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What are we up to?

» Learn to read and write, and also work with, mathematical
arguments.

» Doing some basic discrete mathematics.

» Getting a taste of computer science applications.



What is Discrete Mathematics ?
from Discrete Mathematics (second edition) by N. Biggs

Discrete Mathematics is the branch of Mathematics in which we
deal with questions involving finite or countably infinite sets. In
particular this means that the numbers involved are either integers,
or numbers closely related to them, such as fractions or ‘modular’
numbers.



What is it that we do ?

In general:

Build mathematical models and apply methods to analyse
problems that arise in computer science.

In particular:

Make and study mathematical constructions by means of
definitions and theorems. We aim at understanding their
properties and limitations.



Lecture plan

[. Proofs.
II. Numbers.
[II. Sets.

[V. Regular languages and finite automata.



Proofs
Objectives

» To develop techniques for analysing and understanding
mathematical statements.

» 10 be able to present logical arguments that establish
mathematical statements in the form of clear proofs.

» To prove Fermat’s Little Theorem, a basic result in the
theory of numbers that has many applications in
computer science.
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Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage.
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Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage.
For instance, it presupposes that you know:

» what a statement is;

» what the integers (...,—1,0,1,...) are, and that amongst them
there is a class of odd ones (...,—3,—1,1,3,...);

» what the product of two integers is, and that this is in turn an
integer.

— 18-a —



More precisely put, we may write:

If m and n are odd integers then so is m - n.
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More precisely put, we may write:

If m and n are odd integers then so is m - n.

which further presupposes that you know:
» what variables are;

» what
if...then ...

statements are, and how one goes about proving them;

» that the symbol “-” is commonly used to denote the product
operation.
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Even more precisely, we should write

For all integers m and n, if m and n are odd then so
IS M - n.

which now additionally presupposes that you know:

» what
forall ...

statements are, and how one goes about proving them.

Thus, in trying to understand and then prove the above statement,
we are assuming quite a lot of mathematical jargon that one needs
to learn and practice with to make it a useful, and in fact very pow-
erful, tool.
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Some mathematical jargon

Statement

A sentence that is either true or false — but not both.

Example 1
e+ 1 =0’

Non-example

‘This statement is false’
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Predicate

A statement whose truth depends on the value of one
or more variables.

Example 2
1. X = cosx + isinx’
2. ‘the function f is differentiable’
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Theorem
A very important true statement.

Proposition
A less important but nonetheless interesting true statement.

Lemma
A true statement used in proving other true statements.

Corollary
A true statement that is a simple deduction from a theorem
or proposition.

Example 3
1. Fermat's Last Theorem
2. The Pumping Lemma
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Conjecture
A statement believed to be true, but for which we have no proof.

Example 4
1. Goldbach’s Conjecture

2. The Riemann Hypothesis

__ o7 __



Proof
Logical explanation of why a statement is true; a method for
establishing truth.
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Proof
Logical explanation of why a statement is true; a method for
establishing truth.

Logic
The study of methods and principles used to distinguish
good (correct) from bad (incorrect) reasoning.

Example 5
1. Classical predicate logic
2. Hoare logic
3. Temporal logic
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Axiom
A basic assumption about a mathematical situation.

Axioms can be considered facts that do not need to be

proved (just to get us going in a subject) or they can be
used in definitions.

Example 6
1. Euclidean Geometry
2. Riemannian Geometry
3. Hyperbolic Geometry

929




Definition
An explanation of the mathematical meaning of a word (or
phrase).

The word (or phrase) is generally defined in terms of prop-
erties.

Warning: It is vitally important that you can recall definitions
precisely. A common problem is not to be able to advance in
some problem because the definition of a word is unknown.




Definition, theorem, intuition, proof
in practice

Proposition 8 For all integers m andn, if m andn are odd then so
ISm - n.

31 —



Definition, theorem, intuition, proof
in practice

Definition 7 An integer is said to be odd whenever it is of the form
2 -1+ 1 for some (necessarily unique) integer 1.

Proposition 8 For all integers m andn, if m andn are odd then so
ISm - n.
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Intuition:
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PROOF OF Proposition 8:



Simple and composite statements

A statement is simple (or atomic) when it cannot be broken into
other statements, and it is composite when it is built by using several
(simple or composite statements) connected by logical expressions

(e.g., if...then...; ...implies ...; ...ifand only if ...; ...and...;
either...or...;itisnotthecasethat...;forall...:thereexists...;
etc.)

Examples:

‘2 1s a prime number’

‘for all integers m and n, if m-n is even then either n or m are even’
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Proof Structure

Assumptions Goals

statements that | statements
may be used to be
for deduction | established
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Implication

Theorems can usually be written in the form

If a collection of assumptions holds,
then so does some conclusion

or, in other words,

a collection of assumptions implies some conclusion

or, in symbols,

a collection of hypotheses —> some conclusion

NB Identifying precisely what the assumptions and conclusions are
IS the first goal in dealing with a theorem.
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Implications

» How to prove them as goals.

» How to use them as assumptions.

43 —



How to prove implication goals

The main proof strategy for implication:

To prove a goal of the form

P—= Q

assume that P is true and prove Q.

NB Assuming is not asserting! Assuming a statement amounts to
the same thing as adding it to your list of hypotheses.
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Proof pattern:
In order to prove that

P—= Q

1. Write: Assume P.
2. Show that Q logically follows.
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Scratch work:

Before using the strategy
Assumptions

After using the strategy
Assumptions

Goal
P —= Q

Goal
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Proposition 8 /fm andn are odd integers, then so is m - n.

PROOF:

47 —



Definition 9 A real number is:

» rational if it is of the form m/n for a pair of integers m and n;
otherwise it is irrational.

» positive if it is greater than 0, and negative if it is smaller than 0.

» nonnegative If it is greater than or equal 0, and nonpositive if it
Is smaller than or equal 0.

» natural if it is a nonnegative integer.
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Proposition 10 Let x be a positive real number. If \/x is rational
then so is x.

PROOF:



How to use implication assumptions
Logical Deduction by Modus Ponens

A main rule of logical deduction is that of Modus Ponens:

From the statements Pand P — Q,
the statement Q follows.

or, in other words,
If Pand P — Q hold then so does Q.

or, in symbols,
P P = Q
Q
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The use of implications:

To use an assumption of the form P — Q,
aim at establishing P.

Once this is done, by Modus Ponens, one can
conclude Q and so further assume it.



Theorem 11 Let P, P,, and P; be statements. If P, — P, and
P, = PsthenP, — Ps.

PROOF:
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Bi-implication

Some theorems can be written in the form

P is equivalent to Q

or, in other words,

or

or

P implies Q, and vice versa

Q implies P, and vice versa

P if, and only if, Q

or, in symbols,

P Q

Piff Q




Proof pattern:
In order to prove that

P Q

1. Write: (=) and give a proof of P — Q.
2. Write: (&) and give a proof of Q = P.




D1ivisibility and congruence

Definition 12 Let d and n be integers. We say that d divides n,
and write d | n, whenever there is an integer k such thatn =k - d.

Example 13 The statement 2 | 4 is true, while 4 | 2 is not.



D1ivisibility and congruence

Definition 12 Let d and n be integers. We say that d divides n,
and write d | n, whenever there is an integer k such thatn =k - d.

Example 13 The statement 2 | 4 is true, while 4 | 2 is not.

Definition 14 Fix a positive integer m. For integers a and b, we
say that a is congruent to b modulo m, and write a = b (mod m),
whenever m | (a — b).

Example 15
1. 18 = 2 (mod 4)

2. 2=—-2(mod 4)

3. 18 = —2 (mod 4)
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Proposition 16 For every integer n,
1. nis even if, and only if, n = 0 (mod 2), and
2. nisoddif,and only if n =1 (mod 2).

PROOF:
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The use of bi-implications:

To use an assumption of the form P < Q, use it as two
separate assumptions P =— Qand Q = P.
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Universal quantifications

» How to prove them as goals.

» How to use them as assumptions.



Universal quantification

Universal statements are of the form

for all individuals x of the universe of discourse,
the property P(x) holds

or, in other words,

no matter what individual x in the universe of discourse
one considers, the property P(x) for it holds

or, in symbols,

Vx. P(x)
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Example 17

2. For every positive real number x, if \/x is rational then so is x.

3. For every integer n, we have thatn is even iff so is n*.



The main proof strategy for universal statements:

To prove a goal of the form
Vx. P(x)
let x stand for an arbitrary individual and prove P(x).



Proof pattern:
In order to prove that

Vx. P(x)

1. Write: Let x be an arbitrary individual.

2. Show that P(x) holds.




Proof pattern:
In order to prove that

Vx. P(x)

1. Write: Let x be an arbitrary individual.
Warning: Make sure that the variable x is new (also
referred to as fresh) in the proof! If for some reason the
variable x is already being used in the proof to stand for
something else, then you must use an unused variable,
say y, to stand for the arbitrary individual, and prove

P(y).
2. Show that P(x) holds.
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Scratch work:

Before using the strategy
Assumptions Goal

Vx. P(x)

After using the strategy
Assumptions Goal

P(x) (for a new (or fresh) x)



Example:

unprovable
Assumptions Goal
for all integers n, n > 1

n > 0



How to use universal statements

Assumptions

Vx.x? > 0



The use of universal statements:

To use an assumption of the form Vx. P(x), you can plug in
any value, say a, for x to conclude that P(a) is true and so
further assume fit.

This rule is called universal instantiation.
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Proposition 18 Fix a positive integer m. For integers a and b, we
have that a = b (mod m) if, and only If, for all positive integers n, we
have thatn-a=n-b (mod n - m).

PROOF:
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Equality in proofs

Examples:
» Ifa=bandb =cthena=c.

» fa=bandx=ythena+x=b+x=Db+y.

Y, /R



Equality axioms

Just for the record, here are the axioms for equallity.

» Every individual is equal to itself.

VX. X =%

» For any pair of equal individuals, if a property holds for one of
them then it also holds for the other one.

Vx.Vy. x=y = (P(x) = P(y))



NB From these axioms one may deduce the usual intuitive
properties of equality, such as

Vx.Vy.x =y = y=x
and
Vx.Vy.Vz.x =y = (y=z = x =2z

However, In practice, you will not be required to formally do so;
rather you may just use the properties of equality that you are
already familiar with.



Conjunctions

» How to prove them as goals.

» How to use them as assumptions.



Conjunctive statements are of the form

or, in other words,

or, in symbols,

Conjunction

P and Q

both P and also Q hold

P A Q

or

P& Q




The proof strategy for conjunction:

To prove a goal of the form
P AQ

first prove P and subsequently prove Q (or vice versa).



Proof pattern:
In order to prove

P A Q

1. Write: Firstly, we prove P. and provide a proof of P.

2. Write: Secondly, we prove Q. and provide a proof of Q.




Scratch work:

Before using the strategy
Assumptions Goal

PAQ

After using the strategy
Assumptions Goal Assumptions Goal

P Q
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The use of conjunctions:

To use an assumption of the form P A Q,
treat it as two separate assumptions: P and Q.
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Theorem 19 For every integer n, we have that 6 | n iff 2 | n and
3| n.

PROOF:
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Existential quantifications

» How to prove them as goals.

» How to use them as assumptions.



Existential quantification

Existential statements are of the form

there exists an individual x in the universe of
discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the
property P(x) holds

or, in symbols,

Tx. P(x)




Example: The Pigeonhole Principle.

Let n be a positive integer. If n + 1 letters are put in n
pigeonholes then there will be a pigeonhole with more than
one letter.



Theorem 20 (Intermediate value theorem) Let f be a real-valued
continuous function on an interval [a, b]. For everyy in between f(a)
and f(b), there exists v in between a and b such that f(v) = y.

Intuition:



The main proof strategy for existential statements:

To prove a goal of the form
Fx. P(x)

find a witness for the existential statement; that is, a value
of x, say w, for which you think P(x) will be true, and show
that indeed P(w), i.e. the predicate P(x) instantiated with
the value w, holds.



Proof pattern:
In order to prove

Ix. P(x)

1. Write: Let w = ... (the witness you decided on).

2. Provide a proof of P(w).




Scratch work:

Before using the strategy
Assumptions Goal

Fx. P(x)

After using the strategy
Assumptions Goals

P(w)

w = ... (the withess you decided on)
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Proposition 21 For every positive integer k, there exist natural
numbers i andj such that4 - k = i* —j°.

PROOF:



The use of existential statements:

To use an assumption of the form Jx. P(x), introduce a new
variable x, into the proof to stand for some individual for
which the property P(x) holds. This means that you can
now assume P(x,) true.



Theorem 23 For all integers 1, m, n, ifl | m andm | n thenl | n.

PROOF:



Unique existence

The notation
F!x. P(x)
stands for

the unique existence of an x for which the property P(x) holds .

That is,

TIx.P(x) A (Vy.Vz. (P(y) A\ P(z)) — :z)
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Example: The congruence property modulo m uniquely charac-
terises the natural numbers from 0 to m — 1.

Proposition 24 Let m be a positive integer and let n be an integer.

Define
Pz) =[0<z<m A z=n (modm)] .

Then
Vx,y.P(x) A Ply) = x=y .

PROOF:
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A proof strategy

To prove
Vx.3Aly.P(x,y) ,

for an arbitrary x construct the unigue witness and name it,
say as f(x), showing that

and

hold.

— 102 —



D1isjunctions

» How to prove them as goals.

» How to use them as assumptions.
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Disjunction

Disjunctive statements are of the form

or, in other words,

or, in symbols,

PorQ

either P, Q, or both hold

PV Q
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The main proof strategy for disjunction:

To prove a goal of the form
PV Q
you may

1. try to prove P (if you succeed, then you are done); or

2. try to prove Q (if you succeed, then you are done);
otherwise

3. break your proof into cases; proving, in each case,
either P or Q.
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Proposition 25 For all integers n, either n* = 0 (mod 4) or
n? =1 (mod 4).

PROOF:
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The use of disjunction:

To use a disjunctive assumption
P; V P,

to establish a goal Q, consider the following two cases in
turn: (i) assume P, to establish Q, and (ii) assume P, to
establish Q.
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Scratch work:

Before using the strategy
Assumptions Goal

Q
Py V P,

After using the strategy
Assumptions Goal Assumptions Goal

Q Q
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Proof pattern:
In order to prove Q from some assumptions amongst which there
IS

P; V P,
write: We prove the following two cases in turn: (i) that assuming
Pi, we have Q; and (ii) that assuming P,, we have Q. Case (1):
Assume P;. and provide a proof of Q from it and the other as-
sumptions. Case (ii): Assume P,. and provide a proof of Q from
it and the other assumptions.
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A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if
m=0orm=p then (?) =1 (mod p).

P
m

PROOF:
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Lemma 28 For all integers p and m, if p is prime and 0 < m < p
then (P) = 0 (mod p).

P
m

PROOF:
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Proposition 29 For all prime numbers p and integers 0 < m < p,
either (?) = 0 (mod p) or () =1 (mod p).

P p
m m

PROOF:
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Binomial Theorem

(m+n)P = i, ({) -m-nf
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A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,
n and primes p,

(M +n)? = mP +nP (mod p) .

PROOF:
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Corollary 34 (The Dropout Lemma) For all natural numbers m and
primes p,

(M4 1) =mP 4+ 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-
bers m and i, and primes p,

(M +1)P =mP +1 (mod p) .

PROOF:

— 126 —



Fermat’s Little Theorem

The Many Dropout Lemma (Proposition 35) gives the first part of the
following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i
and primes p,

1. i* =1 (mod p), and

2. i*71 =1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat's Little Theorem implies the
second one will be proved later on .

— 128 —



Every natural number i not a multiple of a
prime number p has a reciprocal modulo p,

namely iP7%, asi- (iP?) = 1 (mod p).
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Btw

1. Fermat’s Little Theorem has applications to:
(a) primality testing?,
(b) the verification of floating-point algorithms, and

(c) cryptographic security.

“For instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that i™ # 1 (mod m).
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Negation

Negations are statements of the form

or, in other words,

or

or

or, in symbols,

not P

P Is not the case

P is absurd

P leads to contradiction
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A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent
form and use instead this other statement.

Logical equivalences

-(P=Q) < PA-Q
(P<:>Q) — P&=-Q
-(Vx.P(x)) <<=  3Ix.—P(x)
(P/\Q) — (7P) V (—=Q)
-(Ix.P(x)) &  Vx.—P(x)
-(PV Q) < (=P)A(—Q)
-(-P) & P
—P &= (P = false)
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Theorem 37 For all statements P and Q,
(P = Q) = (mQ = —P)

PROOF:
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Proof by contradiction

Amongst the equivalences for negation, we have postulated the
somewhat controversial:

——P & P
which is classically accepted.
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Proof by contradiction

Amongst the equivalences for negation, we have postulated the
somewhat controversial:

——P & P
which is classically accepted.

In this light,
to prove P
one may equivalently
prove —P — false;
that is,
assuming — P leads to contradiction.

This technique is known as proof by contradiction.
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The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent
statement —P — false
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The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent
statement =P — false

Proof pattern:
In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.
2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.
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Scratch work:

Before using the strategy
Assumptions Goal

After using the strategy
Assumptions Goal

contradiction
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Theorem 39 For all statements P and Q,
(—Q = —P) = (P = Q)

PROOF:
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Proof by contrapositive

Corollary 40 For all statements P and Q,

(P = Q) & (/Q = —P)

Btw Using the above equivalence to prove an implication is
Known as proof by contrapositive.

Corollary 41 For every positive irrational number x, the real
number +/x is irrational.
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Lemma 42 A positive real number x is rational iff

1 positive integers m,n :
x=m/n A =(3primep: plm Apln)

PROOF:
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Numbers
Objectives

Get an appreciation for the abstract notion of number system,
considering four examples: natural numbers, integers,
rationals, and modular integers.

Prove the correctness of three basic algorithms in the theory of
numbers: the division algorithm, Euclid’s algorithm, and the
Extended Euclid’s algorithm.

Exemplify the use of the mathematical theory surrounding
Euclid’s Theorem and Fermat’s Little Theorem in the context of
public-key cryptography.

To understand and be able to proficiently use the Principle of
Mathematical Induction in its yarious forms.



Natural numbers

In the beginning there were the natural numbers

N: 0, T, ..., n, n+1l,
generated from zero by successive increment; that is, put in ML.:

datatype

N = zero | succ of N
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The basic operations of this number system are:

» Addition
m n
/_/\r -\ N\
ik e o o >|< >|< ...... >E
TTLITL
» Multiplication
n
.. "
m m-n
>[< ............ >|<
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The additive structure (N, 0, +) of natural numbers with zero and
addition satisfies the following:

» Monoid laws

O+4n=n=n—+0, (l+mM)+n=14(m+n)

» Commutativity law

m+-n=n-+m

and as such is what in the mathematical jargon is referred to as
a commutative monoid.
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Commutative monoid laws

» Neutral element laws

0 n n n 0
/'/\r -\ ~ 7 -\ ~N 7 -\ \/'/\
...... * — * e o o o o o * — * e o o o o o
» Associativity law
{4+m n ¢ m+n
% N\ /7~ % ~ N "\

' 7
koo o kK e 000 0 K 5K ooo 00000 Sk = ke e kKoo KK o o0 00000
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Monoids

Definition 43 A monoid /s an algebraic structure
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Monoids

Definition 43 A monoid /s an algebraic structure with
» a neutral element, say e,

» a binary operation, say e,

— 160-a —



Monoids

Definition 43 A monoid /s an algebraic structure with
» a neutral element, say e,
» a binary operation, say e,

satisfying
» neutral elementlaws: eex =x=xee¢

» associativity law: (xey)ez=xe (y e z)
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Monoids

Definition 43 A monoid /s an algebraic structure with
» a neutral element, say e,
» a binary operation, say e,
satisfying
» neutral elementlaws: eex =x =xee
» associativity law: (xey)ez=xe (y e z)
A monoid is commutative If:
» commutativity: xey =y ex

IS satisfied.
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Also the multiplicative structure (N, 1, -) of natural numbers with one
and multiplication is a commutative monoid:

» Monoid laws

Il'n=n=n-1, (I-m)-n=1-(m-n)

» Commutativity law

m-nm=mn-m

— 162 —



The additive and multiplicative structures interact nicely in that they
satisfy the

» Distributive laws
l1-0
l-(m+n) = 1l-m+1l-n

|
o

and make the overall structure (N, 0, -+, 1,-) into what in the mathe-
matical jargon is referred to as a commutative semiring.
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Semirings

Definition 44 A semiring (or rig) Is an algebraic structure
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Semirings

Definition 44 A semiring (or rig) is an algebraic structure with
» acommutative monoid structure, say (0, @),

» a monoid structure, say (1, ®),
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Semirings

Definition 44 A semiring (or rig) is an algebraic structure with
» acommutative monoid structure, say (0, @),
» a monoid structure, say (1, ®),

satifying the distributivity laws:
P 0Rx=0=x®O0

P XQ(YDz)=(x®Y) D (x®z), ([Yydz)@x = (Yy®x) O (z® %)
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Semirings

Definition 44 A semiring (or rig) is an algebraic structure with
» acommutative monoid structure, say (0, @),
» a monoid structure, say (1, ®),
satifying the distributivity laws:
P 0Rx=0=x®O0
> x®(Yydz)=x0y)d x®z), ([ydz)@x=[(Yy®x)d (z®x)

A semiring is commutative whenever  is.
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Cancellation

The additive and multiplicative structures of natural numbers further
satisfy the following laws.
» Additive cancellation

For all natural numbers k, m, n,
K+fm=k+n = m=n

» Multiplicative cancellation

For all natural numbers k, m, n,
fk#A0thenk-m=k-n = m=n

— 165 —



Definition 45 A binary operation e allows cancellation by an
element c

» ontheleft:ifcex =cey impliesx =y

» ontheright: ifxec=yecimpliesx =y

Example: The append operation on lists allows cancellation by
any list on both the left and the right.
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Inverses

Definition 46 For a monoid with a neutral element e and a binary
operation e, and element x is said to admit an

» inverse on the left if there exists an element { such thatlex = e
» inverse on the right if there exists an elementr such that xer = e

» inverse If it admits both left and right inverses

— 167 —



Inverses

Definition 46 For a monoid with a neutral element e and a binary
operation e, and element x is said to admit an

» inverse on the left if there exists an element { such thatlex = e
» inverse on the right if there exists an elementr such that xer = e

» inverse If it admits both left and right inverses

Proposition 47 For a monoid (e, o) if an element admits an inverse
then its left and right inverses are equal.

PROOF:
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Groups

Definition 49 A group /s a monoid in which every element has an
inverse.

An Abelian group is a group for which the monoid is commutative.
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Inverses

Definition 50

1. A number x is said to admit an additive inverse whenever there
exists a numbery such that x +y = 0.

2. A number x Is said to admit a multiplicative inverse whenever
there exists a numbery such thatx -y = 1.

— 171 —



Extending the system of natural numbers to: (i) admit all additive
iInverses and then (ii) also admit all multiplicative inverses for non-
zero numbers yields two very interesting results:
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Extending the system of natural numbers to: (i) admit all additive
iInverses and then (ii) also admit all multiplicative inverses for non-
zero numbers yields two very interesting results:

(1) the integers

Zi v ...—my ..., —1,0, 1, ..., n, ...

which then form what in the mathematical jargon is referred to
as a commutative ring, and

(il) the rationals Q@ which then form what in the mathematical jargon
IS referred to as a field.
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Rings

Definition 51 Aring is a semiring (0, ®, 1, ®) in which the commu-
tative monoid (0, ) is a group.

A ring is commutative if so is the monoid (1, ®).

Fields

Definition 52 A field is a commutative ring in which every element
besides 0 has a reciprocal (that is, and inverse with respect to ® ).
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The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers q
andr suchthatq > 0,0 <r<n,andm=q-n+r.
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The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers q
andr suchthatq > 0,0 <r<n,andm=q-n+r.

Definition 54 The natural numbers q and r associated to a given
pair of a natural number m and a positive integer n determined by
the Division Theorem are respectively denoted quo(m,n) and
rem(m,n).
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PROOF OF Theorem 53:
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The Division Algorithm in ML.:

fun divalg( m , n )
= let
fun diviter( q , r )
= if r < n then (q, r )
else diviter( gq+1 , r-n )
in
diviter( O , m )

end

fun quo( m , n ) #1( divalg( m , n ) )

fun rem( m , n ) #2( divalg( m , n ) )
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Theorem 56 For every natural number m and positive natural
number n, the evaluation of divalg(m,n) terminates, outputing a
pair of natural numbers (qo, 1) such thatro < n andm = qo-n-+ry.

PROOF:
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Proposition 57 Let m be a positive integer. For all natural
numbers k and 1,

k=1 (mod m) < rem(k,m) = rem(l, m)

PROOF:
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Corollary 58 Let m be a positive integer.

1. For every natural number n,

n =rem(n,m) (mod m)

PROOF:
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Corollary 58 Let m be a positive integer.

1. For every natural number n,

n =rem(n,m) (mod m)

2. For every integer k there exists a unique integer k|, such that

0<[kln,<m and k= k], (modm)

PROOF:

— 183-a —



Modular arithmetic

For every positive integer m, the integers modulo m are:

Ly = O, 1, ..., m—1.

with arithmetic operations of addition +,,, and multiplication -,
defined as follows

k4+n,l = k+1, = rem(k+1l,m) ,
kml = k-1, = rem(k-1l,m)

forall 0 <k,l < m.

— 186 —



Forkandlin Z,,
k+,1 and k-, 1
are the unique modular integers in Z,, such that
k+ml=k+1(mod m)
k-ml=k-1(modm)
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Example 60 The addition and multiplication tables for 7., are:

+410 1 2 3 410 1 2 3
0|01 2 3 00 0 0O
T 11T 2 3 0 1101 2 3
212 3 0 1 210 2 0 2
313 0 1 2 310 3 2 1

Note that the addition table has a cyclic pattern, while there is no
obvious pattern in the multiplication table.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

additive
inverse

0 0
| 3
2 2
3 |

mu{tip/icative
inverse
0 _
1 1
yi _
3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
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Example 61 The addition and multiplication tables for 75 are:

+510 1 2 3 4 510 1 2 3 4
0 (01 2 3 4 00 00 0O
111 2 3 40 1101 2 3 4
212 3 4 0 1 210 2 41 3
313401 2 310 3 1 4 2
414 0 1 2 3 410 4 3 2 1

Again, the addition table has a cyclic pattern, while this time the
multiplication table restricted to non-zero elements has a
permutation pattern.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

a?dditive mu{tip/icative
inverse inverse

0 0 0 —

1 4 1 1

2 3 2 3

3 2 3 2

4 1 4 4

Surprisingly, every non-zero element has a multiplicative inverse.
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Proposition 62 For all natural numbers m > 1, the
modular-arithmetic structure

(an O) _I_m) 1 ) 'm)

IS @ commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have
further mathematical structure in the form of multiplicative inverses
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Proposition 63 Let m be a positive integer. A modular integer k in

Z. has a reciprocal if, and only if, there exist integers 1 andj such
thatk -i4+m-j=1.

PROOF:
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Integer linear combinations

Definition 64 An integer r is said to be a linear combination of a
pair of integers m and n whenever there are integers s andt such
thats - m+t-n=r.

Proposition 65 Let m be a positive integer. A modular integer k in
Zw has a reciprocal if, and only if, 1 is an integer linear combination
of m and k.
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Important mathematical jargon: Sets

Very roughly, sets are the mathematicians’ data structures.
Informally, we will consider a set as a (well-defined, unordered)

collection of mathematical objects, called the elements (or
members) of the set.
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Set membership

The symbol ‘€’ known as the set membership predicate is central to
the theory of sets, and its purpose is to build statements of the form

X €A

that are true whenever it is the case that the object x is an element
of the set A, and false otherwise.
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The set

Defining sets

of even primes
of booleans
[—2..3]

— 200 —

IS

{2}

{true, false }

{_2>_1>0>1>2>3}




Set comprehension

The basic idea behind set comprehension is to define a set
by means of a property that precisely characterises all the
elements of the set.

Notations:

{IxeA|P(x)} |, {xe A:P(x)}
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Set equality

Two sets are equal precisely when they have the same elements
Examples:
» {(xeN: 2|x A xisprime} = {2}

» For a positive integer m,
{(xeZ : m|x}={x€eZ : x=0(modm)}

» {deN:d[0} =N
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Equivalent predicates specify equal sets:
{(x e AIP(x)}={x€A]Q(X)}
Iff
Vx € A. P(x) < Q(x)
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Equivalent predicates specify equal sets:

{x e A[Px)}={xeA|Q(x)}
Iff
Vx € A. P(x) < Q(x)

Example: For a positive integer m,

{x € Z, | x has a reciprocal in Z,, }

{x € Zy,|1is an integer linear combination of m and x }
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Greatest common divisor

Given a natural number n, the set of its divisors is defined by set
comprehension as follows

Dn)={deN:d|n} .
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Greatest common divisor

Given a natural number n, the set of its divisors is defined by set
comprehension as follows

Dn)={deN:d|n} .
Example 67
1. D(0) =N

( )
1,2,3,4,6,8,9,12,17,18, 24,34, 36,51, 68,
2. D(1224) = ¢ >

72,102,136, 153, 204, 306, 408, 612, 1224

\ /

Remark Sets of divisors are hard to compute. However, the
computation of the greatest divisor is straightforward. :)
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Going a step further, what about the common divisors of pairs of
natural numbers? That is, the set

CD(m,n)={deN:d|/m Ad|n}

for m,n € N.
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Going a step further, what about the common divisors of pairs of
natural numbers? That is, the set

CD(m,n)={deN:d|/m Ad|n}

for m,n € N.

Example 68
CD(1224,660) ={1,2,3,4,6,12}

Since CD(n,n) = D(n), the computation of common divisors is as
hard as that of divisors. But, what about the computation of the
greatest common divisor?
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Lemma 71 (Key Lemma) Let m and m'’ be natural numbers and
let n be a positive integer such that m = m’ (mod n). Then,

CD(m,n) =CD(m’,n) .

PROOF:
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Lemma 73 For all positive integers m and n,

D(n) ,fn|m
CD(m,n) = <

\ CD(n, rem(m, n)) , otherwise
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Lemma 73 For all positive integers m and n,

D(n) ,fn|m
CD(m,n) = A«

\ CD(n, rem(m, n)) , otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma
suggests a recursive procedure:

( .
n fn|m

ng(m> Tl) = 3

| ged (n, rem(m, n)) , otherwise

for computing the greatest common divisor, of two positive integers
m and n. This is

Euclid’s Algorithm
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gcd

fun gcd( m , n )
= let
val (g , r ) = divalg(m , n )
1n
if r = 0 then n
else gcd(n , r )

end
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Example 74 (gcd(13,34) = 1)
ocd(13,34) = gcd

NB If gcd terminates on input (m,n) with output gcd(m,n) then
CD(m,n) = D(gcd(m,n)).
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Proposition 75 For all natural numbers m,n and a, b,
ifCD(m,n) =D(a) and CD(m,n) = D(b) thena = b.
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Proposition 75 For all natural numbers m,n and a, b,
ifCD(m,n) =D(a) and CD(m,n) = D(b) thena = b.

Proposition 76 For all natural numbers m,n and k, the
following statements are equivalent:

1. CD(m,n) = D(k).

2. » klm A k|n, and

» for all natural numbersd,d| m N\ d|n — d| k.
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Definition 77 For natural numbers m,n the unique natural number
k such that

» k|m /A k|n, and
» for all natural numbersd,d| m N\ d|n — d|k.

Is called the greatest common divisor of m and n, and denoted
gcd(m,n).
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Theorem 78 Euclid’s Algorithm gcd terminates on all pairs of
positive integers and, for such m andn, the positive integer
gcd(m,n) is the greatest common divisor of m andn in the
sense that the following two properties hold:

(1) both gcd(m,n) | m and gcd(m,n) | n, and

(i1) for all positive integers d such that d | m and d | n it necessarily
follows that d | gcd(m,n).

PROOF:
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gcd(m, n)
1n:qkn+r

njm O<m<n
qg>0,0<r<n

gcd(m, 1) gcd(mn, m)
| S

n=q’-r+7r’

q’ >0, 7<T/<T
ged(r, ')
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Fractions in lowest terms

fun lowterms( m , n )
= let
val gcdval = gcd( m , n )
in
( m div gcdval , n div gcdval )

end
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Some fundamental properties of gcds

Lemma 80 For all positive integers 1, m, and n,
1. (Commutativity) gcd(m,n) = ged(n, m),
2. (Associativity) ged (1, ged(m,n)) = ged(ged(l, m),n),
3. (Linearity)f gcd(l- m,l-n) =1-gcd(m,n).

PROOF:

*Aka (Distributivity).
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Coprimality

Definition 81 Two natural numbers are said to be coprime when-
ever their greatest common divisor is 1.

Euclid’s Theorem

Theorem 82 For positive integers k, m, andn, ifk | (m-n) and
ged(k,m) =1 thenk | n.

PROOF:
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Corollary 83 (Euclid’s Theorem) For positive integers m and n,
and primep, ifp | (m-n) thenp | morp | n.

Now, the second part of Fermat'’s Little Theorem follows as a
corollary of the first part and Euclid’s Theorem.

PROOF:
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Fields of modular arithmetic

Corollary 85 For prime p, every non-zero elementi of Z,
has [i"%], as multiplicative inverse. Hence, Z,, is what in
the mathematical jargon is referred to as a field.
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Extended Euclid’s Algorithm

13 + 8

2.

34

|

— N N N N~
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Extended Euclid’s Algorithm

3
@ 0 In 0 o
N
e
o
L P2 0 n ¢
| |
0 D N N -
0 D N N - O
+ + + + + +
@ w0 I N N —
N - - - -
| | A
o
5 P o n n N
N —
PSR TS N -
4\/ 3\/ -~ -~ -~ 4|\/
N — o0 10 o

— N N N N~
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gcd(34,13)
gcd (13, 8)

gcd(8,5)

ged(5, 3)

ged(3,2)

34
13
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gcd(34,13)
gcd (13, 8)

gcd(8,5)

ged(5, 3)

ged(3,2)

8 = 34
5= 13

= 13

= —1-34+3-13
3= 8
2= 5
1 = 3
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gcd(34,13)
gcd (13, 8)

ged(8,5)

ged(5, 3)

ged(3,2)

8 = 34
5= 13
— 13
= 1344313
=8
= (34-2-13)
= 2:34+(-5) 13
2= 5
= 3
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13

Z\

34 —-2-13)

5
(=1-34+3-13)




ged(34,13) || 8 = 34 —2. 13
gcd(13,8) || 5= 13 —1- °
— 13 ~1. (34-2-13)
= —1-34+3-13
ocd(8,5) | 3= 8 —1 3
— B4—-213 1. (91-34+3.13)
— 2.34+(=5)-13
ecd(5,3) | 2= 5 ~1- 3
_ 934 +313 -1 (2-34+(—5)-13)
= —3-34+8-13
ocd(3,2) | 1= 3 —1. 2
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gcd(34,13) || 8 = 34 —2- 13
gcd(13,8) || 5= 13 —1- °
— 13 ~1. (34-2-13)
= —1.34+3-13
ocd(8,5) | 3= 8 —1. 3
— [(34—2.13) -1 [=1-34+3.13)
— 2.34+(—5)-13
gcd(5,3) | 2= 5 —T- 3
~ 9341313 -1 (2-34+(-5) - 13)
= —3-34+8-13
ocd(3,2) ||1= 3 —1- 2
= 2-34+(=5)-13) —1. (-3-34+8-13))
= 534+ (—13)-13
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Integer linear combinations

Definition 64> An integer r is said to be a linear combination of a
pair of integers m and n whenever

there exist a pair of integers s and t, referred to as the
coefficients of the linear combination, such that

[st]-{m}ZT;

n

that is

s-m+t-n=r.

*See page 195.
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Theorem 87 For all positive integers m andn,
1. gcd(m,n) is a linear combination of m and n, and

2. apairlc;(m,n), le,(m,n) of integer coefficients for it
I.e. such that

m

} = ged(myn)
n

[ lc1(m,n) ICZ(m> TL) } . {

can be efficiently computed.
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Proposition 88 For all integers m andn,

tlanl[R]=m A [l [T] =
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Proposition 88 For all integers m andn,

tlanl[R]=m A [l [T] =

2. for all integers sq, t1, 11 and s,, t,, 1,

[31 t1]’{m}:r1 N\ [Sztz]’[m}:m

n n
implies
m
Y =T +T2
[1 z] {n} 1 2
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Proposition 88 For all integers m andn,

tlanl[R]=m A [l [T] =

2. for all integers sq, t1, 11 and s,, t,, 1,

[31 t1]’{m}:r1 N\ [Sztz]’[m}:m

n n
implies
m
SR =T1+712,
[1 2] {n} 1 2

3. for all integers k and s, t, r,

[st}-[:}:rimplies - ?2].{m}:k.

n

— 248-b —
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We extend Euclid’s Algorithm gcd(m,n) from computing on pairs
of positive integers to computing on pairs of triples ((s,t), r) with
s, t integers and r a positive integer satisfying the invariant that

s, t are coefficientes expressing r as an integer linear combination

of m and n.
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gcd

fun gcd(m , n )

= let
fun gcditer( rl , c as r2 )
= let
val (q,r) = divalg(rl,r2) (k r = rl-g*r2 *)
in
if r =0
then ¢
else gcditer( c , r )
end
in
gcditer( m n )
end
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egcd

fun egcd( m , n )

= let
fun egcditer( ((s1,t1),r1) , 1lc as ((s2,t2),r2) )
= let
val (q,r) = divalg(rl,r2) (k r = rl-g*r2 *)
in
if r =0
then lc
else egcditer( 1lc , ((sl-g*s2,tl-g*t2),r) )
end
1n
egcditer( ((1,0),m) , ((0,1),n) )
end
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fun gcd(m , n ) = #2( egcd( m , n ) )

fun 1lcil( m , n )

#1( #1( egcd(m , n ) ) )

fun 1c2( m , n )

#2( #1( egcd(m , n ) ) )
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Multiplicative inverses in modular arithmetic

Corollary 92 For all positive integers m and n,
1. n-le;(myn) = ged(m,n) (mod m), and

2. whenever gcd(m,n) =1,

lc;(m,m)| s the multiplicative inverse of [n]y, in Z, .
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Diffie-Hellman cryptographic method

Shared secret key
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Diffie-Hellman cryptographic method

Shared secret key

A & ;
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Diffie-Hellman cryptographic method

Shared secret key

A & ;

a b
$ $
[Ca]p — X B — [Cb]p
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Diffie-Hellman cryptographic method

Shared secret key

A & ;

a b
H H
[Ca]p — X @ @ B — [Cb]p
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Diffie-Hellman cryptographic method

Shared secret key

A & ;

a b
$ $
[c?], = « ® ® B =I[c"],
3 X
$ $
k= [B%, (o], =k
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Key exchange

Mathematical modelling:

» Encrypt and decrypt by means of modular exponentiation:
ke, [
» Encrypting-decrypting have no effect:

By Fermat’s Little Theorem,
k!*te=1 = ¥ (mod p)
for every natural number c, integer k, and prime p.

» Consider d,e,p suchthate-d=1+c- (p— 1); equivalently,
d-e=1(modp—1) .
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Lemma 93 Letp be a prime and e a positive integer with
ged(p — 1,e) = 1. Define

d = [1C2(p—1,€)}

Then, for all integers K,

p—1 -

(k®)4 =k (mod p) .

PROOF:
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(eA>dA) (eB>dB)
0<k<p
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(eA>dA) (eB>dB)
0<k<p

— 261-b —



(eA> dA)
0<k<p

[keA]p — My
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A
(eA> dA)
0<k<p
¢
[keA]p — My
my
¢
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A
(eA> dA)
0<k<p
¢
[keA]p — My
my
¢

[mZdA]p — M3
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Natural Numbers
and mathematical induction

We have mentioned in passing that the natural numbers are
generated from zero by succesive increments. This is in fact the
defining property of the set of natural numbers, and endows it with
a very important and powerful reasoning principle, that of

Mathematical Induction, for establishing universal properties of
natural numbers.
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Principle of Induction

Let P(m) be a statement for m ranging over the set of natural

numbers N.
|f

» the statement P(0) holds, and

» the statement
vneN. (Pn) = P(n+1))
also holds

then

» the statement
Ym € N.P(m)
holds.
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Binomial Theorem

Theorem 29 Foralln € N,

(x+y)" Zk 0 (k) X"yt

PROOF:
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Principle of Induction
from basis ¢

Let P(m) be a statement for m ranging over the natural
numbers greater than or equal a fixed natural number £.
If

» P({) holds, and

» Vn>(inN. (P(n) = P(n+1)) also holds
then

» Vm > {inN. P(m) holds.
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Principle of Strong Induction
from basis ¢ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural
numbers greater than or equal a fixed natural number <.
If both

» P({) and

» Vn > Cin N, ((Vke .n].P(k)) = P(n+1))
hold, then

» Vm > {in N.P(m) holds.
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Fundamental Theorem of Arithmetic

Proposition 95 Every positive integer greater than or equal 2 is a
prime or a product of primes.

PROOF:
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Theorem 96 (Fundamental Theorem of Arithmetic) For every
positive integer n there is a unique finite ordered sequence of
primes (p; < --- < py) with{ € N such that

n=1[[pn...,pd -

PROOF:
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Euclid’s infinitude of primes

Theorem 99 The set of primes is infinite.

PROOF:
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Sets
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,
4

1,1 1,2)  o(1,3) 14)  o(1,5)

Q( .( ® .(

2,1) 2,2) 2,3) 2,4) 2,5)

o21)  o(22) o[23) (24 ol

-
may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as

[.m,n o2 o(1.2) o22) o(13) o(23) o(14) o24) (1,5 .(2,5)]

D

for other considerations.

or even simply as
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are
available within it.
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Set membership

We write € for the membership predicate; so that
x € A stands for x is an element of A .
We further write

x & Afor—=(x € A) .

Example: 0 € {0,1}and 1 ¢ {0} are true statements.
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

Vsets A\B. A=B & (Vx.x€ A &< x€B)

Example:

0) 7 10,1} = 1,07 # {2} = 12,2
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Proposition 100 Forb,c € R, let

A = {xeC|x*—2bx+c=0)}
B = {b+vb —c,b—vb2—c}
C = {b}

Then,

1. A =B, and

2. B=C < b?=c.
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Subsets and supersets
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Lemma 103

1. Reflexivity.
For all sets A, A C A.

2. Transitivity.
Forall setsA,B,C, ACB ABCC) — A CC.

3. Antisymmetry.
Forall setsA,B, ACB AN BCA) — A =B.
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Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.

{x e A|P(x)}
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Russell’s paradox
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Empty set

Set theory has an
empty set ,
typically denoted
O or {},

with no elements.
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Cardinality

The cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S|.

Example:
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Finite sets

The finite sets are those with cardinality a natural number.

Example: Forn € N,
n] = {xeN|x<n}

IS finite of cardinality n.
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Powerset axiom

For any set, there is a set consisting of all its subsets.
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NB: The powerset construction can be iterated. In particular,
FeP(P(U) & FCPMU) ;

that is, & is a set of subsets of U, sometimes referred to as a family.

Example: The family & C P([5]) consisting of the non-empty sub-
sets of 5] ={0,1,2,3,4}whose elements are even is

C = {{O}>{2}>{4}>{O>2}>{O>4}>{2>4}>{O>2>4}} .
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Hasse diagrams
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Proposition 104 For all finite sets U,
H#P(U) =274

PROOF IDEA:
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Venn diagrams?

*From http://en.wikipedia.org/wiki/Intersection_(set_theory) .
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Union Intersection

Complement
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The powerset Boolean algebra

Forall A,B € P(U),

AUB = {xelU|xeAV xeB} €PU)

ANB = {xelU|xeA AxeB} €PU)

A = {xelU|—=(xeA)} c P(U)
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» The union operation U and the intersection operation N are
associative, commutative, and idempotent.

(AUBJUC=AU(BUC), AUB=BUA, AUA=A

(ANB)NC=AN(BNC), ANB=BNA, ANA=A
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» The union operation U and the intersection operation N are
associative, commutative, and idempotent.

(AUBJUC=AU(BUC), AUB=BUA, AUA=A

(ANB)NC=AN(BNC), ANB=BNA, ANA=A

» The empty set () is a neutral element for U and the universal
set U is a neutral element for N.

PUA =A =UNA
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» The empty set () is an annihilator for N and the universal set U
IS an annihilator for U.

DNA=10

UUA=U
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» The empty set () is an annihilator for N and the universal set U
IS an annihilator for U.

DNA=10

UUA=U

» With respect to each other, the union operation U and the
intersection operation N are distributive and absorptive.

AN(BUC)=(ANnB)U(ANC), AU(BNC)=(AUB)Nn(AUC)

AUANB) = A = AN(AUB)
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» The complement operation (- )¢ satisfies complementation laws.

AUA=U, ANA°={(
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Proposition 105 Let U be a setand let A,B € P(U).
1. VXePU). AUBCX & (ACX A BCX).
2.¥VXePU). XCANB & (XCA N XCB).

PROOF:
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Corollary 106 Let U be a set and let A, B, C € P(U).

1. C=AUB
iff
ACCABCC]

iff

VX ePU). (XCAANXCB) = XCC]
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Sets and logic

P(U) { false, true }
0 false
u true
U V
N /\
(+)° —(+)
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Pairing axiom

For every a and b, there is a set with a and b as its
only elements.

{a, b}
defined by

Vx.x € {a,b} &< (x=a V x =Db)

NB Theset{a, a}is abbreviated as{ a}, andreferred to as a singleton.
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Examples:

> #{0}=1

> #{{0}}=1

> #H 0, {0}}=2
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Proposition 107 For all a,b, c,x,y,
1. {x,y}C{a} = x=y=a
2. {c,xt={c¢,y} = x=y

PROOF:
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Ordered pairing

Notation:

(a,b) or (a,b)

Fundamental property:

(a,b) =(xy) = a=x Ab=y
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A construction:

For every pair a and b,

<a>b> — {{a}> {a>b}}

defines an ordered pairing of a and b.
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Proposition 108 (Fundamental property of ordered pairing)
For all a,b,x,y,

(a,b) = (x,y) &= (a=x N b=y)

PROOF:
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Products

The product A x B of two sets A and B is the set

AxB={x|JaecAbeB.x=(a,Db)}
where

VCL],azEA,bhszB.
(a;,bq) = (az,bz) &< (a; =a; /A b; = b;)

Thus,

Vx e AxB.dlae A.dlbe B.x=(a,b)
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Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal
components is formally

{(xeAXA | daeA.da, e Ax=(aq,a;) N ag=aqa;}
but often abbreviated using pattern-matching notation as

laya) eAXAlar=at .
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Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal
components is formally

{(xeAXA | daeA.da, e Ax=(aq,a;) N ag=aqa;}
but often abbreviated using pattern-matching notation as
tlan,a) EAXAlag=a} .

Notation: For a property P(a,b) with a ranging over a set A and b
ranging over a set B,

{(a,b) € AxB|P(a,b)}
abbreviates

{(xeAxB|daeA.dbeB.x=(a,b) A\ P(a,b)} .
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Proposition 110 For all finite sets A and B,

# (A XB) = #A-#B

PROOF IDEA:
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Sets and logic

P(U) { false, true }

0 false

u true

U \V4

N /\
(+)° —(+)

U =

M %
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Big unions

Example:

» Consider the family of sets

4 N\
the sum of the elements of
T = < TCI5]

\ T is less than or equal 2 )

= {0,{0}, (1}, {23, {0,13, {0, 2} }

» The big union of the family T is the set [ ] T given by the union of
the sets in T
nelJT &< dTeT.neT .

Hence, | JT ={0,1,2}.
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Definition 111 Let U be a set. For a collection of sets F € P(P(U)),
we let the big union (relative to U) be defined as

JF ={xeU|3AecF.xeA} €PU)
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Proposition 112 For all 3 € P(P(P(U))),

J(UT) = U{UA c P(U) \Aeff} cPU) .

PROOF:
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Big intersections

Example:
» Consider the family of sets

S = { S C [5] ‘ the sum of the elements of S is 6 }

= {{2,4},{0,2,4},{1,2,3},{0,1,2,3} }

» The big intersection of the family 8 is the set ()8 given by the
iIntersection of the sets In S:
ne()s & vSed.neSs

Hence, (1S ={2}.
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Definition 113 Let U be a set. For a collection of sets & C P(U),
we let the big intersection (relative to U ) be defined as

NF = {xeU|VAeTF.xecA} .
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Theorem 114 Let
F={SCR[(0€S) A (xeRxeS = (x+1)€S) |
Then, (i) N e Fand (ii) N C (F. Hence, (\F = N.

PROOF:
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Proposition 115 Let U be a set and let ¥ C P(U) be a family of
subsets of U.

1. Forall S € P(U),
S=U7F
iff
WAeﬁAgS}
A VX ePU).(VAeTF.ACX)=SCX]|

2. Forall T € P(U),
T=NF
iff
VAETF.TCA]
/\ [VYET(U).(VAe?.YgA)éYgT]
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Union axiom

Every collection of sets has a union.

UK

xelJTF & IXeTF.xeX
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For non-empty F we also have

ok

defined by

. xeNTF & (VXeTF.xeX)
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D1isjoint unions

Definition 116 The disjoint union A W B of two sets A and B is the
set

AWB = ({1} x A)U ({2} x B)

Thus,
Vx.x € (AWB) < (Ja€A.x=(1,a)) V (FIbeB.x=(2,b)).
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Proposition 118 For all finite sets A and B,
ANB=0 = #(AUB) = #A+ #B

PROOF IDEA:

Corollary 119 For all finite sets A and B,
#(AWB) = #A + #B
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Relations

Definition 121 A (binary) relation R from a set A to a set B

R:A—+—B or ReRelA,B) ,
IS

RCAxB or RePAxB)

Notation 122 One typically writes aRb for (a,b) € R.
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Informal examples:

» Computation.

» Typing.

» Program equivalence.
» Networks.

» Databases.
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Examples:

>

Empty relation.

D:A—+B (a )b < false)
Full relation.
(AxB):A—+B (a (A xXxB)b & true)

Identity (or equality) relation.
idA:{(a,a)IaeA}:A—HA (aidy @’ &< a=dad’)

Integer square root.
R={(mn)|m=n*}:N-+Z (MRn & m=n?%
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Internal diagrams

Example:
R=1{1(0,0),(0,—1),(0,1),(1,2),(1,1),(2,1) } :N——=Z
S=1{1(1,0),(1,2),(2,1),(2,3) } : Z—+>Z
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Relational extensionality
R=§:A—+—B

|ff
Vae A.VYbeB. aRb & aSb
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Relational composition
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Theorem 124 Relational composition is associative and has the
identity relation as neutral element.

» Associativity.
ForallR:A—+—B,S:B—+—C,andT:C—+—D,

(ToS)oR = To(SoR)

» Neutral element.
ForallR : A —+ B,

ROidA — R = idBOR
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Relations and matrices

Definition 125

1. For positive integers m andn, an (m x n)-matrix M over a
semiring (S,0,®,1,®) is given by entries M,; € S for all
0<i<mandl <j<n.

Theorem 126 Matrix multiplication is associative and has the

identity matrix as neutral element.
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Relations from [m] to [n] and (m x n)-matrices over Booleans
provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .
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Directed graphs

Definition 130 A directed graph (A, R) consists of a set A and a
relation R on A (i.e. a relation from A to A).
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Corollary 132 For every set A, the structure
(Rel(A), ida o)

IS a monoid.

Definition 133 ForR € Rel(A) andn € N, we let

R™ = Ro---oR € Rel(A)

Vs

n times

be defined asid, forn =0, andasRoR°™ forn =m + 1.
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Paths

Proposition 135 Let (A, R) be a directed graph. For alln € N and
s,t € A, s R°" t Iff there exists a path of length n. in R with source s
and target t.

PROOF:
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Definition 136 ForR € Rel(A), let

R* = J{R™€Rel(A) I neN} = [,y R

neN

Corollary 137 Let (A,R) be a directed graph. For all s,t € A,
s R°* t iff there exists a path with source s and targett in R.
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The (n x n)-matrix M = mat(R) of a finite directed graph ([n], R)
for n a positive integer is called its adjacency matrix.

The adjacency matrix M* = mat(R°*) can be computed by matrix
multiplication and addition as M,, where

y

M, = I,
\ My = In—l—(M'Mk)

This gives an algorithm for establishing or refuting the existence of
paths in finite directed graphs.
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Preorders

Definition 138 Apreorder ( P, C ) consists of a set P and a relation
C onP (i.e. C € P(P x P)) satisfying the following two axioms.

» Reflexivity.
Vx e P. xCx
» Iransitivity.

Vx,y,z€eP. xCy ANyLz) = xCz

— 400 —



Examples:
> (R,<)and (R, >).
> (P(A),C) and (P(A), 2).

> (Z, |).
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Theorem 140 ForR C A x A, let
Jr = {QCAXA | RCQ A Qisapreorder} .
Then, (i) R°* € Fk and (ii) R°* C () Fr. Hence, R°* = () k.

PROOF:
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Partial functions

Definition 141 A relation R : A —— B is said to be functional, and
called a partial function, whenever it is such that

\V/CLEA.\V/b],bzéB. aRb; A aRb, =— b; =0y
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Theorem 143 The identity relation is a partial function, and the
composition of partial functions yields a partial function.

NB
f=g:A—B
Iff
Vae A.(f(a)] & gla)l ) A f(a) =g(a)
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Example: The following are examples of partial functions.

» rational division —: Q x Q — Q, with domain of definition

{rys) €QxQJs#0};

» integer square root /—: Z — Z, with domain of definition
{meZ|IneZm=n?};

» real square root /—: R — R, whose domain of definition is
{x e R|x>0}.
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Proposition 144 For all finite sets A and B,
#(A=B) = (#B+1)™

PROOF IDEA:
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Functions (or maps)

Definition 145 A partial function is said to be total, and referred
fo as a (total) function or map, whenever its domain of definition
coincides with its source.

Theorem 146 For all f € Rel(A, B),

fe(A=B) & VaeA.d'beB. afb
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Proposition 147 For all finite sets A and B,
#(A=B) = #B™"

PROOF IDEA:
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Theorem 148 The identity partial function is a function, and the
composition of functions yields a function.

NB
1. f=g:A—=Biff Vae A.f(a) = g(a).

2. For all sets A, the identity function id, : A — A is given by the
rule
ida(a) = a

and, for all functions f: A — B and g : B — C, the composition
function go f: A — C is given by the rule

(gof)(a) =g(f(a))
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Inductive definitions

Examples:
» add:N? = N
)
< add(m,0) = m
\ add(m,n+1) = add(m,n) + 1
» S:N—- N
)
. S(0) = 0
\ Sm+1) = add(n,S(n))
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The function

P N—A

)

inductively defined from

,
acA

\ f:-NxA—A

IS the unique such that

y

pa,f(o) — a
pa,f(n+1) — f(n)paf(n))

\
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Examples:

» add:N? 5 N
add(m,n) = p,,(n) for f(x,y) =y + 1

» S: N — N

SES Po,add
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For a set A, consider a € A and a function f: N x A — A.
Definition 149 Define R C N x A to be (a, f)-closed whenever
» ORa, and
» VneN.Vxe A nRx — (n+1) R f(n,x).
Theorem 150 Letp,; = [|{RCE N x A |R s (a,f)-closed }.
1. The relation p : N —+ A Is functional and total.

2. The function p,; : N — A is the unique such that p,((0) = a
and p,((n+1) =f(n,p.(n)) foralin e N.
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Bijections

Definition 151 A function f : A — B is said to be bijective, or
a bijection, whenever there exists a (necessarily unique) function
g: B — A (referred to as the inverse of f) such that

1. g is aretraction (or left inverse) for f:

gOf:idA ,

2. g Is asection (orright inverse) for f:

ng:idB
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Proposition 153 For all finite sets A and B,

’

0 ,Iif#A # #B
n! ,If#A=#B=n

\

PROOF IDEA:
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Theorem 154 The identity function is a bijection, and the composi-
tion of bijections yields a bijection.
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Definition 155 Two sets A and B are said to be isomorphic (and
to have the same cardinatity) whenever there is a bijection between
them: in which case we write

A=B or #A =4+#DB

Examples:
1. {0, 1} = {false, true}.

2. N=N" |, N=Z , N=NxN, N=Q.
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Equivalence relations and set partitions

» Equivalence relations.
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» Set partitions.
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Theorem 158 For every set A,
EqRel(A) = Part(A)

PROOF:
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Calculus of bijections

» A=A ,A=B — B=A,(A=BAB=C) = A=C
» IfA=XandB = Y then
PA)=P(X) , AxB=XXxY , A”B=XWY ,
Rel(A,B) = Rel(X,Y) , (A=B)=(X=2Y) |,
(A=B)=(X=Y) , Bij(A,B)=BijX,Y)
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A=Z[1lxA , (AxB)xC=Ax(BxC), AxB=BxA

OJWA=A, AYBWC=2AW(BWC), AUB=BUWA

0] xA=[0] , (AWB)x C=(AxC)w (B xC)
A=0)=[1, (A= BxC)=(A=B)x(A=C)
(l0=A)=[1], (A’gB)=C)=(A=C)x (B=C)
(M=A)=A, (AxB)=C)= (A= (B= ()
(A=B)= (A= (Bwl]))

P(A) = (A= [2])
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Characteristic (or indicator) functions
PA) = (A =[2])
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Finite cardinality

Definition 160 A set A is said to be finite whenever A = [n] for
somen € N, in which case we write #+A = n.
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Theorem 161 For all m,n € N,

1. P([n]) = [2"]

> o AN W N
3 2
5
2
|12
£)
_|_
_:
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Infinity axiom

There is an infinite set, containing () and closed under successor.
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Bijections
Proposition 162 For a function f : A — B, the following are
equivalent.
1. f Is bijective.

2. VbeB.dlae A.f(a) =b.

3. (VbEB.HaGA.f(a):b)
A\
(V aj,a; € A.fla;) =flay) = a; = az)
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Surjections

Definition 163 A function f : A — B is said to be surjective, or a
surjection, and indicated f : A — B whenever

YbeB.3acA.fla)=b
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Theorem 164 The identity function is a surjection, and the
composition of surjections yields a surjection.

The set of surjections from A to B is denoted
Sur(A, B)
and we thus have

Bij(A,B) C Sur(A,B) € Fun(A,B) € PFun(A,B) C Rel(A,B) .
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Enumerability

Definition 166

1. A set A is said to be enumerable whenever there exists a
surjection N — A, referred to as an enumeration.

2. A countable set is one that is either empty or enumerable.
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Examples:

1. A bijective enumeration of Z.

—3 | 2|1
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2. A bijective enumeration of N x N.

=~ W DN
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Proposition 167 Every non-empty subset of an enumerable set is
enumerable.

PROOF:
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Countability

Proposition 168
1. N, Z, Q are countable sets.
2. The product and disjoint union of countable sets is countable.
3. Every finite set is countable.

4. Every subset of a countable set is countable.
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Axiom of choice

Every surjection has a section.
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Injections

Definition 169 A function f : A — B is said to be injective, or an
Injection, and indicated f : A — B whenever

Va,a € A (fla)) = flay)) = a1 =,
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Theorem 170 The identity function is an injection, and the compo-
sition of injections yields an injection.

The set of injections from A to B is denoted

Inj(A, B)
and we thus have

Sur(A, B)

¢ N

Z

Bij(A, B) Fun(A,B) € PFun(A,B) C Rel(A,B)

o
A <

Inj(A, B)

with

Bij(A,B) = Sur(A,B)NInj(A,B)
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Proposition 171 For all finite sets A and B,

’

(A5) - (#A) | if#A < #B

0 , otherwise

\

PROOF IDEA:
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Relational images

Definition 174 LetR : A —+— B be a relation.

» Thedirectimage of X C A under R is the set?(X) C B, defined
as

R(X) = {beB|3xecX.xRb} .

NB This construction yields a function ? : P(A) — P(B).
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. . . —
» Theinverse image of Y C B underR is the set R(Y) C A,

defined as

R(Y) = {acA|VbeB.aRb = beY)

NB This construction yields a function R : P(B) — P(A).
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Replacement axiom

The direct image of every definable functional property
on a set is a set.
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Set-indexed constructions

For every mapping associating a set A; to each element of a set I,
we have the set

Uier A = U{AiHEI} = {aIEIiGI.aGAi} .
Examples:

1. Indexed disjoint unions:
L"jiel Ay = Uiel 1 x A4

2. Finite sequences on a set A:

A" = wnEN A"
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3. Finite partial functions from a set A to a set B:
(A=q, B) = HSGTﬁn(A) (S=B)
where

Pan(A) = {S C A Sis finite }

4. Non-empty indexed intersections: for I = 0,

Niar Av = {xelUAilVielLxe A}

5. Indexed products:

[TaA = { ae (1= UgA) | YieLad ea )
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Proposition 177 An enumerable indexed disjoint union of
enumerable sets is enumerable.

PROOF:

Corollary 179 If X and A are countable sets then so are A*,

:Pﬁn(A)J and (X iﬁm A) .
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THEOREM OF THE DAY

Cantor’s Uncountability Theorem There are uncountably many infinite 0-1 sequences.

Proof: Suppose you could count the sequences. Label them in order: S, S5, S3,..., and denote by S;(j) the j-th entry of sequence S;. Now
define a new sequence, S, whose i-th entry is S;(/)+ 1 (mod 2). So S is S 1(1)+1,5,(2)+1,53(3)+1,S44)+1,..., with all entries remaindered
modulo 2. S is certainly an infinite sequence of Os and 1s. So it must appear in our list: it is, say, Sy, so its k-th entry is (k). But this is, by
definition, S (k) + 1 (mod 2) # S,(k). So we have contradicted the possibility of forming our enumeration. QED.

The theorem establishes that the real numbers are uncountable — that is, they cannot be enumerated in a list indexed by the positive integers
(1, 2, 3,...). To see this informally, consider the infinite sequences of Os and 1s to be the binary expansions of fractions (e.g. 0.010011... =
0/2+1/4+0/8+0/16+1/32+1/64 +...). More generally, it says that the set of subsets of a countably infinite set is uncountable, and to see
that, imagine every 0-1 sequence being a different recipe for building a subset: the i-th entry tells you whether to include the i-th element (1) or
exclude it (0).

Georg Cantor (1845-1918) discovered this theorem in 1874 but it apparently took another twenty years of thought about what
were then new and controversial concepts: ‘sets’, ‘cardinalities’, ‘orders of infinity’, to invent the important proof given here,
using the so-called diagonalisation method.

Web link: www.math.hawaii.edu/~dale/godel/godel.html. There is an interesting discussion on mathoverflow.net about the history of diagonalisation:
type ‘earliest diagonal’ into their search box.

Further reading: Mathematics: the Loss of Certainty by Morris Kline, Oxford University Press, New York, 1980.

Created by Robin Whitty for www.theoremoftheday.org ﬁ
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Unbounded cardinality

Theorem 180 (Cantor’s diagonalisation argument) For every
set A, no surjection from A to P(A) exists.

PROOF:
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Definition 181 A fixed-point of a function f : X — X is an element
x € X such that f(x) = x.

Theorem 182 (Lawvere’s fixed-point argument) For sets A and
X, if there exists a surjection A — (A = X) then every function
X — X has a fixed-point; and hence X is a singleton.

PROOF:
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Corollary 183 The sets
PN) = (N=[2]) = [0,1] = R

are not enumerable.

Corollary 184 There are non-computable infinite sequences of
bits.
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Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of e-Induction .
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