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From market failures to strategic allocation

Lecture 4 overview
▶ Last time: we explored why markets sometimes fail.
▶ Next: Different allocation mechanisms (auctions) and strategic

considerations (game theory)

Auctions
▶ Introduction to auctions and

their properties.
▶ Why auctions may also fail.
▶ Auction examples for

computer industries.

Game Theory
▶ Define games and Nash

equilibrium.
▶ Present classical games.
▶ Map games to computer

industries.



Where auctions appear in computer science

Applications of auction mechanisms
▶ Online platforms & advertising (Google Ads, Meta Ads)
▶ Cloud computing resources (AWS Spot Instances, Google

Preemptible VMs)
▶ Network allocation & spectrum (telecom frequency auctions,

congestion pricing)
▶ Mechanism design & blockchain (VCG mechanisms,

Ethereum gas auctions, NFT sales)
▶ Digital markets & games (eBay, Steam Marketplace, in-game

auctions in World of Warcraft)



Types of auctions

Timing of bids
▶ English (Ascending-bid):

Start at a reserve price,
raise bids until one remains
(art, antiques).

▶ Dutch (Descending-bid):
Start high and lower until
someone accepts (flowers).

▶ Sealed-bid: All bids
privately simultaneously
(government contracts).

Pricing and payment rules
▶ First-price auction:

Highest bidder wins, pays
their own bid.

▶ Second-price auction:
Highest bidder wins, pays
second-highest bid.

▶ All-pay auction: Everyone
pays their bid, only one
wins (wars, litigation,
market races).



Strategic equivalence in auctions

Dutch = First-price auction
▶ Outcome: highest bidder

wins at reservation price.
▶ Strategy: bid below true

value.

English = Second-price
auction

▶ Outcome: Highest bidder
wins, pays second-best bid.

▶ Strategy: bid truthfully.

But the two pairs are not strategically equivalent!
▶ First-price/Dutch ⇒ bid shading (strategic misrepresentation).
▶ Second-price/English ⇒ truthful bidding is optimal.
▶ Strategic incentives, not just outcomes, differ across formats.



Revenue equivalence in auctions

Revenue Equivalence Theorem
▶ In theory, all well-behaved auctions yield the same expected

revenue.
▶ Conditions: risk-neutral bidders, independent private values, no

collusion, Pareto efficiency, and common reserve price.
▶ Hence: English, Dutch, and first-price auctions raise the same

average revenue.
▶ All-pay auction differs: everyone pays, winner or not, ⇒

revenue higher.

Design implications
How to design auctions when conditions are not ideal?



Auctions and information problems

Winner’s curse
▶ In public-value auctions, everyone estimates the same

underlying value (mineral rights, spectrum).
▶ The winner tends to be the one who overestimates the most,

the “curse”.

Bidding rings
▶ Groups of bidders collude to buy low, then hold a private

auction and share profits.
▶ Undermines competition and drives prices below fair value.
▶ Harder in first-price auctions; easier in second-price.



Auctions and strategic manipulation

Entry deterrence and predation
▶ Incumbents can bid aggressively to keep rivals out.
▶ Example: ITV franchise auctions, local monopolies bid almost

nothing when no competition existed.
▶ “We’ll top any bid” tactics discourage opponents.

Signalling
▶ Bids across multiple auctions communicate intent.
▶ Example: U.S. spectrum auctions, “We’ll take SF, LA; stay out

of our patch.”
▶ Indirect signals blur the line between strategy and collusion.



Auctions and behavioural/structural effects

Risk aversion
▶ Risk-averse bidders prefer certain small over uncertain high

gains. ⇒ higher bids in first-price auctions, lower efficiency.

Budget constraints and externalities
▶ Limited liquidity caps bidding.
▶ All-pay auctions are more profitable, but attract fewer bidders.
▶ Externalities matter (arms races).



Combinatorial Auctions

Key idea
Bidders have preferences for bundles of items due to externalities.

▶ Example: landing slots at airports, spectrum, mineral rights.
▶ Bid on bundles: $x for A+B+C, $y for A+D+E.
▶ Critical CS application: routing under congestion.
▶ One part of a bundle is useless without the others →

combinatorial complexity.
▶ Allocation problem is NP-complete.
▶ Emerging field: algorithmic mechanism design studies how

to make combinatorial auctions strategy-proof.



Generalised second-price auction (Google/Meta)

Main idea
Ads are allocated via a generalized second-price (GSP) auction.

▶ Each advertiser submits a bid and has a quality score.
▶ Ad rank = bid × quality score → determines slot assignment.
▶ Highest ad rank gets top slot, second-highest → next slot, etc.
▶ Price per click = minimum bid needed to maintain your position.



Numerical illustration

Calculating ad rank and price
▶ Ad rank = quality × bid
▶ Cost per click = Ad rank of next advertiser

Your quality + 0.01



Ad auctions have unintended consequences

From ad quality to virality
▶ Ad rank depends on both bid and quality score.
▶ In social media, quality ≃ virality: clicks, shares, engagement.
▶ High engagement reduces cost per click → incentives for

provocative content.

Potential backfire
▶ Clickbait and sensationalism get rewarded financially.
▶ Can lead to echo chambers and extreme content.



From auctions to game theory

Observation
Auctions are structured games: each bidder strategises based on
others’ actions and information.

▶ Bidders anticipate competitors’ moves.
▶ Game theory models such strategic interactions.
▶ Concepts like equilibrium, dominance, and signalling.
▶ Next: we introduce basics of game theory.



Core concepts in game theory

Game
A game is a model of strategic interaction where multiple agents
(players) make decisions that affect each other’s outcomes.

Strategy
A strategy is a complete plan of action describing how a Alicects in
every possible situation of the game.

Nash Equilibrium (NE)
A Nash equilibrium is a set of strategies, one per player, such that
no player can improve their payoff by unilaterally changing their own
strategy. It almost always exists, but may not be unique.



Example: A simple 2×2 game

Bob
Alice Left Right
Up (3, 3) (0, 5)

Down (5, 0) (1, 1)

Interpretation
Each cell shows the payoffs (Alice, Bob). Example: if A plays Up
and B plays Left, both get 3.



Dominant strategy equilibrium

Bob
Alice Left Right
Top (1, 2) (0, 1)

Bottom (2, 1) (1, 0)

Bob
Alice Left Right
Top (1, 2) (0, 1)

Bottom (2, 1) (1, 0)

Iterated elimination of strictly dominated strategies
Each player can rule out strategies their opponent would never take,
and narrow down (or even fully pin down) their decision.



Battle of the Sexes

Bob
Alice Football Opera

Football (2, 1) (0, 0)
Opera (0, 0) (1, 2)

Bob
Alice Football Opera

Football (2, 1) (0, 0)
Opera (0, 0) (1, 2)

Multiplicity of Nash equilibria
▶ Coordination: both prefer being together, but differ on where.
▶ Pure NE: (Football, Football) and (Opera, Opera).
▶ Mixed NE: Each player chooses their preferred activity with

prob 2/3, expected payoffs 2/3 for each player.
▶ Correlated equilibrium: Flip a 50/50 coin and choose one of the

pure NE accordingly, expected payoffs of 3/2 for each player.



Matching pennies & Rock-Paper-Scissors

Matching Pennies
Bob

Alice H T
H (-1, 1) (1, -1)
T (1, -1) (-1, 1)

Rock-Paper-Scissors
Bob

Alice Scissors Paper Stone
Scissors (0, 0) (1, -1) (-1, 1)

Paper (-1, 1) (0, 0) (1, -1)
Stone (1, -1) (-1, 1) (0, 0)

Observation
▶ Both games are zero-sum, I win if you lose and vice versa.
▶ Both games have no pure strategy NE.
▶ Only mixed strategy NE exist.
▶ In Rock-Paper-Scissors, empirically, players often stick with a

winning move and change losing moves.



Prisoner’s Dilemma

Prisoner B
Prisoner A Confess Deny
Confess (-3, -3) (0, -6)

Deny (-6, 0) (-1, -1)

Observation
▶ (Confess, Confess) is the dominant strategy equilibrium.
▶ Not Pareto efficient: both would be better off with (Deny, Deny).
▶ Question: How can cooperation be encouraged?



Evolutionary game theory

Tit-for-Tat Strategy
▶ Cooperate in the first round.
▶ In round n, do what the

opponent did in round n−1.
▶ Encourages cooperation

and punishes defection.
▶ Veritasium excellent video

Bob Axelrod (1981)
Tit-for-Tat’s success comes from being nice, retaliatory, forgiving,
and clear.

https://www.youtube.com/watch?v=mScpHTIi-kM&t=6s


Evolution of the Hawk-Dove game

Hawk Dove
Hawk v−c

2 , v−c
2 v ,0

Dove 0, v v
2 ,

v
2

▶ Models conflict between aggressive (Hawk) and peaceful
(Dove) strategies.

▶ Food value v at each round; doves share; hawks take food
from doves; hawks fight (risk of death c).

▶ Mixed strategy equilibrium: probability of Hawk p = v
c .

▶ If v > c, all-hawk population emerges (dominant strategy).
▶ If c > v , a mix of hawks and doves evolves.
▶ Mixed strategy can be interpreted as a population mixture.



Tit-for-Tat in airline pricing

Scenario
▶ Flight LHR-JFK costs $250 to operate.
▶ Airline A tries to charge $500.
▶ Other airlines may ’defect’ by undercutting.
▶ Airline A responds by matching competitors → tit-for-tat.

Regulator perspective
▶ Hard to detect implicit collusion.
▶ Need monitoring, incentives, and competition enforcement.
▶ Tit-for-tat can sustain high prices without explicit agreement.



Stag Hunt

Hunter B
Hunter A Hare Stag

Hare (2, 2) (5, 0)
Stag (0, 5) (10, 10)

Observations
▶ Difference from prisoner’s dilemma: (Stag, Stag) is also NE.
▶ You’ll only chase a hare if you believe other hunter will defect.
▶ (Stag, Stag) is payoff-dominant, (Hare, Hare) is risk-dominant.



Chicken Game

Chuck
Ren Jump Drive on

Jump (2, 2) (1, 3)
Drive on (3, 1) (0, 0)

Observations
▶ Nash equilibria: (Jump, Drive on) and (Drive on, Jump).
▶ Bertrand Russell suggested this as a model of nuclear

confrontation during the Cold War.
▶ A player can “win” if they credibly commit to drive on first.



Commitment in chicken game (Footloose, 1984)


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}





Applications: Matching pennies

Attacker vs defender in cybersecurity
▶ Defender may not have the resources to patch all possible

vulnerabilities.
▶ Attacker may not know which vulnerabilities are undefended.
▶ Example: network security or intrusion detection systems,

attackers and defenders must continuously adapt and guess
each other’s moves.



Applications: Prisoner’s Dilemma

Two organisations securing communication channels
▶ Cooperation (costly encryption) vs. defection (saving

encryption costs) determines whether communication is secure
or vulnerable.

▶ Examples: security standard agreements between competing
companies, public-private sector cooperation in cybersecurity,
and user adherence to safety protocols.

▶ If interactions are repeated, cooperation is more likely to
emerge.



Applications: Battle of the Sexes

Negotiating communication protocols
▶ One system prefers a modern protocol (IPv6), the other prefers

legacy (IPv4).
▶ Both systems prefer to coordinate, but agreement is hard to

reach.
▶ Examples: distributed computing and network protocols where

systems need to agree on standards or communication
methods (TCP/IP vs. UDP, HTTP vs. HTTPS).



Lecture 4 Overview & Thanks

Topics Covered
▶ Auctions: types, strategic & revenue equivalence, winner’s

curse, bidding rings, auctions in digital industries.
▶ Game Theory: definitions, NE, dominant strategies, repeated

games, Prisoner’s Dilemma, Battle of the Sexes, Chicken, Stag
Hunt, Hawk-Dove.

▶ Applications in Computing and CS: ad auctions, routing with
congestion, cybersecurity scenarios (matching pennies, PD,
BoS), mechanism design.



Enjoy the next lectures and good luck!

THANKYOU!
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