Volumetric Representations
m = 3, n = 1

Bruckner et al.
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Geometry Representations
Volumetric representations of geometry can be thought of as fields in 3D, where at each point we have a value 
that determines e.g. the density of a tissue at that point. We can similarly define color fields, etc.



Geometry Representations
• Parametric curves & surfaces

+ Easy to generate points on a curve/surface
+ Easy point-wise differential properties
+ Easy to control by hand
− Hard to determine inside/outside
− Hard to determine if a point is on a curve/surface
− Hard to generate by reverse engineering
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• Polygonal Meshes

23

Geometry Representations
Meshes in computer graphics are points in 2D or 3D connected by edges forming polygons, e.g. triangles.
They represent the boundary of an object as a discrete surface.
They are the standard for modeling geometry e.g. for games.



• Polygonal Meshes

Piecewise linear approximation
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Geometry Representations
A polygonal mesh is a piecewise linear approximation of an underlying continuous surface.
As we increase the number of polygons, we get better approximations.



• Triangle Meshes
V = {v1, . . . , vn}

E = {e1, . . . , ek}, ei ∈ V × V

F = {f1, . . . , fm}, fi ∈ V × V × V

P = {p1, . . . ,pn}, pi ∈ R3

vi

<latexit sha1_base64="RgZd9QPpeN7bQCVxonIzd88xjPI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4r2g9oQ9lsJ+3SzSbsbgol9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju5nfGqPSPJZPZpKgH9GB5CFn1FjpcdzjvXLFrbpzkFXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgtNRNNSaUjegAO5ZKGqH2s/mpU3JmlT4JY2VLGjJXf09kNNJ6EgW2M6JmqJe9mfif10lNeO1nXCapQckWi8JUEBOT2d+kzxUyIyaWUKa4vZWwIVWUGZtOyYbgLb+8SpoXVe+yevNwWand5nEU4QRO4Rw8uIIa3EMdGsBgAM/wCm+OcF6cd+dj0Vpw8plj+APn8wdhZI3i</latexit>

ei

<latexit sha1_base64="aOyCWMHSRbQN6wjro/CZkSiyUZg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSA/Z5v1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVr+9rlfpNHkcRTuAUzsGDS6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBHfo3R</latexit>

fi

<latexit sha1_base64="3cULxToVSZgOt7LG+RA4ks3pWwg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN6KXjxWtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38789hPXRsTqEScJ9yM6VCIUjKKVHsK+6JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4ZWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wvb6vVeo3eRxFOIFTOAcPLqEOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AFJBI3S</latexit>

25

Geometry Representations
A surface mesh is a graph embedded in 3D. Each vertex in V is associated with a point p in 3D.
The vertices are connected by edges in E. The edges form faces stored as a set F.
Hence, each edge stores two vertex indices and each face stores three vertex indices.



Geometry Representations
• Implicit surfaces

26



• Implicit curves & surfaces
f : Rm → R

S = {x ∈ R2|f(x) = 0}
Planar Curves Surfaces in 3D

S = {x ∈ R3|f(x) = 0}
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Geometry Representations
An implicit curve/ surface is defined as the zero set of a function, i.e. all points on the curve/ surface satisfy the 
property that the implicit function is zero.



• Implicit curves & surfaces

Outside
Curve/Surface

Inside

{x ∈ Rm|f(x) > 0}
{x ∈ Rm|f(x) = 0}
{x ∈ Rm|f(x) < 0}

f(x) > 0

f(x) < 0
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Geometry Representations
We can further define inside and outside of an object as the regions where the implicit function has different signs.
Note that we can define the sign freely as both f and –f represent the same implicit surface.



• Implicit curves & surfaces

f(x, y) = x2 + y2 − r2

r

Circle
f(x, y, z) = x2 + y2 + z2 − r2

Sphere
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Geometry Representations
The forms of the implicit functions are quite simple for a circle and a sphere as compared to the parametric ones.



• Implicit curves & surfaces

∇f(x, y, z) =

�
∂f

∂x
,
∂f

∂y
,
∂f

∂z

�T

Surface Normal

f(x, y, z) = x2 + y2 + z2 − r2

∇f(x, y, z) = (2x, 2y, 2z)T

Sphere
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Geometry Representations
The surface normal is calculated via simply taking the derivatives of f. This is simpler than the parametric case.



Geometry Representations
• Implicit curves & surfaces

+ Easy to determine inside/outside
+ Easy to determine if a point is on a curve/surface
+ Easy to combine
− Hard to generate points on a curve/surface
− Limited set of surfaces
− Does not lend itself to (real-time) rendering
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• Point Set Surfaces

32

Geometry Representations
One practical representation that combines some advantages of parametric and implicit representations is point 
set surfaces.
A point set surface is defined in terms of a point cloud in 3D.



• Point Set Surfaces

Only point-wise attributes
Approximation methods
Smooth surfaces
Works on acquired data
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Geometry Representations
A point cloud is a set of points possibly with point-wise attributes, e.g. position, surface normal, etc.
There are number of techniques from the approximation literature that define a point set surface.
These techniques work reliably with data acquired from the real world, so quite important in practice.



• Point Set Surfaces
Local fitting

Query Point
Sample Points

x

Neighborhood
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Geometry Representations
One particular form a point set surface is defined via locally fitting a proxy surface.
We first choose a neighborhood around a query point and a simple proxy surface e.g. a line in this case. 
The distance to the surface is then approximated with the distance to this local proxy surface.



• Point Set Surfaces
– Implicit representation & fast projection

Sample Pointsx

f(x) = 0
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Geometry Representations
We thus get an implicit function that defines the surface.
It is also easy to generate points on the surface via projection, eliminating a limitation of implicit surfaces.



• Point Set Surfaces
– Robust to noise
– Direct rendering
– Conversion to meshes
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Geometry Representations
A point set surface comes with the advantages of robustness to imperfect real-world point data, relatively fast 
rendering, and conversion to other surface representations such as meshes.



Geometry Representations
• Point Set Surfaces

+ Easy to determine inside/outside
+ Easy to determine if a point is on the curve/surface
+ Easy to generate points on the curve/surface
+ Suitable for reconstruction from general data
+ Direct real-time rendering
− Not efficient to use in some modeling tasks
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