
Notes

for Part IA CST 2025/26

Discrete Mathematics

<www.cl.cam.ac.uk/teaching/2526/DiscMath>

Prof Marcelo Fiore

Marcelo.Fiore@cl.cam.ac.uk

Dr Jon Sterling

js2878@cl.cam.ac.uk

— 0 —

A Zen story
from the Introduction of

Mathematics Made Difficult by C.E. Linderholme

One of the great Zen masters had an eager disciple who never lost

an opportunity to catch whatever pearls of wisdom might drop from

the master’s lips, and who followed him about constantly. One day,

deferentially opening an iron gate for the old man, the disciple asked,

‘How may I attain enlightenment?’ The ancient sage, though with-

ered and feeble, could be quick, and he deftly caused the heavy

gate to shut on the pupil’s leg, breaking it.

— 1 —

What are we up to ?

◮ Learn to read and write, and also work with, mathematical

arguments.

◮ Doing some basic discrete mathematics.

◮ Getting a taste of computer science applications.

— 2 —

What is Discrete Mathematics ?

from Discrete Mathematics (second edition) by N. Biggs

Discrete Mathematics is the branch of Mathematics in which we

deal with questions involving finite or countably infinite sets. In

particular this means that the numbers involved are either integers,

or numbers closely related to them, such as fractions or ‘modular’

numbers.

— 3 —

What is it that we do ?

In general:

Build mathematical models and apply methods to analyse

problems that arise in computer science.

In particular:

Make and study mathematical constructions by means of

definitions and theorems. We aim at understanding their

properties and limitations.

— 4 —

Application areas

algorithmics - compilers - computability - computer aided

verification - computer algebra - complexity - cryptography -

databases - digital circuits - discrete probability - model checking -

network routing - program correctness - programming languages -

security - semantics - type systems

— 5 —

Lecture plan

I. Proofs.

II. Numbers.

III. Sets.

IV. Regular languages and finite automata.

— 6 —

I. Proofs

1. Preliminaries (pages 11–13) and introduction (pages 14–40).

2. Implication (pages 42–56) and bi-implication (pages 57–63).

3. Universal quantification (pages 63–76) and

conjunction (pages 77–85).

4. Existential quantification (pages 85–100).

5. Disjunction (pages 104–115) and a little

arithmetic (pages 116–133).

6. Negation (pages 133–153).

— 7 —

II. Numbers

7. Number systems (pages 154–175).

8. The division theorem and algorithm (pages 176–188) and

modular arithmetic (pages 188–198).

9. On sets (pages 198–206), the greatest common divisor

(pages 207–214), and Euclid’s algorithm (pages 215–238) and

theorem (pages 238–245).

10. The Extended Euclid’s Algorithm (pages 245–259) and the

Diffie-Hellman cryptographic method (pages 259–264).

11. The Principle of Induction (pages 265–283), the Principle of

Induction from a basis (pages 283–287), and the Principle of

Strong Induction from a basis (pages 287–308).

— 8 —

III. Sets

12. Extensionality, subsets and supersets, separation, Russell’s

paradox, empty set, powerset, Hasse and Venn diagrams

(pages 309–335).

13. The powerset Boolean algebra, unordered and ordered pairing,

products, big unions, big intersections (pages 336–372).

14. Disjoint unions, relations, internal diagrams, relational

composition, matrices (pages 373–394).

15. Directed graphs, reachability, preorders, reflexive-transitive

closure (pages 395–405).

— 9 —

16. Partial functions, (total) functions, bijections, equivalence

relations and set partitions (pages 406–434).

17 Calculus of bijections, characteristic (or indicator) functions,

finite and infinite sets, surjections (pages 435–447).

18. Enumerability and countability, choice, injections,

Cantor-Bernstein-Schroeder theorem (pages 448–460).

19. Direct and inverse images, replacement and set-indexing,

unbounded cardinality, foundation (pages 461–485).

— 10 —

Preliminaries

Complementary reading:

◮ Preface and Part I of How to Think Like a Mathematician by

K. Houston.

— 11 —

Some friendly advice
by K. Houston from the Preface of

How to Think Like a Mathematician

• It’s up to you. • Be active.

• Think for yourself. • Question everything.

• Observe. • Prepare to be wrong.

• Seek to understand. • Develop your intuition.

• Collaborate. • Reflect.

— 12 —

Study skills
Part I of How to Think Like a Mathematician

by K. Houston

◮ Reading mathematics

◮ Writing mathematics

◮ How to solve problems

— 13 —

Proofs

Topics

Proofs in practice. Mathematical jargon: statement, predicate,

theorem, proposition, lemma, corollary, conjecture, proof, logic,

axiom, definition. Mathematical statements: implication,

bi-implication, universal quantification, conjunction, existential

quantification, disjunction, negation. Logical deduction: proof

strategies and patterns, scratch work, logical equivalences.

Proof by contradiction. Divisibility and congruences. Fermat’s

Little Theorem.

— 14 —

Complementary reading:

◮ Parts II, IV, and V of How to Think Like a Mathematician by

K. Houston.

◮ Chapters 1 and 8 of Mathematics for Computer Science by

E. Lehman, F. T. Leighton, and A. R. Meyer.

⋆ Chapter 3 of How to Prove it by D. J. Velleman.

⋆ Chapter II of The Higher Arithmetic by H. Davenport.

— 15 —

Objectives

◮ To develop techniques for analysing and understanding

mathematical statements.

◮ To be able to present logical arguments that establish

mathematical statements in the form of clear proofs.

◮ To prove Fermat’s Little Theorem, a basic result in the

theory of numbers that has many applications in

computer science; and that, in passing, will allow

you to solve the following . . .

— 16 —

Puzzle

5 pirates have accumulated a tower of n cubes each of which con-

sists of n3 golden dice, for an unknown (but presumably large) num-

ber n. This treasure is put on a table around which they sit on chairs

numbered from 0 to 4, and they are to split it by simultaneously tak-

ing a die each with every tick of the clock provided that five or more

dice are available on the table. At the end of this process there will

be r remaining dice which will go to the pirate sitting on the chair

numbered r. What chair should a pirate sit on to maximise his

gain?

— 17 —

Proofs in practice

We are interested in examining the following statement:

The product of two odd integers is odd.

This seems innocuous enough, but it is in fact full of baggage.

For instance, it presupposes that you know:

◮ what a statement is;

◮ what the integers (. . . ,−1, 0, 1, . . .) are, and that amongst them

there is a class of odd ones (. . . ,−3,−1, 1, 3, . . .);

◮ what the product of two integers is, and that this is in turn an

integer.

— 18 —

More precisely put, we may write:

If m and n are odd integers then so is m · n.

which further presupposes that you know:

◮ what variables are;

◮ what

if . . . then . . .

statements are, and how one goes about proving them;

◮ that the symbol “·” is commonly used to denote the product

operation.

— 19 —

Even more precisely, we should write

For all integers m and n, if m and n are odd then so

is m · n.

which now additionally presupposes that you know:

◮ what

for all . . .

statements are, and how one goes about proving them.

Thus, in trying to understand and then prove the above statement,

we are assuming quite a lot of mathematical jargon that one needs

to learn and practice with to make it a useful, and in fact very pow-

erful, tool.

— 20 —

Some mathematical jargon

Statement

A sentence that is either true or false — but not both.

Example 1

‘ei π + 1 = 0’

Non-example

‘This statement is false’

— 21 —

THEOREM OF THE DAY
Euler’s Identity With τ and e the mathematical constants
τ = 2π = 6.2831853071 7958647692 5286766559 0057683943 3879875021 1641949889 1846156328 1257241799 7256069650 6842341359 . . .

and
e = 2.7182818284 5904523536 0287471352 6624977572 4709369995 9574966967 6277240766 3035354759 4571382178 5251664274 . . .

(the first 100 places of decimal being given), and using i to denote
√
−1, we have

eiτ/2
+ 1 = 0.

Squaring both sides of eiτ/2
= −1 gives eiτ

= 1, encoding the defining fact that τ radians measures one full circumference. The calculation can
be confirmed explicitly using the evaluation of ez, for any complex number z, as an infinite sum: ez

= 1 + z + z2/2! + z3/3! + z4/4! + The

even powers of i =
√
−1 alternate between 1 and −1, while the odd powers alternate between i and −i, so we get two separate sums, one with

i’s (the imaginary part) and one without (the real part). Both converge rapidly as shown in the two plots above: the real part to 1, the imaginary
to 0. In the limit equality is attained, eiτ

= 1 + 0 × i, whence eτi = 1. The value of eiτ/2 may be confirmed in the same way.

Combining as it does the six most fundamental constants of mathematics: 0, 1, 2, i, τ and e, the identity has an air of magic.
J.H. Conway, in The Book of Numbers, traces the identity to Leonhard Euler’s 1748 Introductio; certainly Euler deserves
credit for the much more general formula eiθ

= cos θ + i sin θ, from which the identity follows using θ = τ/2 radians (180◦).

Web link: fermatslasttheorem.blogspot.com/2006/02/eulers-identity.html

Further reading: Dr Euler’s Fabulous Formula: Cures Many Mathematical Ills, by Paul J. Nahin, Princeton University Press, 2006

From www.theoremoftheday.org by Robin Whitty. This file hosted by London South Bank University

— 22 —

Predicate

A statement whose truth depends on the value of one

or more variables.

Example 2

1. ‘ei x = cos x+ i sin x’

2. ‘the function f is differentiable’

— 23 —

Theorem

A very important true statement.

Proposition

A less important but nonetheless interesting true statement.

Lemma

A true statement used in proving other true statements.

Corollary

A true statement that is a simple deduction from a theorem

or proposition.

Example 3

1. Fermat’s Last Theorem

2. The Pumping Lemma

— 24 —

THEOREM OF THE DAY
Fermat’s Last Theorem If x, y, z and n are integers satisfying

xn + yn = zn
,

then either n ≤ 2 or xyz = 0.

It is easy to see that we can assume that all the integers in the theorem are positive. So the following is a legitimate, but totally different, way

of asserting the theorem: we take a ball at random from Urn A; then replace it and take a 2nd ball at random. Do the same for Urn B. The

probability that both A balls are blue, for the urns shown here, is 5
7
×

5
7
. The probability that both B balls are the same colour (both blue or both

red) is (4
7
)2 + (3

7
)2. Now the Pythagorean triple 52 = 32 + 42 tells us that the probabilities are equal: 25

49
= 9

49
+ 16

49
. What if we choose n > 2 balls

with replacement? Can we again fill each of the urns with N balls, red and blue, so that taking n with replacement will give equal probabilities?

Fermat’s Last Theorem says: only in the trivial case where all the balls in Urn A are blue (which includes, vacuously, the possibility that N = 0.)

Another, much more profound restatement: if an + bn, for n > 2 and positive integers a and b, is again an n-th power of an integer then the

elliptic curve y2 = x(x − an)(x + bn), known as the Frey curve, cannot be modular (is not a rational map of a modular curve). So it is enough to

prove the Taniyama-Shimura-Weil conjecture: all rational elliptic curves are modular.

Fermat’s innocent statement was famously left unproved when he died in 1665 and was the last of his unproved ‘theorems’ to
be settled true or false, hence the name. The non-modularity of the Frey curve was established in the 1980s by the successive
efforts of Gerhard Frey, Jean-Pierre Serre and Ken Ribet. The Taniyama-Shimura-Weil conjecture was at the time thought to be
‘inaccessible’ but the technical virtuosity (not to mention the courage and stamina) of Andrew Wiles resolved the ‘semistable’
case, which was enough to settle Fermat’s assertion. His work was extended to a full proof of Taniyama-Shimura-Weil during
the late 90s by Christophe Breuil, Brian Conrad, Fred Diamond and Richard Taylor.

Web link: math.stanford.edu/∼lekheng/flt/kleiner.pdf

Further reading: Fermat’s Last Theorem by Simon Singh, Fourth Estate Ltd, London, 1997.

Created by Robin Whitty for www.theoremoftheday.org

— 25 —

THEOREM OF THE DAY
The Pumping Lemma Let L be a regular language. Then there is a positive integer p such that any
word w ∈ L of length exceeding p can be expressed as w = xyz, |y| > 0, |xy| ≤ p, such that, for all i ≥ 0,
xyiz is also a word of L.

Regular languages over an alphabet Σ (e.g. {0, 1}) are precisely those strings of letters which are ‘recognised’ by some deterministic finite

automaton (DFA) whose edges are labelled from Σ. Above left, such a DFA is shown, which recognises the language consisting of all positive

multiples of 7, written in base two. The number 95 × 7 = 665 = 29
+ 27

+ 24
+ 23

+ 20 is expressed in base 2 as 1010011001. Together with

any leading zeros, these digits, read left to right, will cause the edges of the DFA to be traversed from the initial state (heavy vertical arrow) to

an accepting state (coincidentally the same state, marked with a double circle), as shown in the table below the DFA. Notice that the bracketed

part of the table corresponds to a cycle in the DFA and this may occur zero or more times without affecting the string’s recognition. This is the

idea behind the pumping lemma, in which p, the ‘pumping length’, may be taken to be the number of states of the DFA.

So a DFA can be smart enough to recognise multiples of a particular prime number. But it cannot be smart enough recognise all prime numbers,

even expressed in unary notation (2 = aa, 3 = aaa, 5 = aaaaa, etc). The proof, above right, typifies the application of the pumping lemma in

disproofs of regularity : assume a recognising DFA exists and exhibit a word which, when ‘pumped’ must fall outside the recognised language.

This lemma, which generalises to context-free languages, is due to Yehoshua Bar-Hillel (1915–1975), Micha Perles and Eli Shamir.
Web link: www.seas.upenn.edu/˜cit596/notes/dave/pumping0.html (and don’t miss www.cs.brandeis.edu/˜mairson/poems/node1.html!)

Further reading: Models of Computation and Formal Languages by R Gregory Taylor, Oxford University Press Inc, USA, 1997.

Created by Robin Whitty for www.theoremoftheday.org

— 26 —

Conjecture

A statement believed to be true, but for which we have no proof.

Example 4

1. Goldbach’s Conjecture

2. The Riemann Hypothesis

— 27 —

Proof

Logical explanation of why a statement is true; a method for

establishing truth.

Logic

The study of methods and principles used to distinguish

good (correct) from bad (incorrect) reasoning.

Example 5

1. Classical predicate logic

2. Hoare logic

3. Temporal logic

— 28 —

Axiom

A basic assumption about a mathematical situation.

Axioms can be considered facts that do not need to be

proved (just to get us going in a subject) or they can be

used in definitions.

Example 6

1. Euclidean Geometry

2. Riemannian Geometry

3. Hyperbolic Geometry

— 29 —

Definition

An explanation of the mathematical meaning of a word (or

phrase).

The word (or phrase) is generally defined in terms of prop-

erties.

Warning: It is vitally important that you can recall definitions

precisely. A common problem is not to be able to advance in

some problem because the definition of a word is unknown.

— 30 —

Definition, theorem, intuition, proof
in practice

Definition 7 An integer is said to be odd whenever it is of the form

2 · i+ 1 for some (necessarily unique) integer i.

Proposition 8 For all integers m and n, if m and n are odd then so

is m · n.

— 31 —

Intuition:

— 32 —

YOUR PROOF OF Proposition 8 (on page 31):

— 33 —

MY PROOF OF Proposition 8 (on page 31) : Let m and n be

arbitrary odd integers. Thus, m = 2 · i + 1 and n = 2 · j + 1 for

some integers i and j. Hence, we have that m · n = 2 · k + 1 for

k = 2 · i · j+ i+ j, showing that m · n is odd.

— 34 —

Warning: Though the scratch work

m = 2 · i+ 1 n = 2 · j+ 1

∴

m · n = (2 · i+ 1) · (2 · j+ 1)

= 4 · i · j+ 2 · i+ 2 · j+ 1

= 2 · (2 · i · j+ i+ j) + 1

contains the idea behind the given proof,

I will not accept it as a proof!

— 35 —

Mathematical proofs . . .

A mathematical proof is a sequence of logical deductions from

axioms and previously proved statements that concludes with

the proposition in question.

The axiom-and-proof approach is called the axiomatic method.

— 36 —

. . . in computer science

Mathematical proofs play a growing role in computer science

(e.g. they are used to certify that software and hardware will

always behave correctly; something that no amount of testing

can do).

For a computer scientist, some of the most important things to

prove are the correctness of programs and systems —whether

a program or system does what it’s supposed to do. Developing

mathematical methods to verify programs and systems remains

and active research area.

— 37 —

Writing good proofs
from Section 1.9 of Mathematics for Computer Science

by E. Lehman, F.T. Leighton, and A.R. Meyer

◮ State your game plan.

◮ Keep a linear flow.

◮ A proof is an essay, not a calculation.

◮ Avoid excessive symbolism.

◮ Revise and simplify.

◮ Introduce notation thoughtfully.

◮ Structure long proofs.

◮ Be wary of the “obvious”.

◮ Finish.
— 38 —

How to solve it
by G. Polya

◮ You have to understand the problem.

◮ Devising a plan.

Find the connection between the data and the unknown.

You may be obliged to consider auxiliary problems if an

immediate connection cannot be found. You should ob-

tain eventually a plan of the solution.

◮ Carry out your plan.

◮ Looking back.

Examine the solution obtained.

— 39 —

Simple and composite statements

A statement is simple (or atomic) when it cannot be broken into

other statements, and it is composite when it is built by using several

(simple or composite statements) connected by logical expressions

(e.g., if. . . then. . . ; . . . implies . . . ; . . . if and only if . . . ; . . . and. . . ;

either . . . or . . . ; it is not the case that . . . ; for all . . . ; there exists . . . ;

etc.)

Examples:

‘2 is a prime number’

‘for all integers m and n, if m ·n is even then either n or m are even’

— 40 —

Proof Structure

Assumptions Goals

statements that statements

may be used to be

for deduction established

— 41 —

Implication

Theorems can usually be written in the form

if a collection of assumptions holds,

then so does some conclusion

or, in other words,

a collection of assumptions implies some conclusion

or, in symbols,

a collection of hypotheses =⇒ some conclusion

NB Identifying precisely what the assumptions and conclusions are

is the first goal in dealing with a theorem.

— 42 —

Implications

◮ How to prove them as goals.

◮ How to use them as assumptions.

— 43 —

How to prove implication goals

The main proof strategy for implication:

To prove a goal of the form

P =⇒ Q

assume that P is true and prove Q.

NB Assuming is not asserting! Assuming a statement amounts to

the same thing as adding it to your list of hypotheses.

— 44 —

Proof pattern:

In order to prove that

P =⇒ Q

1. Write: Assume P.

2. Show that Q logically follows.

— 45 —

Scratch work:

Before using the strategy

Assumptions Goal

P =⇒ Q
...

After using the strategy

Assumptions Goal

Q
...

P

— 46 —

Proposition 8 If m and n are odd integers, then so is m · n.

YOUR PROOF:

— 47 —

MY PROOF: Assume that m and n are odd integers. That is, by

definition, assume that m = 2 · i + 1 for some integer i and that

n = 2 · j + 1 for some integer j. Hence, we have that m · n =

(2 · i+ 1) · (2 · j+ 1) = 2 · (2 · i · j+ i+ j) + 1 and thus m ·n = 2 · k+ 1

for the integer k = 2 · i · j+ i+ j, showing that m · n is indeed odd.

— 48 —

Definition 9 A real number is:

◮ rational if it is of the form m/n for a pair of integers m and n;

otherwise it is irrational.

◮ positive if it is greater than 0, and negative if it is smaller than 0.

◮ nonnegative if it is greater than or equal 0, and nonpositive if it

is smaller than or equal 0.

◮ natural if it is a nonnegative integer.

— 49 —

Proposition 10 Let x be a positive real number. If
√
x is rational

then so is x.

YOUR PROOF:

— 50 —

MY PROOF: Assume that x is a positive real number and that
√
x

is a rational number. That is, by definition,
√
x = m/n for some

integers m and n. It follows that x = m2/n2 and, since m2 and n2 are

natural numbers, we have that x is a rational number as required.

— 51 —

How to use implication assumptions

Logical Deduction by Modus Ponens

A main rule of logical deduction is that of Modus Ponens:

From the statements P and P =⇒ Q,

the statement Q follows.

or, in other words,

If P and P =⇒ Q hold then so does Q.

or, in symbols,

P P =⇒ Q

Q

— 52 —

The use of implications:

To use an assumption of the form P =⇒ Q,

aim at establishing P.

Once this is done, by Modus Ponens, one can

conclude Q and so further assume it.

— 53 —

Theorem 11 Let P1, P2, and P3 be statements. If P1 =⇒ P2 and

P2 =⇒ P3 then P1 =⇒ P3.

Scratch work:

Assumptions Goal

P3

(i) P1, P2, and P3 are statements.

(ii) P1 =⇒ P2

(iii) P2 =⇒ P3

(iv) P1

— 54 —

Now, by Modus Ponens from (ii) and (iv), we have that

(v) P2 holds

and, by Modus Ponens from (iii) and (v), we have that

P3 holds

as required.

Homework Turn the above scratch work into a proof.

— 55 —

NB Often a proof of P =⇒ Q factors into a chain of implications,

each one a manageble step:

P =⇒ P1

=⇒ P2

...

=⇒ Pn

=⇒ Q

which is shorthand for

P =⇒ P1 , P1 =⇒ P2 , . . . , Pn =⇒ Q .

— 56 —

Bi-implication

Some theorems can be written in the form

P is equivalent to Q

or, in other words,

P implies Q, and vice versa

or

Q implies P, and vice versa

or

P if, and only if, Q P iff Q

or, in symbols,

P ⇐⇒ Q

— 57 —

Proof pattern:

In order to prove that

P ⇐⇒ Q

1. Write: (=⇒) and give a proof of P =⇒ Q.

2. Write: (⇐=) and give a proof of Q =⇒ P.

— 58 —

Divisibility and congruence

Definition 12 Let d and n be integers. We say that d divides n,

and write d | n, whenever there is an integer k such that n = k · d.

Btw Other terminologies for the notation d | n are ‘d is a factor of

n’, ‘n is divisible by d’, and ‘n is a multiple of d’.

Example 13 The statement 2 | 4 is true, while 4 | 2 is not.

NB The symbol “ | ” is not an operation on integers; it is a

predicate, i.e. a property that a pair of integers may or may not

have between themselves.

— 59 —

Definition 14 Fix a positive integer m. For integers a and b, we

say that a is congruent to b modulo m, and write a ≡ b (mod m),

whenever m | (a− b).

Example 15

1. 18 ≡ 2 (mod 4)

2. 2 ≡ −2 (mod 4)

3. 18 ≡ −2 (mod 4)

— 60 —

NB The notion of congruence vastly generalises that of even and

odd:

Proposition 16 For every integer n,

1. n is even if, and only if, n ≡ 0 (mod 2), and

2. n is odd if, and only if, n ≡ 1 (mod 2).

Homework Prove the above proposition.

— 61 —

The use of bi-implications:

To use an assumption of the form P ⇐⇒ Q, use it as two

separate assumptions P =⇒ Q and Q =⇒ P.

— 62 —

Universal quantifications

◮ How to prove them as goals.

◮ How to use them as assumptions.

— 63 —

Universal quantification

Universal statements are of the form

for all individuals x of the universe of discourse,

the property P(x) holds

or, in other words,

no matter what individual x in the universe of discourse

one considers, the property P(x) for it holds

or, in symbols,

∀x. P(x)

— 64 —

Example 17

1. Proposition 8 (on page 31).

2. (Proposition 10 on page 50) For every positive real number x,

if
√
x is rational then so is x.

3. (Proposition 42 on page 148) For every integer n, we have that

n is even iff so is n2.

4. Proposition 16 (on page 61).

— 65 —

The main proof strategy for universal statements:

To prove a goal of the form

∀x. P(x)
let x stand for an arbitrary individual and prove P(x).

— 66 —

Proof pattern:

In order to prove that

∀x. P(x)

1. Write: Let x be an arbitrary individual.

Warning: Make sure that the variable x is new (also

referred to as fresh) in the proof! If for some reason the

variable x is already being used in the proof to stand for

something else, then you must use an unused variable,

say y, to stand for the arbitrary individual, and prove

P(y).

2. Show that P(x) holds.

— 67 —

Scratch work:

Before using the strategy

Assumptions Goal

∀x. P(x)
...

After using the strategy

Assumptions Goal

P(x) (for a new (or fresh) x)
...

— 68 —

Example:

unprovable

Assumptions Goal
... for all integers n, n ≥ 1

n > 0
...

— 69 —

How to use universal statements

Assumptions

...

∀x. x2 ≥ 0

...

π2 ≥ 0

e2 ≥ 0

02 ≥ 0

...

— 70 —

The use of universal statements:

To use an assumption of the form ∀x. P(x), you can plug in

any value, say a, for x to conclude that P(a) is true and so

further assume it.

This rule is called universal instantiation.

— 71 —

Proposition 18 Fix a positive integer m. For integers a and b, we

have that a ≡ b (mod m) if, and only if, for all positive integers n, we

have that n · a ≡ n · b (mod n ·m).

YOUR PROOF:

— 72 —

MY PROOF: Let m and a, b be integers with m positive.

(=⇒) Assume that a ≡ b (mod m); that is, by definition, that

a− b = k ·m for some integer k. We need show that for all

positive integers n,

n · a ≡ n · b (mod n ·m) .

Indeed, for an arbitrary positive integer n, we then have that

n · a− n · b = n · (a− b) = n · k ·m; so that n ·m | (n · a− n · b),
and hence we are done.

(⇐=) Assume that for all positive integers n, we have that

n · a ≡ n · b (mod n ·m). In particular, we have this property for

n = 1, which states that 1 · a ≡ 1 · b (mod 1 ·m); that is,

that a ≡ b (mod m).

— 73 —

Equality in proofs

Examples:

◮ If a = b and b = c then a = c.

◮ If a = b and x = y then a+ x = b+ x = b+ y.

— 74 —

Equality axioms

Just for the record, here are the axioms for equality.

◮ Every individual is equal to itself.

∀ x. x = x

◮ For any pair of equal individuals, if a property holds for one of

them then it also holds for the other one.

∀ x.∀y. x = y =⇒
(

P(x) =⇒ P(y)
)

— 75 —

NB From these axioms one may deduce the usual intuitive

properties of equality, such as

∀ x.∀y. x = y =⇒ y = x

and

∀ x.∀y.∀ z. x = y =⇒ (y = z =⇒ x = z) .

However, in practice, you will not be required to formally do so;

rather you may just use the properties of equality that you are

already familiar with.

— 76 —

Conjunctions

◮ How to prove them as goals.

◮ How to use them as assumptions.

— 77 —

Conjunction

Conjunctive statements are of the form

P and Q

or, in other words,

both P and also Q hold

or, in symbols,

P ∧ Q or P & Q

— 78 —

The proof strategy for conjunction:

To prove a goal of the form

P ∧ Q

first prove P and subsequently prove Q (or vice versa).

— 79 —

Proof pattern:

In order to prove

P ∧ Q

1. Write: Firstly, we prove P. and provide a proof of P.

2. Write: Secondly, we prove Q. and provide a proof of Q.

— 80 —

Scratch work:

Before using the strategy

Assumptions Goal

P ∧ Q
...

After using the strategy

Assumptions Goal Assumptions Goal

P Q
...

...

— 81 —

The use of conjunctions:

To use an assumption of the form P ∧ Q,

treat it as two separate assumptions: P and Q.

— 82 —

Theorem 19 For every integer n, we have that 6 | n iff 2 | n and

3 | n.

YOUR PROOF:

— 83 —

MY PROOF: Let n be an arbitrary integer.

(=⇒) Assume 6 | n; that is, n = 6 · k for some integer k.

Firstly, we show that 2 | n; which is indeed the case because n =

2 · (3 · k).

Secondly, we show that 3 | n; which is indeed the case because

n = 3 · (2 · k).

(⇐=) Assume that 2 | n and that 3 | n. Thus, n = 2 · i for an integer

i and also n = 3 · j for an integer j. We need prove that n = 6 · k for

some integer k. The following calculation shows that this is indeed

the case:

6 · (i− j) = 3 · (2 · i) − 2 · (3 · j) = 3 · n− 2 · n = n .

— 84 —

Existential quantifications

◮ How to prove them as goals.

◮ How to use them as assumptions.

— 85 —

Existential quantification

Existential statements are of the form

there exists an individual x in the universe of

discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the

property P(x) holds

or, in symbols,

∃x. P(x)

— 86 —

Example: The Pigeonhole Principle a .

Let n be a positive integer. If n + 1 letters are put in n

pigeonholes then there will be a pigeonhole with more than

one letter.

aSee also page 378.
— 87 —

Theorem 20 (Intermediate value theorem) Let f be a real-valued

continuous function on an interval [a, b]. For every y in between f(a)

and f(b), there exists v in between a and b such that f(v) = y.

Intuition:

— 88 —

The main proof strategy for existential statements:

To prove a goal of the form

∃x. P(x)
find a witness for the existential statement; that is, a value

of x, say w, for which you think P(x) will be true, and show

that indeed P(w), i.e. the predicate P(x) instantiated with

the value w, holds.

— 89 —

Proof pattern:

In order to prove

∃x. P(x)

1. Write: Let w = . . . (the witness you decided on).

2. Provide a proof of P(w).

— 90 —

Scratch work:

Before using the strategy

Assumptions Goal

∃x. P(x)
...

After using the strategy

Assumptions Goals

P(w)
...

w = . . . (the witness you decided on)

— 91 —

Proposition 21 For every positive integer k, there exist natural

numbers i and j such that 4 · k = i2 − j2.

Scratch work:

k i j

1 2 0

2 3 1

3 4 2
...

n n+ 1 n− 1
...

— 92 —

YOUR PROOF OF Proposition 21:

— 93 —

MY PROOF OF Proposition 21: For an arbitrary positive integer k,

let i = k+ 1 and j = k− 1. Then,

i2 − j2 = (k+ 1)2 − (k− 1)2

= k2 + 2 · k+ 1− k2 + 2 · k− 1

= 4 · k

and we are done.

— 94 —

Proposition 22 For every positive integer n, there exists a natural

number l such that 2l ≤ n < 2l+1.

YOUR PROOF:

— 95 —

MY PROOF: For an arbitrary positive integer n, let l = ⌊logn⌋. We

have that

l ≤ logn < l+ 1

and hence, since the exponential function is increasing, that

2l ≤ 2logn < 2l+1 .

As, n = 2logn we are done.

— 96 —

The use of existential statements:

To use an assumption of the form ∃x. P(x), introduce a new

variable x0 into the proof to stand for some individual for

which the property P(x) holds. This means that you can

now assume P(x0) true.

— 97 —

Theorem 23 For all integers l, m, n, if l | m and m | n then l | n.

YOUR PROOF:

— 98 —

MY PROOF: Let l, m, and n be arbitrary integers. Assume that

l | m and that m | n; that is, that

(†) ∃ integer i . m = i · l

and that

(‡) ∃ integer j . n = j ·m .

From (†), we can thus assume that m = i0 · l for some integer i0

and, from (‡), that n = j0 ·m for some integer j0. With this, our goal

is to show that l | n; that is, that there exists an integer k such that

n = k · l. To see this, let k = j0 · i0 and note that k · l = j0 · i0 · l =
j0 ·m = n.

— 99 —

Unique existence

The notation

∃! x. P(x)

stands for

the unique existence of an x for which the property P(x) holds .

This may be expressed in a variety of equivalent ways as follows:

1. ∃x. P(x) ∧
(

∀y.∀z.
(

P(y) ∧ P(z)
)

=⇒ y = z
)

2. ∃x.
(

P(x) ∧ ∀y. P(y) =⇒ y = x
)

3. ∃x.∀y. P(y) ⇐⇒ y = x

where the first statement is the one most commonly used in proofs.

— 100 —

Example: The congruence property modulo m uniquely charac-

terises the natural numbers from 0 to m− 1.

Proposition 24 Let m be a positive integer and let n be an integer.

Define

P(z) = [0 ≤ z < m ∧ z ≡ n (mod m)] .

Then

∀ x, y. P(x) ∧ P(y) =⇒ x = y .

YOUR PROOF:

— 101 —

MY PROOF: Let m be a positive integer and let n be an integer.

Let x and y be arbitrary and assume: (1.1) 0 ≤ x < m and

(1.2) x ≡ n (mod m); and (2.1) 0 ≤ y < m and (2.2) y ≡ n (mod m).

From (1.2) and (2.2), x − y = k · m for some integer k. Therefore,

by (1.1) and (2.1), k · m = x − y < m; and so k ≤ 0. Analogously,

by (1.1) and (2.1), −k ·m = y− x < m; and so −k ≤ 0. Thus, k = 0

and x = y.

— 102 —

A proof strategy

To prove

∀ x.∃!y. P(x, y) ,

for an arbitrary x construct the unique witness and name it,

say as f(x), showing that

P
(

x, f(x)
)

and

∀y. P(x, y) =⇒ y = f(x)

hold.

— 103 —

Disjunctions

◮ How to prove them as goals.

◮ How to use them as assumptions.

— 104 —

Disjunction

Disjunctive statements are of the form

P or Q

or, in other words,

either P, Q, or both hold

or, in symbols,

P ∨ Q

— 105 —

The main proof strategy for disjunction:

To prove a goal of the form

P ∨ Q

you may

1. try to prove P (if you succeed, then you are done); or

2. try to prove Q (if you succeed, then you are done);

otherwise

3. break your proof into cases; proving, in each case,

either P or Q.

— 106 —

Proposition 25 For all integers n, either n2 ≡ 0 (mod 4) or

n2 ≡ 1 (mod 4).

YOUR PROOF:

— 107 —

MY PROOF SKETCH: Let n be an arbitrary integer.

We may try to prove that n2 ≡ 0 (mod 4), but this is not the case as

12 ≡ 1 (mod 4).

We may instead try to prove that n2 ≡ 1 (mod 4), but this is also not

the case as 02 ≡ 0 (mod 4).

So we try breaking the proof into cases. In view of a few experi-

ments, we are led to consider the following two cases:

(i) n is even.

(ii) n is odd.

and try to see whether in each case either n2 ≡ 0 (mod 4) or

n2 ≡ 1 (mod 4) can be established.

— 108 —

In the first case (i), n is of the form 2 · m for some integer m. It

follows that n2 = 4 ·m2 and hence that n2 ≡ 0 (mod 4).

In the second case (ii), n is of the form 2 ·m+1 for some integer m.

So it follows that n2 = 4·m·(m+1)+1 and hence that n2 ≡ 1 (mod 4).

— 109 —

NB The proof sketch contains a proof of the following:

Lemma 26 For all integers n,

1. if n is even, then n2 ≡ 0 (mod 4); and

2. if n is odd, then n2 ≡ 1 (mod 4).

Hence, for all integers n, either n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod 4).

— 110 —

Another proof strategy for disjunction:

Proof pattern:

In order to prove

P ∨ Q

write: If P is true, then of course P ∨ Q is true. Now

suppose that P is false. and provide a proof of Q.

NB This arises from the main proof strategy for disjunction where

the proof has been broken in the two cases:

(i) P holds.

(ii) P does not hold.

— 111 —

Scratch work:

Before using the strategy

Assumptions Goal

P ∨ Q
...

After using the strategy

Assumptions Goal

Q
...

not P

— 112 —

The use of disjunction:

To use a disjunctive assumption

P1 ∨ P2

to establish a goal Q, consider the following two cases in

turn: (i) assume P1 to establish Q, and (ii) assume P2 to

establish Q.

— 113 —

Scratch work:

Before using the strategy

Assumptions Goal

Q
...

P1 ∨ P2

After using the strategy

Assumptions Goal Assumptions Goal

Q Q
...

...

P1 P2

— 114 —

Proof pattern:

In order to prove Q from some assumptions amongst which there

is

P1 ∨ P2

write: We prove the following two cases in turn: (i) that assuming

P1, we have Q; and (ii) that assuming P2, we have Q. Case (i):

Assume P1. and provide a proof of Q from it and the other as-

sumptions. Case (ii): Assume P2. and provide a proof of Q from

it and the other assumptions.

— 115 —

A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if

m = 0 or m = p then
(

p
m

)

≡ 1 (mod p).

YOUR PROOF:

— 116 —

MY PROOF: Let p be an arbitrary positive integer and m an arbitrary

natural number.

From m = 0 or m = p, we need show that
(

p
m

)

≡ 1 (mod p). We

prove the following two cases in turn: (i) that assuming m = 0, we

have
(

p
m

)

≡ 1 (mod p); and (ii) that assuming m = p, we have
(

p
m

)

≡ 1 (mod p).

Case (i): Assume m = 0. Then,
(

p
m

)

= 1 and so
(

p
m

)

≡ 1 (mod p).

Case (ii): Assume m = p. Then,
(

p
m

)

= 1 and so
(

p
m

)

≡ 1 (mod p).

— 117 —

Lemma 28 For all integers p and m, if p is prime and 0 < m < p

then
(

p
m

)

≡ 0 (mod p).

YOUR PROOF:

— 118 —

MY PROOF: Let p and m be arbitrary integers. Assume that p is

prime and that 0 < m < p. Then,
(

p
m

)

= p · [(p−1)!

m!·(p−m)!
] and since the

fraction (p−1)!

m!·(p−m)!
is in fact a natural numbera, we are done.

aProvide the missing argument, noting that it relies on p being prime and on

m being a positive integer less than p. (See Corollary 85 on page 242.)
— 119 —

Proposition 29 For all prime numbers p and integers 0 ≤ m ≤ p,

either
(

p
m

)

≡ 0 (mod p) or
(

p
m

)

≡ 1 (mod p).

YOUR PROOF:

— 120 —

MY PROOF: Let m be a natural number less than or equal a prime

number p. We establish that either
(

p
m

)

≡ 0 (mod p) or
(

p
m

)

≡ 1 (mod p) by breaking the proof into three cases:

(i) m = 0 , (ii) 0 < m < p , (iii) m = p

and showing, in each case, that either
(

p
m

)

≡ 0 (mod p) or
(

p
m

)

≡ 1 (mod p) can be established.

Indeed, in the first case (i), by Lemma 27 (on page 116), we

have that
(

p
m

)

≡ 1 (mod p); in the second case (ii), by Lemma 28

(on page 118), we have that
(

p
m

)

≡ 0 (mod p); and, in the third

case (iii), by Lemma 27 (on page 116), we have that
(

p
m

)

≡ 1 (mod p).

— 121 —

Binomial Theorem

Theorem 30 (Binomial Theorem)a For all natural numbers n,

(x+ y)n =
∑n

k=0

(

n
k

)

· xn−k · yk .

Corollary 31

1. For all natural numbers n, (z+ 1)n =
∑n

k=0

(

n
k

)

· zk

2. 2n =
∑n

k=0

(

n
k

)

Corollary 32 For all prime numbers p, 2p ≡ 2 (mod p).

aSee page 271.

— 122 —

THEOREM OF THE DAY
The Binomial Theorem For n a positive integer and real-valued variables x and y,

(x + y)n =

n
∑

k=0

(

n

k

)

xn−kyk.

Given n distinct objects, the binomial coefficient
(

n

k

)

= n!/k!(n − k)! counts the number of ways of choosing k. Transcending its combinatorial

role, we may instead write the binomial coefficient as:
(

n

k

)

= n
k
× n−1

k−1
× · · · × n−(k−1)

1
; taking

(

n

0

)

= 1. This form is defined when n is a real or even

a complex number. In the above graph, n is a real number, and increases continuously on the vertical axis from -2 to 7.5. For different values

of k, the value of
(

n

k

)

has been plotted but with its sign reversed on reaching n = 2k, giving a discontinuity. This has the effect of spreading the

binomial coefficients out on either side of the vertical axis: we recover, for integer n, a sort of (upside down) Pascal’s Triangle. The values of

the triangle for n = 7 have been circled.

If the right-hand summation in the theorem is extended to k = ∞, the result still holds, provided the summation converges. This is guaranteed

when n is an integer or when |y/x| < 1, so that, for instance, summing for (4 + 1)1/2 gives a method of calculating
√

5.

The binomial theorem may have been known, as a calculation of poetic metre, to the Hindu scholar Pingala in the 5th century
BC. It can certainly be dated to the 10th century AD. The extension to complex exponent n, using generalised binomial
coefficients, is usually credited to Isaac Newton.

Web link: www.iwu.edu/∼lstout/aesthetics.pdf an absorbing discussion on the aesthetics of proof.

Further reading: A Primer of Real Analytic Functions, 2nd ed. by Steven G. Krantz and Harold R. Parks, Birkhäuser Verlag AG, 2002,

section 1.5.

Created by Robin Whitty for www.theoremoftheday.org— 123 —

Binomial Theorem

(m+ n)p =
∑p

k=0

(

p
k

)

·mp−k · nk

— 124 —

A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,

n and primes p,

(m+ n)p ≡ mp + np (mod p) .

YOUR PROOF: a

aHint: Use Proposition 29 (on page 120) and the Binomial Theorem (Theo-

rem 30 (on page 122)).
— 125 —

MY PROOF: Let m, n, and p be natural numbers with p prime.

Here are two arguments.

1. By the Binomial Theorem (Theorem 30 on page 122),

(m+ n)p − (mp + np) = p ·
[∑p−1

k=1
(p−1)!

k!·(p−k)!
·mp−k · nk

]

.

Since for 1 ≤ k ≤ p − 1 each fraction (p−1)!

k!·(p−k)!
is in fact a natural

number, we are done.

2. By the Binomial Theorem (Theorem 30 on page 122) and Propo-

sition 29 (on page 120),

(m+ n)p − (mp + np) =
∑p−1

k=1

(

p
k

)

·mp−k · nk ≡ 0 (mod p) .

Hence (m+ n)p ≡ mp + np (mod p).

— 126 —

Corollary 34 (The Dropout Lemma) For all natural numbers m and

primes p,

(m+ 1)p ≡ mp + 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-

bers m and i, and primes p,

(m+ i)p ≡ mp + i (mod p) .

YOUR PROOF: a

aHint: Consider the cases i = 0 and i > 0 separately. In the latter case,

iteratively use the Dropout Lemma a number of i = 1+ · · ·+ 1︸ ︷︷ ︸
i ones

times.

— 127 —

MY PROOF: Let m and i be natural numbers and let p be a prime.

Using the Dropout Lemma (Corollary 34) one calculates i times, for

j ranging from 0 to i, as follows:

(m+ i)p ≡
(

m+ (i− 1)
)p

+ 1

≡ · · ·
≡

(

m+ (i− j)
)p

+ j

≡ · · ·
≡ mp + i

— 128 —

Fermat ′s Little Theorem

The Many Dropout Lemma (Proposition 35) gives the first part of the

following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i

and primes p,

1. ip ≡ i (mod p), and

2. ip−1 ≡ 1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat’s Little Theorem implies the

second one will be proved later on (see page 240) .

— 129 —

Every natural number i not a multiple of a

prime number p has a reciprocal modulo p,

namely ip−2, as i · (ip−2) ≡ 1 (mod p).

— 130 —

Btw

1. The answer to the puzzle on page 17 is:

on the chair numbered 1

because, by Fermat’s Little Theorem, either n4 ≡ 0 (mod 5) or

n4 ≡ 1 (mod 5).

2. Fermat’s Little Theorem has applications to:

(a) primality testinga,

(b) the verification of floating-point algorithms, and

(c) cryptographic security.

aFor instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that im 6≡ i (mod m).
— 131 —

THEOREM OF THE DAY
Theorem (Fermat’s Little Theorem) If p is a prime number, then

ap−1
≡ 1 (mod p).

for any positive integer a not divisible by p.

Suppose p = 5. We can imagine a row of a copies of an a× a× a Rubik’s cube (let us suppose, although this is not how Rubik created his cube,

that each is made up of a3 little solid cubes, so that is a4 little cubes in all.) Take the little cubes 5 at a time. For three standard 3 × 3 cubes,

shown here, we will eventually be left with precisely one little cube remaining. Exactly the same will be true for a pair of 2 × 2 ‘pocket cubes’

or four of the 4× 4 ‘Rubik’s revenge’ cubes. The ‘Professor’s cube’, having a = 5, fails the hypothesis of the theorem and gives remainder zero.

The converse of this theorem, that ap−1
≡ 1 (mod p), for some a not dividing p, implies that p is prime, does not hold. For example, it can be

verified that 2340
≡ 1 (mod 341), while 341 is not prime. However, a more elaborate test is conjectured to work both ways: remainders add,

so the Little Theorem tells us that, modulo p, 1p−1 + 2p−1 + . . . + (p − 1)p−1
≡

p−1
︷ ︸︸ ︷

1 + 1 + . . . + 1 = p − 1. The 1950 conjecture of the Italian

mathematician Giuseppe Giuga proposes that this only happens for prime numbers: a positive integer n is a prime number if and only

if 1n−1 + 2n−1 + . . . + (n − 1)n−1
≡ n − 1 (mod n). The conjecture has been shown by Peter Borwein to be true for all numbers with

up to 13800 digits (about 5 complete pages of digits in 12-point courier font!)

Fermat announced this result in 1640, in a letter to a fellow civil servant Frénicle de Bessy. As with his ‘Last Theorem’ he
claimed that he had a proof but that it was too long to supply. In this case, however, the challenge was more tractable: Leonhard
Euler supplied a proof almost 100 years later which, as a matter of fact, echoed one in an unpublished manuscript of Gottfried
Wilhelm von Leibniz, dating from around 1680.

Web link: www.math.uwo.ca/∼dborwein/cv/giuga.pdf. The cube images are from: www.ws.binghamton.edu/fridrich/.

Further reading: Elementary Number Theory, 6th revised ed., by David M. Burton, MacGraw-Hill, 2005, chapter 5.

From www.theoremoftheday.org by Robin Whitty. This file hosted by London South Bank University

— 132 —

Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

¬P
— 133 —

A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent

form and use instead this other statement.

Logical equivalences

¬
(

P =⇒ Q
)

⇐⇒ P ∧ ¬Q

¬
(

P ⇐⇒ Q
)

⇐⇒ P ⇐⇒ ¬Q

¬
(

∀x. P(x)
)

⇐⇒ ∃x.¬P(x)
¬
(

P ∧ Q
)

⇐⇒ (¬P) ∨ (¬Q)

¬
(

∃x. P(x)
)

⇐⇒ ∀x.¬P(x)
¬
(

P ∨ Q
)

⇐⇒ (¬P) ∧ (¬Q)

¬
(

¬P
)

⇐⇒ P

¬P ⇐⇒ (P ⇒ false)

— 134 —

THEOREM OF THE DAY
De Morgan’s Laws If B, a set containing at least two elements, and equipped with the operations +, ×

and ′ (complement), is a Boolean algebra, then, for any x and y in B,

(x + y)′ = x′ × y′, and (x × y)′ = x′ + y′.

Truth table verification:

x y ¬ (x ∨ y) ¬x ∧ ¬y

0 0 1 0 1 1 1

0 1 0 1 1 0 0

1 0 0 1 0 0 1

1 1 0 1 0 0 0

and ¬(x ∧ y) = ¬x ∨ ¬x similarly.

De Morgan’s laws are readily derived from the axioms of Boolean algebra and indeed are themselves sometimes treated as axiomatic. They
merit special status because of their role in translating between + and ×, which means, for example, that Boolean algebra can be defined entirely
in terms of one or the other. This property, entirely absent in the arithmetic of numbers, would seem to mark Boolean algebras as highly
specialised creatures, but they are found everywhere from computer circuitry to the sigma-algebras of probability theory. The illustration here
shows De Morgan’s laws in their set-theoretic, logic circuit guises, and truth table guises.

These laws are named after Augustus De Morgan (1806–1871) as is the building in which resides the London Mathematical
Society, whose first president he was.

Web link: www.mathcs.org/analysis/reals/logic/notation.html

Further reading: Boolean Algebra and Its Applications by J. Eldon Whitesitt, Dover Publications Inc., 1995.

Created by Robin Whitty for www.theoremoftheday.org

— 135 —

Theorem 37 For all statements P and Q,

(P =⇒ Q) =⇒ (¬Q =⇒ ¬P) .

YOUR PROOF:

— 136 —

MY PROOF: Assume

(i) P =⇒ Q .

Assume

¬Q ;

that is,

(ii) Q =⇒ false .

From (i) and (ii), by Theorem 11 (on page 54), we have that

P =⇒ false ;

that is,

¬P

as required.
— 137 —

Theorem 38 The real number
√
2 is irrational.

YOUR PROOF:

— 138 —

MY PROOF: To prove:

¬
(
√
2 is rational

)

we prove the equivalent statement:

(√
2 is rational

)

=⇒ false

by showing that the assumption

(i)
√
2 is rational

leads to contradiction.

— 139 —

Assume (i); that is, that there exist integers m and n such that√
2 = m/n. Equivalently, by simplification (see also Lemma 43 on

page 150 below), assume that there exist integers p and q both of

which are not even such that
√
2 = p/q. Under this assumption, let

p0 and q0 be such integers; that is, integers such that

(ii) p0 and q0 are not both even

and

(iii)
√
2 = p0/q0 .

From (iii), one calculates that p0
2 = 2 · q0

2 and, by Proposition 42

(on page 148), concludes that p0 is even; that is, of the form 2 · k
for an integer k. With this, and again from (iii), one deduces that

q0
2 = 2 · k2 and hence, again by Proposition 42 (on page 148), that

also q0 is even; thereby contradicting assumption (ii). Hence,
√
2 is

not rational.

— 140 —

Proof by contradiction

Amongst the equivalences for negation, we have postulated the

somewhat controversial:

¬¬P ⇐⇒ P

which is classically accepted.

In this light,

to prove P

one may equivalently

prove ¬P =⇒ false ;

that is,

assuming ¬P leads to contradiction .

This technique is known as proof by contradiction.

— 141 —

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent

statement ¬P =⇒ false

Proof pattern:

In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.

2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.

— 142 —

Scratch work:

Before using the strategy

Assumptions Goal

P
...

After using the strategy

Assumptions Goal

contradiction
...

¬P

— 143 —

Theorem 39 For all statements P and Q,

(¬Q =⇒ ¬P) =⇒ (P =⇒ Q) .

YOUR PROOF:

— 144 —

MY PROOF: Assume

(i) ¬Q =⇒ ¬P .

Assume

(ii) P .

We need show Q.

Assume, by way of contradiction, that

(iii) ¬Q

holds.

— 145 —

From (i) and (iii), by Theorem 11 (on page 54), we have

(iv) ¬P

and now, from (ii) and (iv), we obtain a contradiction. Thus, ¬Q

cannot be the case; hence

Q

as required.

— 146 —

Proof by contrapositive

Corollary 40 For all statements P and Q,

(P =⇒ Q) ⇐⇒ (¬Q =⇒ ¬P) .

Btw Using the above equivalence to prove an implication is

known as proof by contrapositive.

Corollary 41 For every positive irrational number x, the real

number
√
x is irrational.

— 147 —

Proposition 42 Suppose that n is an integer. Then, n is even iff n2

is even.

YOUR PROOF:

— 148 —

MY PROOF:

(=⇒) This implication is a corollary of the fact that the product of two

integers is even whenever one of them is.

(⇐=) We prove the contrapositive; that is, that n odd implies n2 odd.

This is a corollary of Proposition 8.

— 149 —

Lemma 43 A positive real number x is rational iff

∃positive integers m,n :

x = m/n ∧ ¬
(

∃prime p : p | m ∧ p | n
) (†)

YOUR PROOF:

— 150 —

MY PROOF:

(⇐=) Holds trivially.

(=⇒) Assume that

(i) ∃positive integers a, b : x = a/b .

We show (†) by contradiction. So, suppose (†) is false; that isa,

assume that

(ii) ∀positive integers m,n :

x = m/n =⇒ ∃prime p : p | m ∧ p | n .

From (i), let a0 and b0 be positive integers such that

aHere we use three of the logical equivalences of page 134 (btw, which ones?)

and the logical equivalence (P ⇒ Q)⇔ (¬P ∨Q).
— 151 —

(iii) x = a0/b0 .

It follows from (ii) and (iii) that there exists a prime p0 that divides

both a0 and b0. That is, a0 = p0 · a1 and b0 = p0 · b1 for positive

integers a1 and b1. Since

(iv) x = a1/b1 ,

it follows from (ii) and (iv) that there exists a prime p1 that divides

both a1 and b1. Hence, a0 = p0 ·p1 ·a2 and b0 = p0 ·p1 ·b2 for positive

integers a2 and b2. Iterating this argument l number of times, we

have that a0 = p0 · . . . · pl · al+1 and b0 = p0 · . . . · pl · bl+1 for primes

p0, . . . , pl and positive integers al+1 and bl+1. In particular, for l =

⌊log a0⌋ we have

a0 = p0 · . . . · pl · al+1 ≥ 2l+1 > a0 .

This is a contradiction. Therefore, (†) must be true.
— 152 —

Problem Like many proofs by contradiction, the previous proof is

unsatisfactory in that it does not gives us as much information as

we would like a. In this particular case, for instance, given a pair

of numerator and denominator representing a rational number we

would like a method, construction, or algorithm providing us with its

representation in lowest terms (or reduced form). We will see later

on (see page 228) that there is in fact an efficient algorithm for doing

so, but for that a bit of mathematical theory needs to be developed.

aIn the logical jargon this is referred to as not being constructive.
— 153 —

Numbers

Topics

Natural numbers. The laws of addition and multiplication. Integers

and rational numbers: additive and multiplicative inverses. The

division theorem and algorithm: quotients and remainders. Modular

arithmetic. Euclid’s Algorithm for computing the gcd (greatest

common divisor)a. Euclid’s Theorem. The Extended Euclid’s

Algorithm for computing the gcd as a linear combination.

Multiplicative inverses in modular arithmetic. Diffie-Hellman

cryptographic method. Mathematical induction: principles of

induction and strong induction. Binomial Theorem and Pascal’s

aaka hcf (highest common factor).
— 154 —

Triangle. Fermat’s Little Theorem. Fundamental Theorem of

Arithmetic. Infinity of primes.

Complementary reading:

On numbers

� Chapters 27 to 29 of How to Think Like a Mathematician by

K. Houston.

⋆ Chapter 8 of Mathematics for Computer Science by

E. Lehman, F. T. Leighton, and A. R. Meyer.

⋆ Chapters I and VIII of The Higher Arithmetic by

H. Davenport.

— 155 —

On induction

� Chapters 24 and 25 of How to Think Like a Mathematician

by K. Houston.

� Chapter 4 of Mathematics for Computer Science by

E. Lehman, F. T. Leighton, and A. R. Meyer.

� Chapter 6 of How to Prove it by D. J. Velleman.

— 156 —

Objectives

◮ Get an appreciation for the abstract notion of number system,

considering four examples: natural numbers, integers, rationals,

and modular integers.

◮ Prove the correctness of three basic algorithms in the theory

of numbers: the division algorithm, Euclid’s algorithm, and the

Extended Euclid’s algorithm.

◮ Exemplify the use of the mathematical theory surrounding

Euclid’s Theorem and Fermat’s Little Theorem in the context of

public-key cryptography.

◮ To understand and be able to proficiently use the Principle of

Mathematical Induction in its various forms.

— 157 —

Natural numbers

In the beginning there were the natural numbers

N : 0 , 1 , . . . , n , n+ 1 , . . .

generated from zero by successive increment; that is, put in ML:

datatype

N = zero | succ of N

Remark This viewpoint will be looked at later in the course.

— 158 —

The basic operations of this number system are:

◮ Addition
m︷ ︸︸ ︷∗ · · · ∗

n︷ ︸︸ ︷∗ · · · · · · ∗︸ ︷︷ ︸
m+n

◮ Multiplication

m

{
n︷ ︸︸ ︷∗ · · · · · · · · · · · · ∗

... m · n ...

∗ · · · · · · · · · · · · ∗

— 159 —

The additive structure (N, 0,+) of natural numbers with zero and

addition satisfies the following:

◮ Monoid laws

0+ n = n = n+ 0 , (l+m) + n = l+ (m+ n)

◮ Commutativity law

m+ n = n+m

and as such is what in the mathematical jargon is referred to as

a commutative monoid.

— 160 —

Commutative monoid laws

◮ Neutral element laws
0︷︸︸︷ n︷ ︸︸ ︷∗ · · · · · · ∗ =

n︷ ︸︸ ︷∗ · · · · · · ∗ =

n︷ ︸︸ ︷∗ · · · · · · ∗
0︷︸︸︷

◮ Associativity law

ℓ+m︷ ︸︸ ︷∗ · · · ∗∗ · · · · · · ∗
n︷ ︸︸ ︷∗ · · · · · · · · · ∗ =

ℓ︷ ︸︸ ︷∗ · · · ∗
m+n︷ ︸︸ ︷∗ · · · · · · ∗∗ · · · · · · · · · ∗

◮ Commutativity law

m︷ ︸︸ ︷∗ · · · ∗
n︷ ︸︸ ︷∗ · · · · · · ∗ =

n︷ ︸︸ ︷∗ · · · · · · ∗
m︷ ︸︸ ︷∗ · · · ∗

— 161 —

Monoids

Definition 44 A monoid is an algebraic structure with

◮ a neutral element, say e,

◮ a binary operation, say •,

satisfying

◮ neutral element laws: e • x = x = x • e

◮ associativity law: (x • y) • z = x • (y • z)

A monoid is commutative if:

◮ commutativity: x • y = y • x

is satisfied.
— 162 —

Btw: Most probably, though without knowing it, you have already

encountered several monoids elsewhere.

For instance:

1. The booleans with false and disjunction.

2. The booleans with true and conjunction.

3. Lists with nil and concatenation.

While the first two above are commutative this is not generally the

case for the latter. However, unit list is a commutative monoid.

— 163 —

Also the multiplicative structure (N, 1, ·) of natural numbers with one

and multiplication is a commutative monoid:

◮ Monoid laws

1 · n = n = n · 1 , (l ·m) · n = l · (m · n)

◮ Commutativity law

m · n = n ·m

— 164 —

The additive and multiplicative structures interact nicely in that they

satisfy the

◮ Distributive laws

l · 0 = 0

l · (m+ n) = l ·m+ l · n

and make the overall structure (N, 0,+, 1, ·) into what in the mathe-

matical jargon is referred to as a commutative semiring.

— 165 —

Semirings

Definition 45 A semiring (or rig) is an algebraic structure with

◮ a commutative monoid structure, say (0,⊕),

◮ a monoid structure, say (1,⊗),

satifying the distributivity laws:

◮ 0⊗ x = 0 = x⊗ 0

◮ x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z), (y⊕ z)⊗ x = (y⊗ x)⊕ (z⊗ x)

A semiring is commutative whenever ⊗ is.

— 166 —

Cancellation

The additive and multiplicative structures of natural numbers further

satisfy the following laws.

◮ Additive cancellation

For all natural numbers k, m, n,

k+m = k+ n =⇒ m = n .

◮ Multiplicative cancellation

For all natural numbers k, m, n,

if k 6= 0 then k ·m = k · n =⇒ m = n .

— 167 —

Definition 46 A binary operation • allows cancellation by an

element c

◮ on the left: if c • x = c • y implies x = y

◮ on the right: if x • c = y • c implies x = y

Example: The append operation on lists allows cancellation by

any list on both the left and the right.

— 168 —

Inverses

Definition 47 For a monoid with a neutral element e and a binary

operation •, and element x is said to admit an

◮ inverse on the left if there exists an element ℓ such that ℓ • x = e

◮ inverse on the right if there exists an element r such that x•r = e

◮ inverse if it admits both left and right inverses

Proposition 48 For a monoid (e, •) if an element admits an inverse

then its left and right inverses are equal.

YOUR PROOF:

— 169 —

MY PROOF: Let x be an element with left inverse ℓ (so that ℓ•x = e)

and right inverse r (so that x • r = e). Then,

r = e • r = (ℓ • x) • r = ℓ • (x • r) = ℓ • e = ℓ .

Proposition 49 For a monoid (e, •), if an element has an inverse

then it is cancellable.

YOUR PROOF:

— 170 —

MY PROOF: Let c be an element with inverse c. We need prove:

(i) ∀ x, y. c • x = c • y =⇒ x = y

and

(ii) ∀ x, y. x • c = y • c =⇒ x = y

For (i), assume x and y arbitrary such that c • x = c • y. Then,

x = e•x = (c•c)•x = c• (c•x) = c• (c•y) = (c•c)•y = e•y = y.

One shows (ii) analogously.

— 171 —

Groups

Definition 50 A group is a monoid in which every element has an

inverse.

An Abelian group is a group for which the monoid is commutative.

— 172 —

Inverses

Definition 51

1. A number x is said to admit an additive inverse whenever there

exists a number y such that x+ y = 0.

2. A number x is said to admit a multiplicative inverse whenever

there exists a number y such that x · y = 1.

Remark In the presence of inverses, we have cancellation; though

the converse is not necessarily the case. For instance, in the system

of natural numbers, only 0 has an additive inverse (namely itself),

while only 1 has a multiplicative inverse (namely itself).

— 173 —

Extending the system of natural numbers to: (i) admit all additive

inverses and then (ii) also admit all multiplicative inverses for non-

zero numbers yields two very interesting results:

(i) the integers

Z : . . . − n , . . . , −1 , 0 , 1 , . . . , n , . . .

which then form what in the mathematical jargon is referred to

as a commutative ring, and

(ii) the rationals Q which then form what in the mathematical jargon

is referred to as a field.

— 174 —

Rings

Definition 52 A ring is a semiring (0,⊕, 1,⊗) in which the commu-

tative monoid (0,⊕) is a group.

A ring is commutative if so is the monoid (1,⊗).

Fields

Definition 53 A field is a commutative ring in which every element

besides 0 has a reciprocal (that is, and inverse with respect to ⊗).

— 175 —

The division theorem and algorithm

Theorem 54 (Division Theorem) For every natural number m and

positive natural number n, there exists a unique pair of integers q

and r such that q ≥ 0, 0 ≤ r < n, and m = q · n+ r.

Definition 55 The natural numbers q and r associated to a given

pair of a natural number m and a positive integer n determined by

the Division Theorem are respectively denoted quo(m,n) and

rem(m,n).

Btw Definitions determined by existence and uniqueness

properties such as the above are very common in mathematics.

— 176 —

YOUR PROOF OF Theorem 54:

— 177 —

MY PROOF OF Theorem 54: Uniqueness follows from Lemma 56

and existence from Theorem 57.

Lemma 56 Let q be an integer, n be a positive natural number,

and r be a natural number. If q · n+ r = 0 and 0 ≤ r < n then q = 0

and, consequently, r = 0.

PROOF: Let q be an integer, n be a positive natural number, and r

be a natural number. Assume that q · n+ r = 0 and that 0 ≤ r < n.

As q · n = −r we have that (i) q · n ≤ 0 and that (ii) q · n > −n.

Since n > 0, it follows from (i) that q ≤ 0 and from (ii) that q > −1.

Hence, q = 0.

— 178 —

The Division Algorithm in ML:

fun divalg(m , n)

= let

fun diviter(q , r)

= if r < n then (q , r)

else diviter(q+1 , r-n)

in

diviter(0 , m)

end

fun quo(m , n) = #1(divalg(m , n))

fun rem(m , n) = #2(divalg(m , n))

— 179 —

Theorem 57 For every natural number m and positive natural

number n, the evaluation of divalg(m,n) terminates, outputing a

pair of natural numbers (q0, r0) such that r0 < n and m = q0 ·n+ r0.

YOUR PROOF:

— 180 —

MY PROOF SKETCH: Let m and n be natural numbers with n

positive.

The evaluation of divalg(m,n) diverges iff so does the evaluation

of diviter(0,m) within this call; and this is in turn the case iff

m− i · n ≥ n for all natural numbers i. Since this latter statement is

absurd, the evaluation of divalg(m,n) terminates. In fact, it does

so with worst time complexity O(m).

For all calls of diviter with (q, r) originating from the evaluation of

divalg(m,n) one has that

0 ≤ q ∧ 0 ≤ r ∧ m = q · n+ r

because

— 181 —

1. for the first call with (0,m) one has

0 ≤ 0 ∧ 0 ≤ m ∧ m = 0 · n+m ,

and

2. all subsequent calls with (q+ 1, r− n) are done with

0 ≤ q ∧ n ≤ r ∧ m = q · n+ r

so that

0 ≤ q+ 1 ∧ 0 ≤ r− n ∧ m = (q+ 1) · n+ (r− n)

follows.

Finally, since in the last call the output pair (q0, r0) further satisfies

that r0 < n, we have that

0 ≤ q0 ∧ 0 ≤ r0 < n ∧ m = q0 · n+ r0

as required.
— 182 —

Proposition 58 Let m be a positive integer. For all natural

numbers k and l,

k ≡ l (mod m) ⇐⇒ rem(k,m) = rem(l,m) .

YOUR PROOF:

— 183 —

MY PROOF: Let m be a positive integer, and let k, l be natural

numbers.

(=⇒) Assume k ≡ l (mod m). Then,

max
(

rem(k,m) , rem(l,m)
)

−min
(

rem(k,m) , rem(l,m)
)

is a non-negative multiple of m below it. Hence, it is necessarily 0

and we are done.

(⇐=) Assume that rem(k,m) = rem(l,m). Then,

k− l =
(

quo(k,m) − quo(l,m)
)

·m

and we are done.

— 184 —

Corollary 59 Let m be a positive integer.

1. For every natural number n,

n ≡ rem(n,m) (mod m) .

2. For every integer k there exists a unique integer [k]m such that

0 ≤ [k]m < m and k ≡ [k]m (mod m) .

YOUR PROOF:

— 185 —

MY PROOF: Let m be a positive integer.

(1) Holds because, for every natural number n, we have that

n− rem(n,m) = quo(n,m) ·m.

(2) Let k be an integer. Noticing that k+ |k| ·m is a natural number

congruent to k modulo m, define [k]m as

rem
(

k+ |k| ·m, m
)

.

This establishes the existence property. As for the uniqueness

property, we will prove the following statement:

For all integers l such that 0 ≤ l < m and k ≡ l (mod m) it

is necessarily the case that l = [k]m.

— 186 —

To this end, let l be an integer such that 0 ≤ l < m and

k ≡ l (mod m). Then,

l = rem(l,m)

= rem(k,m) , by Proposition 58 (on page 183)

= rem
(

[k]m,m
)

, by Proposition 58 (on page 183)

= [k]m

— 187 —

Modular arithmetic

For every positive integer m, the integers modulo m are:

Zm : 0 , 1 , . . . , m− 1 .

with arithmetic operations of addition +m and multiplication ·m
defined as follows

k+m l = [k + l]m = rem(k+ l,m) ,

k ·m l = [k · l]m = rem(k · l,m)

for all 0 ≤ k, l < m.

— 188 —

For k and l in Zm,

k+m l and k ·m l

are the unique modular integers in Zm such that

k+m l ≡ k+ l (mod m)

k ·m l ≡ k · l (mod m)

Example 60 The modular-arithmetic structure (Z2, 0,+2, 1, ·2) is

that of booleans with logical XOR as addition and logical AND as

multiplication.

— 189 —

Example 61 The addition and multiplication tables for Z4 are:

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

·4 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Note that the addition table has a cyclic pattern, while there is no

obvious pattern in the multiplication table.

— 190 —

From the addition and multiplication tables, we can readily read

tables for additive and multiplicative inverses:

additive
inverse

0 0

1 3

2 2

3 1

multiplicative
inverse

0 −

1 1

2 −

3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

— 191 —

Example 62 The addition and multiplication tables for Z5 are:

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

·5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Again, the addition table has a cyclic pattern, while this time the

multiplication table restricted to non-zero elements has a

permutation pattern.

— 192 —

From the addition and multiplication tables, we can readily read

tables for additive and multiplicative inverses:

additive
inverse

0 0

1 4

2 3

3 2

4 1

multiplicative
inverse

0 −

1 1

2 3

3 2

4 4

Surprisingly, every non-zero element has a multiplicative inverse.

— 193 —

Proposition 63 For all natural numbers m > 1, the

modular-arithmetic structure

(Zm, 0,+m, 1, ·m)

is a commutative ring.

Remark The most interesting case of the omitted proof consists in

establishing the associativity laws of addition and multiplication.

NB Quite surprisingly, modular-arithmetic number systems have

further mathematical structure in the form of multiplicative inverses

(see page 258) .

— 194 —

Proposition 64 Let m be a positive integer. A modular integer k in

Zm has a reciprocal if, and only if, there exist integers i and j such

that k · i+m · j = 1.

YOUR PROOF:

— 195 —

MY PROOF: Let m be a positive integer and let k be a modular

integer in Zm.

(=⇒) Assume that there exists i in Zm such that k ·m i ≡ 1 (mod m).

As k · i ≡ k ·m i (mod m) we have that k · i− 1 = m · j for some

integer j.

(⇐=) Assume integers i and j such that k · i+m · j = 1. Then, k

has reciprocal [i]m modulo m. Indeed,

k ·m [i]m = [k · i]m ≡ k · i = 1−m · j ≡ 1 (mod m) .

— 196 —

Integer linear combinations

Definition 65 An integer r is said to be a linear combination of a

pair of integers m and n whenever there are integers s and t such

that s ·m+ t · n = r.

Proposition 66 Let m be a positive integer. A modular integer k in

Zm has a reciprocal if, and only if, 1 is an integer linear combination

of m and k.

— 197 —

Important mathematical jargon : Sets

Very roughly, sets are the mathematicians’ data structures.

Informally, we will consider a set as a (well-defined, unordered)

collection of mathematical objects, called the elements (or

members) of the set.

Though only implicitly, we have already encountered many sets so

far, e.g. the sets of natural numbers N, integers Z, positive integers,

even integers, odd integers, primes, rationals Q, reals R, booleans,

and finite initial segments of natural numbers Zm.

— 198 —

It is now due time to be explicit. The theory of sets plays important

roles in mathematics, logic, and computer science, and we will be

looking at some of its very basics later on in the course (see

page 309). For the moment, we will just introduce some of its

surrounding notation.

— 199 —

Set membership

The symbol ‘∈’ known as the set membership predicate is central to

the theory of sets, and its purpose is to build statements of the form

x ∈ A

that are true whenever it is the case that the object x is an element

of the set A, and false otherwise. Thus, for instance, π ∈ R is a

true statement, while
√
−1 ∈ R is not. The negation of the set

membership predicate is written by means of the symbol ‘ 6∈’; so

that
√
−1 6∈ R is a true statement, while π 6∈ R is not.

— 200 —

Remark The notations

∀x ∈ A.P(x) , ∃x ∈ A.P(x)

are shorthand for

∀x.
(

x ∈ A=⇒ P(x)
)

, ∃x. x ∈ A ∧ P(x) .

— 201 —

Defining sets

The conventional way to write down a finite set (i.e. a set with a

finite number of elements) is to list its elements in between curly

brackets. For instance,

the set

of even primes

of booleans

[−2..3]

is

{ 2 }

{ true , false }

{−2 , −1 , 0 , 1 , 2 , 3 }

Definining huge finite sets (such as Zgoogolplex) and infinite sets

(such as the set of primes) in the above style is impossible and

requires a technique known as set comprehensiona (or set-builder

notation), which we will look at next.

aBtw, many programming languages provide a list comprehension construct

modelled upon set comprehension.
— 202 —

Set comprehension

The basic idea behind set comprehension is to define a set

by means of a property that precisely characterises all the

elements of the set.

Here, given an already constructed set A and a statement P(x) for

the variable x ranging over the set A, we will be using either of the

following set-comprehension notations

{ x ∈ A | P(x) } , { x ∈ A : P(x) }

for defining the set consisting of all those elements a of the set A

such that the statement P(a) holds. In other words, the following

statement is true

∀a.
(

a ∈ { x ∈ A | P(x) } ⇐⇒
(

a ∈ A ∧ P(a)
)

)

(†)

by definition.
— 203 —

Example 67

1. N = {n ∈ Z | n ≥ 0 }

2. N+ = {n ∈ N | n ≥ 1 }

3. Q = { x ∈ R | ∃p ∈ Z.∃q ∈ N+. x = p/q }

4. Zgoogolplex = {n ∈ N | n < googolplex }

— 204 —

Set equality

Two sets are equal precisely when they have the same elements

Examples:

◮ { x ∈ N : 2 | x ∧ x is prime } = { 2 }

◮ For a positive integer m,

{ x ∈ Z : m | x } = { x ∈ Z : x ≡ 0 (mod m) }

◮ {d ∈ N : d | 0 } = N

— 205 —

Equivalent predicates specify equal sets:

{ x ∈ A | P(x) } = { x ∈ A | Q(x) }

iff

∀ x ∈ A. P(x) ⇐⇒ Q(x)

Example: For a positive integer m,

{ x ∈ Zm | x has a reciprocal in Zm }

=

{ x ∈ Zm | 1 is an integer linear combination of m and x }

— 206 —

Greatest common divisor

Given a natural number n, the set of its divisors is defined by set

comprehension as follows

D(n) =
{
d ∈ N : d | n

}
.

Example 68

1. D(0) = N

2. D(1224) =





1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68,

72, 102, 136, 153, 204, 306, 408, 612, 1224






Remark Sets of divisors are hard to compute. However, the

computation of the greatest divisor is straightforward. :)

— 207 —

Going a step further, what about the common divisors of pairs of

natural numbers? That is, the set

CD(m,n) =
{
d ∈ N : d | m ∧ d | n

}

for m,n ∈ N.

Example 69

CD(1224, 660) = { 1, 2, 3, 4, 6, 12 }

Since CD(n,n) = D(n), the computation of common divisors is as

hard as that of divisors. But, what about the computation of the

greatest common divisor?

— 208 —

Proposition 70 For all natural numbers l, m, and n,

1. CD(m,n) = CD(n,m), and

2. CD(l · n,n) = D(n).

Corollary 71 For a natural number ℓ,

1. CD(ℓ, ℓ) = CD(ℓ, 0) = D(ℓ)

2. CD(1, ℓ) = { 1 }

— 209 —

Lemma 72 (Key Lemma) Let m and m ′ be natural numbers and

let n be a positive integer such that m ≡ m ′ (mod n). Then,

CD(m,n) = CD(m ′, n) .

YOUR PROOF:

— 210 —

MY PROOF: Let m and m ′ be natural numbers, and let n be a

positive integer such that

(i) m ≡ m ′ (mod n) .

We will prove that for all positive integers d,

d | m ∧ d | n ⇐⇒ d | m ′ ∧ d | n .

(=⇒) Let d be a positive integer that divides both m and n. Then,

d | (k · n+m) for all integers k

and since, by (i), m ′ = k0 · n+m for some integer k0, it follows that

d | m ′. As d | n by assumption, we have that d divides both m ′ and

n.

(⇐=) Analogous to the previous implication.

— 211 —

Corollary 73

1. For all natural numbers m and positive integers n,

CD(m,n) = CD
(

rem(m,n), n
)

.

2. For all natural numbers m and n,

CD(m,n) = CD
(

q− p, p
)

where p = min(m,n) and q = max(m,n).

YOUR PROOF:

— 212 —

MY PROOF: The claim follows from the Key Lemma 72 (on

page 210). Item (1) by Corollary 59 (on page 185), and

item (2) because l ≡ l− k (mod k) for all integers k and l.

— 213 —

Putting previous knowledge together we have:

Lemma 74 For all positive integers m and n,

CD(m,n) =





D(n) , if n | m

CD
(

n, rem(m,n)
)

, otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma

suggests a recursive procedure:

gcd(m,n) =





n , if n | m

gcd
(

n, rem(m,n)
)

, otherwise

for computing the greatest common divisor, of two positive integers

m and n. This is

Euclid ′s Algorithm

— 214 —

gcd (with divalg)

fun gcd(m , n)

= let

val (q , r) = divalg(m , n)

in

if r = 0 then n

else gcd(n , r)

end

— 215 —

gcd (with div)

fun gcd(m , n)

= let

val q = m div n

val r = m - q*n

in

if r = 0 then n

else gcd(n , r)

end

— 216 —

Example 75 (gcd(13, 34) = 1)

gcd(13, 34) = gcd(34, 13)

= gcd(13, 8)

= gcd(8, 5)

= gcd(5, 3)

= gcd(3, 2)

= gcd(2, 1)

= 1

NB If gcd terminates on input (m,n) with output gcd(m,n) then

CD(m,n) = D
(

gcd(m,n)
)

.

— 217 —

Proposition 76 For all natural numbers m,n and a, b,

if CD(m,n) = D(a) and CD(m,n) = D(b) then a = b.

Proposition 77 For all natural numbers m,n and k, the

following statements are equivalent:

1. CD(m,n) = D(k).

2. ◮ k | m ∧ k | n, and

◮ for all natural numbers d, d | m ∧ d | n =⇒ d | k.

— 218 —

Definition 78 For natural numbers m,n the unique natural number

k such that

◮ k | m ∧ k | n, and

◮ for all natural numbers d, d | m ∧ d | n =⇒ d | k.

is called the greatest common divisor of m and n, and denoted

gcd(m,n).

— 219 —

Theorem 79 Euclid’s Algorithm gcd terminates on all pairs of

positive integers and, for such m and n, the positive integer

gcd(m,n) is the greatest common divisor of m and n in the

sense that the following two properties hold:

(i) both gcd(m,n) | m and gcd(m,n) | n, and

(ii) for all positive integers d such that d | m and d | n it necessarily

follows that d | gcd(m,n).

YOUR PROOF:

— 220 —

MY PROOF: To establish the termination of gcd on a pair of positive

integers (m,n) we consider and analyse the computations arising

from the call gcd(m,n). For intuition, these can be visualised as on

page 222.

As a start, note that, if m < n, the computation of gcd(m,n) reduces

in one step to that of gcd(n,m); so that it will be enough to establish

the termination of gcd on pairs where the first component is greater

than or equal to the second component.

— 221 —

gcd(m,n)

n|m

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

m = q · n + r

q > 0 , 0 < r < n
0<m<n

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

n gcd(n, r)

r|n

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

n = q ′ · r + r ′

q ′ > 0 , 0 < r ′ < r

gcd(n,m)

r gcd(r, r ′)

— 222 —

Consider then gcd(m,n) where m ≥ n. We have that gcd(m,n)

either terminates in one step, whenever n | m; or that, whenever

m = q · n+ r with q > 0 and 0 < r < n, it reduces in one step to

a computation of gcd(n, r).

In this latter case, the passage of computing gcd(m,n) by means of

computing gcd(n, r) maintains the invariant of having the first com-

ponent greater than or equal to the second one, but also strictly

decreases the second component of the two pairs. As this process

cannot go on for ever while maintaining the second components of

the recurring pairs positive, the recursive calls must eventually stop

and the overall computation terminate (in a number of steps less

than or equal the minimum input of the pair).

— 223 —

The previous analysis can be refined further to get a nice upper

bound on the computation of gcds. For fun, we look into this next.

Note that, for m ≥ n, a call of gcd on (m,n) terminates in at most 2

steps, or in 2 steps reduces to a computation of gcd(r, r ′) for a pair

of positive integers (r, r ′) such that:

m = q · n+ r for q > 0 and 0 < r < n

and

n = q ′ · r+ r ′ for q ′ > 0 and 0 < r ′ < r .

(Btw, for n > m, the same occurs but with an extra computation

step.) As before, this process cannot go on for ever and the gcd

algorithm necessarily terminates.

— 224 —

I claim that r ′ < n/2. Indeed, this is because:

2 · r ′ < r+ r ′ ≤ q ′ · r+ r ′ = n .

Thus, after 2 steps in the computation of gcd on inputs (m,n) with

m ≥ n the second (and smallest) component n of the pair being

computed is reduced to more than 1/2 its size. Since this pattern

recurs until termination, the total number of steps in the

computation of gcd on a pair (m,n) is bounded by

1+ 2 · log
(

min(m,n)
)

.

Hence, the time complexity of the gcd is at most of logarithmic

order.a

aLet me note for the record that a more precise complexity analysis involving

Fibonacci numbers is also available.

— 225 —

As for the characterisation of gcd(m,n), for positive integers m and

n, by means of the properties (i) and (ii) stated in the theorem, we

note first that it follows from Lemma 74 (on page 214) that

CD(m,n) = D
(

gcd(m,n)
)

;

that is, in other words,

for all positive integers d,

d | m ∧ d | n ⇐⇒ d | gcd(m,n)

which is a single statement equivalent to the statements (i) and (ii)

together.

— 226 —

NB Euclid’s Algorithm (on page 214) and Theorem 79 (on page

220) provide two views of the gcd: an algorithmic one and a math-

ematical one. Both views are complementary, neither being more

important than the other, and a proper understanding of gcds should

involve both. As a case in point, we will see that some properties

of gcds are better approached from the algorithmic side (e.g. linear-

ity) while others from the mathematical side (e.g. commutativity and

associativity).

This situation arises as a general pattern in interactions between

computer science and mathematics.

— 227 —

Fractions in lowest terms

Here’s our solution to the problem raised on page 153.

fun lowterms(m , n)

= let

val gcdval = gcd(m , n)

in

(m div gcdval , n div gcdval)

end

— 228 —

Some fundamental properties of gcds

Corollary 80 Let m and n be positive integers.

1. For all integers k and l,

gcd(m,n) | (k ·m+ l · n) .

2. If there exist integers k and l, such that k · m + l · n = 1 then

gcd(m,n) = 1.

YOUR PROOF:

— 229 —

MY PROOF:

(1) Follows from the fact that gcd(m,n) | m and gcd(m,n) | n, for

all positive intergers m and n, and from general elementary

properties of divisibility.

(2) Because, by the previous item, one would have that the gcd

divides 1.

— 230 —

Lemma 81 For all positive integers l, m, and n,

1. (Commutativity) gcd(m,n) = gcd(n,m),

2. (Associativity) gcd
(

l, gcd(m,n)
)

= gcd(gcd(l,m), n),

3. (Linearity)a gcd(l ·m, l · n) = l · gcd(m,n).

YOUR PROOF:

aAka (Distributivity).
— 231 —

MY PROOF: Let l, m, and n be positive integers.

(1) In a nutshell, the result follows because CD(m,n) = CD(n,m).

Let me however give you a detailed argument to explain a basic,

and very powerful, argument for proving properties of gcds (and in

fact of any mathematical structure similarly defined by what in the

mathematical jargon is known as a universal property).

Theorem 79 (on page 220) tells us that gcd(m,n) is the positive

integer precisely characterised by the following universal property :

∀ positive integers d. d | m ∧ d | n ⇐⇒ d | gcd(m,n) . (†)
Now, gcd(n,m) | m and gcd(n,m) | n; hence by (†) above

gcd(n,m) | gcd(m,n). An analogous argument (with m and n

interchanged everywhere) shows that gcd(m,n) | gcd(n,m).

— 232 —

Since gcd(m,n) and gcd(n,m) are positive integers that divide

each other, then they must be equal.

(2) In a nutshell, the result follows because both gcd
(

l, gcd(m,n)
)

and gcd(gcd(l,m), n) are the greatest common divisor of the triple

of numbers (l,m,n). But again I’ll give a detailed proof by means

of the universal property of gcds, from which we have that for all

positive integers d,

d | gcd
(

l, gcd(m,n)
)

⇐⇒ d | l ∧ d | gcd(m,n)

⇐⇒ d | l ∧ d | m ∧ d | n

⇐⇒ d | gcd(l,m) ∧ d | n

⇐⇒ d | gcd(gcd(l,m), n)

— 233 —

It follows that both gcd
(

l, gcd(m,n)
)

and gcd(gcd(l,m), n) are

positive integers dividing each other, and hence equal.a

(3) One way to prove the result is to note that the following

Remainder-Linearity Property of the Division Algorithm:

for all positive integers k, m, n,

divalg(k ·m,k · n) =
(

quo(m,n), k · rem(m,n)
)

transfers to Euclid’s gcd Algorithm.

This is because

◮ every computation step

gcd(m,n) = n,

which happens when rem(m,n) = 0

aBtw, though I have not, one may try to give a proof using Euclid’s Algorithm.

If you try and succeed, please let me know.
— 234 —

corresponds to a computation step

gcd(l ·m, l · n) = l · n,

which happens when l · rem(m,n) = rem(l ·m, l · n) = 0

i.e. when rem(m,n) = 0

while

◮ every computation step

gcd(m,n) = gcd
(

n, rem(m,n)
)

,

which happens when rem(m,n) 6= 0

corresponds to a computation step

gcd(l ·m, l · n) = gcd(l · n, rem(l ·m, l · n))
= gcd

(

l · n, l · rem(m,n)
)

,

which happens when l · rem(m,n) = rem(l ·m, l · n) 6= 0,

i.e. when rem(m,n) 6= 0
— 235 —

Thus, the computation of gcd(m,n) leads to a sequence of calls to

gcd with

inputs (m,n) ,
(

n, rem(m,n)
)

, . . . , (r, r ′) , . . .

and output gcd(m,n)

if, and only if, the computation of gcd(l ·m, l · n) leads to a

sequence of calls to gcd with

inputs (l ·m, l · n) ,
(

l · n, l · rem(m,n)
)

, . . . , (l · r, l · r ′) , . . .
and output l · gcd(m,n) .

Finally, and for completeness, let me also give a non-algorithmic

proof of the result. We show the following in turn:

(i) l · gcd(m,n) | gcd(l ·m, l · n).

(ii) gcd(l ·m, l · n) | l · gcd(m,n).
— 236 —

For (i), since gcd(m,n) | m ∧ gcd(m,n) | n we have that

l · gcd(m,n) | l ·m ∧ l · gcd(m,n) | l · n and hence that

l · gcd(m,n) | gcd(l ·m, l · n).

As for (ii): we note first that since l | l ·m and l | l · n we have that

l | gcd(l ·m, l · n) and so that there exists a positive integer, say k0,

such that gcd(l ·m, l · n) = l · k0. But then, since

l · k0 = gcd(l ·m, l · n) | l ·m ∧ l · k0 = gcd(l ·m, l · n) | l · n we

have that k0 | m ∧ k0 | n, and so that k0 | gcd(m,n). Finally, then,

gcd(l ·m, l · n) = l · k0 | l · gcd(m,n).

— 237 —

Coprimality

Definition 82 Two natural numbers are said to be coprime when-

ever their greatest common divisor is 1.

Euclid ′s Theorem

Theorem 83 For positive integers k, m, and n, if k | (m · n) and

gcd(k,m) = 1 then k | n.

YOUR PROOF:

— 238 —

MY PROOF: Let k, m, and n be positive integers, and assume that

(i) k | (m · n) and (ii) gcd(k,m) = 1 .

Using (i), let l be an integer such that

(iii) k · l = m · n .

In addition, using (ii) and the linearity of gcd (Lemma 81.3 on

page 231), we have that

n = gcd(k,m) · n , by (ii)

= gcd(k · n,m · n) , by linearity

= gcd(k · n, k · l) , by (iii)

= k · gcd(n, l) , by linearity

and we are done.
— 239 —

Corollary 84 (Euclid’s Theorem) For positive integers m and n,

and prime p, if p | (m · n) then p | m or p | n.

Now, the second part of Fermat’s Little Theorem (on page 129)

follows as a corollary of the first part and Euclid’s Theorem.

YOUR PROOF OF Theorem 36.2 (on page 129):

— 240 —

MY PROOF OF Theorem 36.2 (on page 129): Let p be a prime and

i a natural number that is not a multiple of p. By the first part of

Fermat’s Little Theorem, we know that p | i · (ip−1 − 1). It thus

follows by Euclid’s Theorem (Corollary 84 on the previous page)

that p | (ip−1 − 1).

— 241 —

Corollary 85 For all primes p and integers m such that 0 < m < p,

p |
(

p
m

)

and (p−m) |
(

p−1
m

)

.

YOUR PROOF:

— 242 —

MY PROOF: Let p be a prime and m be an integer such that

0 < m < p. As

gcd(p, p −m) = 1 and p ·
(

p−1
m

)

= (p−m) ·
(

p
m

)

the result follows from Theorem 83 (on page 238).

— 243 —

Fields of modular arithmetic

Corollary 86 For prime p, every non-zero element i of Zp

has [ip−2]p as multiplicative inverse. Hence, Zp is what in

the mathematical jargon is referred to as a field.

We can however say a bit more, because an extension of Euclid’s

gcd Algorithm gives both a test for checking the existence of and an

efficient method for finding multiplicative inverses in modular

arithmetic.

— 244 —

Extended Euclid ′s Algorithm

Example 87
[

egcd(34, 13) =
(

(5,−13), 1
)]

gcd(34, 13) 34 = 2· 13 + 8 8 = 34 −2· 13

= gcd(13, 8) 13 = 1· 8 + 5 5 = 13 −1· 8

= gcd(8, 5) 8 = 1· 5 + 3 3 = 8 −1· 5

= gcd(5, 3) 5 = 1· 3 + 2 2 = 5 −1· 3

= gcd(3, 2) 3 = 1· 2 + 1 1 = 3 −1· 2

= gcd(2, 1) 2 = 2· 1 + 0

= 1

— 245 —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
︷ ︸︸ ︷
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
︷ ︸︸ ︷
(34− 2 · 13) −1·

︷ ︸︸ ︷
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

=
︷ ︸︸ ︷
−1 · 34+ 3 · 13 −1·

︷ ︸︸ ︷
(2 · 34+ (−5) · 13)

= −3 · 34+ 8 · 13
= gcd(3, 2) 1 = 3 −1· 2

=
︷ ︸︸ ︷
(2 · 34+ (−5) · 13) −1·

︷ ︸︸ ︷
(−3 · 34+ 8 · 13))

= 5 · 34+ (−13) · 13

— 246 —

Integer linear combinations

Definition 65a An integer r is said to be a linear combination of a

pair of integers m and n whenever

there exist a pair of integers s and t, referred to as the

coefficients of the linear combination, such that

[

s t
]

·
[

m

n

]

= r ;

that is

s ·m+ t · n = r .

aSee page 197.
— 247 —

Remark Note that the ways in which an integer can be expressed

as a linear combination is infinite; as, for all integers m, n and r, s,

t, we have that

[

s t
]

·
[

m

n

]

= r

iff

for all integers k,
[

(s+ k · n) (t− k ·m)
]

·
[

m

n

]

= r .

— 248 —

Theorem 88 For all positive integers m and n,

1. gcd(m,n) is a linear combination of m and n, and

2. a pair lc1(m,n), lc2(m,n) of integer coefficients for it,

i.e. such that

[

lc1(m,n) lc2(m,n)
]

·
[

m

n

]

= gcd(m,n) ,

can be efficiently computed.

The proof of Theorem 88, which is left as an exercise for the

interested reader, is by means of the Extended Euclid’s Algorithm

egcd on page 252 relying on the following elementary properties

of linear combinations.

— 249 —

Proposition 89 For all integers m and n,

1.
[

1 0
]

·
[

m

n

]

= m ∧
[

0 1
]

·
[

m

n

]

= n ;

2. for all integers s1, t1, r1 and s2, t2, r2,

[

s1 t1
]

·
[

m

n

]

= r1 ∧
[

s2 t2
]

·
[

m

n

]

= r2

implies

[

s1 + s2 t1 + t2
]

·
[

m

n

]

= r1 + r2 ;

3. for all integers k and s, t, r,

[

s t
]

·
[

m

n

]

= r implies
[

k · s k · t
]

·
[

m

n

]

= k · r .

— 250 —

We extend Euclid’s Algorithm gcd(m,n) from computing on pairs

of positive integers to computing on pairs of triples
(

(s, t), r
)

with

s, t integers and r a positive integer satisfying the invariant that

s, t are coefficientes expressing r as an integer linear combination

of m and n.

— 251 —

egcd (with divalg)

fun egcd(m , n)

= let

fun egcditer(((s1,t1),r1) , lc as ((s2,t2),r2))

= let

val (q,r) = divalg(r1,r2) (* r = r1-q*r2 *)

in

if r = 0

then lc

else egcditer(lc , ((s1-q*s2,t1-q*t2),r))

end

in

egcditer(((1,0),m) , ((0,1),n))

end

— 252 —

egcd (with div)

fun egcd(m , n)

= let

fun egcditer(((s1,t1),r1) , lc as ((s2,t2),r2))

= let

val q = r1 div r2 ; val r = r1 - q*r2

in

if r = 0 then lc

else egcditer(lc , ((s1-q*s2,t1-q*t2),r))

end

in

egcditer(((1,0),m) , ((0,1),n))

end

— 253 —

Example 90 (egcd(13, 34) = ((−13, 5), 1))

egcd(13, 34) = egcditer
(

((1, 0), 13) , ((0, 1), 34)
)

= egcditer
(

((0, 1), 34) , ((1, 0), 13)
)

= egcditer
(

((1, 0), 13) , ((−2, 1), 8)
)

= egcditer
(

((−2, 1), 8) , ((3,−1), 5)
)

= egcditer
(

((3,−1), 5) , ((−5, 2), 3)
)

= egcditer
(

((−5, 2), 3) , ((8,−3), 2)
)

= egcditer
(

((8,−3), 2) , ((−13, 5), 1)
)

=
(

(−13, 5) , 1
)

— 254 —

fun gcd(m , n) = #2(egcd(m , n))

fun lc1(m , n) = #1(#1(egcd(m , n)))

fun lc2(m , n) = #2(#1(egcd(m , n)))

Proposition 91 For all distinct positive integers m and n,

lc1(m,n) = lc2(n,m) .

— 255 —

Another characterisation of gcds

Theorem 92 For all positive integers m and n, gcd(m,n) is the

least positive linear combination of m and n.

YOUR PROOF:

— 256 —

MY PROOF: Let m and n be arbitrary positive integers. By

Theorem 88.1 (on page 249), gcd(m,n) is a linear combination of

m and n. Furthermore, since it is positive, by Corollary 80.1 (on

page 229), it is the least such.

— 257 —

Multiplicative inverses in modular arithmetic

Corollary 93 For all positive integers m and n,

1. n · lc2(m,n) ≡ gcd(m,n) (mod m), and

2. whenever gcd(m,n) = 1,
[

lc2(m,n)
]

m
is the multiplicative inverse of [n]m in Zm .

Remark For every pair of positive integers m and n, we have that

[n]m has a multiplicative inverse in Zm iff gcd(m,n) = 1.

— 258 —

Diffie-Hellman cryptographic method

Shared secret key

A

a

[ca]p = α

c, p
B

b

β = [cb]p

— 259 —

Diffie-Hellman cryptographic method

Shared secret key

A

a

[ca]p = α

β

k = [βa]p

c, p
B

b

β = [cb]p

α

[αb]p = k

/.-,()*+α

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗ /.-,()*+β

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

— 259-a —

Key exchange

Mathematical modelling:

◮ Encrypt and decrypt by means of modular exponentiation:

[ke]p [ℓd]p

◮ Encrypting-decrypting have no effect:

By Fermat’s Little Theorem,

k1+c·(p−1) ≡ k (mod p)

for every natural number c, integer k, and prime p.

◮ Consider d, e, p such that e · d = 1+ c · (p− 1); equivalently,

d · e ≡ 1 (mod p− 1) .

— 260 —

Lemma 94 Let p be a prime and e a positive integer with

gcd(p − 1, e) = 1. Define

d =
[

lc2(p− 1, e)
]

p−1
.

Then, for all integers k,

(ke)d ≡ k (mod p) .

YOUR PROOF:

— 261 —

MY PROOF: Let p, e, and d be as stated in the lemma. Then,

e · d = 1+ c · (p − 1) for some natural number c and hence, by

Fermat’s Little Theorem (Theorem 36 on page 36),

ke·d = k · kc·(p−1) ≡ k (mod p)

for all integers k not multiple of p. For integers k multiples of p

the result is trivial.

— 262 —

A

(eA, dA)

0 ≤ k < p

[keA]p = m1

m2

[m2
dA]p = m3

p
B

(eB, dB)

m1

m2 = [m1
eB]p

m3

[m3
dB]p = k

GFED@ABCm1
//

GFED@ABCm2
oo

GFED@ABCm3
//

— 263 —

Encryption/Decryption in RSA

Lemma 95 Let p, q be distinct primes and d, e be positive integers

such that e · d ≡ 1 (mod (p− 1) · (q− 1)). Then, for all integers k,

(ke)d ≡ k (mod p · q).

— 264 —

Natural Numbers
and mathematical induction

We have mentioned in passing on page 158 that the natural

numbers are generated from zero by succesive increments. This is

in fact the defining property of the set of natural numbers, and

endows it with a very important and powerful reasoning principle,

that of Mathematical Induction, for establishing universal properties

of natural numbers.

NB When thinking about mathematical induction it is most

convenient and advisable to have in mind their definition in ML:

datatype

N = zero | succ of N

— 265 —

Principle of Induction

Let P(m) be a statement for m ranging over the set of natural

numbers N.

If

◮ the statement P(0) holds, and

◮ the statement

∀n ∈ N.
(

P(n) =⇒ P(n+ 1)
)

also holds

then

◮ the statement

∀m ∈ N. P(m)

holds.

— 266 —

NB By the Principle of Induction, thus, to establish the statement

∀m ∈ N. P(m)

it is enough to prove the following two statements:

1. P(0), and

2. ∀n ∈ N.
(

P(n) =⇒ P(n+ 1)
)

.

— 267 —

The induction proof strategy:

To prove a goal of the form

∀m ∈ N. P(m)

First prove

P(0) ,

and then prove

∀n ∈ N.
(

P(n) =⇒ P(n+ 1)
)

.

— 268 —

Proof pattern:

In order to prove that

∀m ∈ N. P(m)

1. Write: Base case: and give a proof of P(0).

2. Write: Inductive step: and give a proof that

for all natural numbers n, P(n) implies P(n+ 1) .

3. Write: By the Principle of Induction, we conclude that

P(m) holds for all natural numbers m.

— 269 —

A template for induction proofs:

1. State that the proof uses induction.

2. Define an appropriate property P(m) for m ranging over the set

of natural numbers. This is called the induction hypothesis.

3. Prove that P(0) is true. This is called the base case.

4. Prove that P(n) =⇒ P(n+ 1) for every natural number n. This

is called the inductive step.

5. Invoke the principle of mathematical induction to conclude that

P(m) is true for all natural numbers m.

NB Always be sure to explicitly label the induction hypothesis, the

base case, and the inductive step.

— 270 —

Binomial Theorem

Theorem 29 For all n ∈ N,

(x+ y)n =
∑n

k=0

(

n
k

)

· xn−k · yk .

YOUR PROOF:

— 271 —

MY PROOF SKETCH: We prove

∀m ∈ N. P(m)

for

P(m) the statement (x+ y)m =
∑m

k=0

(

m
k

)

· xm−k · yk

by the Principle of Induction.

Base case: P(0) holds because

(x+ y)0 = 1 =
(

0
0

)

· x0 · y0 =
∑0

k=0

(

0
k

)

· x0−k · yk .

— 272 —

Inductive step: We need prove that, for all natural numbers n, P(n)

implies P(n+ 1). To this end, let n be a natural number and assume

P(n); that is, assume that the following Induction Hypothesis

(IH) (x+ y)n =
∑n

k=0

(

n
k

)

· xn−k · yk

holds.

We will now proceed to show that

(x+ y)n+1 =
∑n+1

k=0

(

n+1
k

)

· x(n+1)−k · yk (†)

follows.

— 273 —

We first try unfolding the left-hand side of (†) on the previous page:

(x+ y)n+1 = (x+ y)n · (x+ y)

=
(∑n

k=0

(

n
k

)

· xn−k · yk
)

· (x+ y)

, by the Induction Hypothesis (IH)

=
(∑n

k=0

(

n
k

)

· xn−k+1 · yk
)

+
(∑n

k=0

(

n
k

)

· xn−k · yk+1
)

Unfortunately, we seem to be kind of stuck here. So, we next try

unfolding the right-hand side of (†):
∑n+1

k=0

(

n+1
k

)

· x(n+1)−k · yk

in the hope that this will help us bridge the gap. But, how can we

make any progress? The clue seems to be in relating the

coefficients
(

n
k

)

and
(

n+1
k

)

that appear in the above expressions.

— 274 —

At this point you may know about Pascal’s triangle (see, for

example, page 279), and get unstuck. Otherwise, you can

reconstruct Pascal’s rule by counting! Let’s see how.

The natural number
(

n+1
k

)

counts the number of ways in which k

objects can be chosen amongst n+ 1 objects, say o1, . . . , on, on+1.

One can count these by looking at two cases: (i) when the object

on+1 is not chosen, plus (ii) when the object on+1 is chosen. Under

case (i), we have
(

n
k

)

possible ways to choose the k objects

amongst o1, . . . , on; while, under case (ii) we have
(

n
k−1

)

possible

ways to choose the remaining k− 1 objects amongst o1, . . . , on.

Hence, we conjecture that
(

n+1
k

)

=
(

n
k

)

+
(

n
k−1

)

. (‡)

— 275 —

We have a choice now: either we prove the conjecture and then

check whether it is of any help for our problem at hand; or we

assume it for the time being, push on, and, if it is what we need,

prove it to leave no gaps in our reasoning. For reasons that will

become apparent, I will here take the second route, and calculate:

— 276 —

∑n+1
k=0

(

n+1
k

)

· x(n+1)−k · yk

= xn+1 +
∑n

k=1

(

n+1
k

)

· xn−k+1 · yk + yn+1

= xn+1 +
∑n

k=1

(

(

n
k

)

+
(

n
k−1

)

)

· xn−k+1 · yk + yn+1

, provided the conjecture (‡) is true!

= xn+1 +
∑n

k=1

(

n
k

)

· xn−k+1 · yk +
∑n

k=1

(

n
k−1

)

· xn−k+1 · yk + yn+1

=
∑n

k=0

(

n
k

)

· xn−k+1 · yk +
∑n

j=0

(

n
j

)

· xn−j · yj+1

=
(∑n

k=0

(

n
k

)

· xn−k · yk
)

· x +
(∑n

j=0

(

n
j

)

· xn−j · yj
)

· y

=
(∑n

i=0

(

n
i

)

· xn−i · yi
)

· (x+ y)

= (x+ y)n · (x+ y) , by the Induction Hypothesis (IH)

= (x+ y)n+1

— 277 —

We have now established the inductive step, provided that we can

prove the conjecture; and you should move onto this next:

Homework

1. Prove that, for all positive integers m and k such that

1 ≤ k ≤ m,
(

m+1
k

)

=
(

m
k

)

+
(

m
k−1

)

.

2. Turn the above scratch work into a proof.

Btw Note that our proof works in any commutative semiring.

— 278 —

THEOREM OF THE DAY
Pascal’s Rule For any positive integers n and k,

(

n + 1

k

)

=

(

n

k

)

+

(

n

k − 1

)

.

In words, this is read as “n + 1 choose k = n choose k + n choose k − 1”, i.e. the number of

choices if you must select k objects from n + 1 is the same as the number of choices if

you are selecting from n objects and have an initial choice of whether to take k or

k − 1. The rule defines what is usually called Pascal’s triangle, presented as

shown on the right. However, this is a misnomer for two reasons. Firstly,

it isn’t a triangle at all, unless font size decreases exponentially with

increasing row number; it is more like a Chinese hat!

... which is appropriate enough because, secondly, this triangle and rule were known to the Chinese scholar Jia Xian, six

hundred years before Pascal. Aligning the rows of the triangle on the left (as shown on the left) seems to make

much better sense, typographically, computationally and combinatorially. A well-known relationship with

the Fibonacci series, for instance, becomes immediately apparent as a series of diagonal sums.

Rows are numbered from zero;

cells in each row are likewise

numbered from zero. Row zero

consists of
(

0

0

)

= 1; the n-th row

starts with
(

n

0

)

= 1.

The work of Jia Xian has passed to us through the commentary of Yang Hui

(1238-1298) and Pascal’s triangle is known in China as ‘Yang Hui’s trian-

gle’. In Iran, it is known as the ‘Khayyám triangle’ after Omar Khayyám

(1048-1131), although it was known to Persian, and Indian, scholars in the

tenth century. Peter Cameron cites Robin Wilson as dating Western study

of Pascal’s triangle as far back as the Majorcan theologian Ramon Llull

(1232–1316).

Web link: ptri1.tripod.com. See the wikipedia entry on nomenclature.

Further reading: Pascal’s Arithmetical Triangle by A.W.F. Edwards, Johns Hop-

kins University Press, 2002. The Cameron citation appears in Combinatorics: Topics, Techniques, Algorithms, by Peter J. Cameron, CUP, 1994, section 3.3.

Created by Robin Whitty for www.theoremoftheday.org

— 279 —

Fermat ′s Little Theorem

The argument given for the Many Dropout Lemma (Proposition 35

on page 127) that we used to prove the first part of Fermat’s Little

Theorem (Theorem 36.1 on page 129) contains an “iteration”. Such

arguments are, typically, induction proofs in disguise. Here, to

illustrate the point, I’ll give a proof of the result by the Principle of

Induction.

Theorem 36.1 For all natural numbers i and primes p,

ip ≡ i (mod p) .

YOUR PROOF:

— 280 —

MY PROOF: Let p be a prime. We prove

∀ i ∈ N. P(i)

for

P(i) the statement ip ≡ i (mod p)

by the Principle of Induction.

Base case: P(0) holds because

0p = 0 ≡ 0 (mod p) .

— 281 —

Inductive step: We need prove that, for all natural numbers i, P(i)

implies P(i+ 1). To this end, let i be a natural number and assume

P(i); that is, assume that the following Induction Hypothesis

(IH) ip ≡ i (mod p)

holds.

Then,

(i+ 1)p = ip + p ·∑p−1
k=1

(p−1)!

(p−k)!·k!
· ik + 1

≡ ip + 1 (mod p) , as (p−1)!

(p−k)!·k!
∈ N

≡ i+ 1 (mod p) , by Induction Hypothesis (IH)

and we are done.

— 282 —

Two further induction techniques

Technique 1. Let P(m) be a statement for m ranging over the

natural numbers greater than or equal a fixed natural number ℓ.

Let us consider the derived statement

Pℓ(m) = P(ℓ+m)

for m ranging over the natural numbers.

We are now interested in analysing and stating the Principle of

Induction associated to the derived Induction Hypothesis Pℓ(n)

solely in terms of the original statements P(n).

— 283 —

To do this, we notice the following logical equivalences:

◮ Pℓ(0) ⇐⇒ P(ℓ)

◮ ∀n ∈ N.
(

Pℓ(n) =⇒ Pℓ(n+ 1)
)

⇐⇒ ∀n ≥ ℓ in N.
(

P(n) =⇒ P(n+ 1)
)

◮ ∀m ∈ N. Pℓ(m) ⇐⇒ ∀m ≥ ℓ in N. P(m)

— 284 —

Replacing the left-hand sides by their equivalent right-hand sides in

the Principle of Induction with Induction Hypothesis Pℓ(m) yields

what is known as the

Principle of Induction
from basis ℓ

Let P(m) be a statement for m ranging over the natural

numbers greater than or equal a fixed natural number ℓ.

If

◮ P(ℓ) holds, and

◮ ∀n ≥ ℓ in N.
(

P(n) =⇒ P(n+ 1)
)

also holds

then

◮ ∀m ≥ ℓ in N. P(m) holds.

— 285 —

Proof pattern:

In order to prove that

∀m ≥ ℓ in N. P(m)

1. Write: Base case: and give a proof of P(ℓ).

2. Write: Inductive step: and give a proof that for all natural

numbers n greater than or equal ℓ, P(n) implies P(n+ 1).

3. Write: By the Principle of Induction from basis ℓ, we con-

clude that P(m) holds for all natural numbers m greater

than or equal ℓ.

— 286 —

Technique 2. Let P(m) be a statement for m ranging over the

natural numbers greater than or equal a fixed natural number ℓ.

Let us consider the derived statement

P#(m) = ∀k ∈ [ℓ..m]. P(k)

again for m ranging over the natural numbers greater than or equal

ℓ.

We are now interested in analysing and stating the Principle of

Induction from basis ℓ associated to the derived Induction

Hypothesis P#(n) solely in terms of the original statements P(n).

— 287 —

To do this, we proceed as before, noticing the following logical

equivalences:

◮ P#(ℓ) ⇐⇒ P(ℓ)

◮
(

P#(n) =⇒ P#(n+ 1)
)

⇐⇒
(

(

∀k ∈ [ℓ..n]. P(k)
)

=⇒ P(n+ 1)
)

◮
(

∀m ≥ ℓ in N. P#(m)
)

⇐⇒
(

∀m ≥ ℓ in N. P(m)
)

— 288 —

Replacing the left-hand sides by their equivalent right-hand sides in

the Principle of Induction from basis ℓ with Induction Hypothesis

P#(m) yields what is known as the

Principle of Strong Induction

from basis ℓ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural

numbers greater than or equal a fixed natural number ℓ.

If both

◮ P(ℓ) and

◮ ∀n ≥ ℓ in N.
(

(

∀k ∈ [ℓ..n]. P(k)
)

=⇒ P(n+ 1)
)

hold, then

◮ ∀m ≥ ℓ in N. P(m) holds.

— 289 —

Proof pattern:

In order to prove that

∀m ≥ ℓ in N. P(m)

1. Write: Base case: and give a proof of P(ℓ).

2. Write: Inductive step: and give a proof that for all natural

numbers n ≥ ℓ, if P(k) holds for all ℓ ≤ k ≤ n then so

does P(n+ 1).

3. Write: By the Principle of Strong Induction, we conclude

that P(m) holds for all natural numbers m greater than

or equal ℓ.

— 290 —

Fundamental Theorem of Arithmetic

Every positive integer is expressible as the product of a

unique finite sequence of ordered primes.

Proposition 96 Every positive integer greater than or equal 2 is a

prime or a product of primes.

YOUR PROOF:

— 291 —

MY PROOF: Let P(m) be the statement:

Either m is a prime or a product of primes .

We prove

∀m ≥ 2 in N. P(m)

by the Principle of Strong Induction (from basis 2).

Base case: P(2) holds because 2 is a prime.

— 292 —

Inductive step: We need prove that for all natural numbers n ≥ 2,

If P(k) for all natural numbers 2 ≤ k ≤ n, then P(n+ 1) .

To this end, let n ≥ 2 be an arbitrary natural number, and assume

the following Strong Induction Hypothesis

(SIH)
for all natural numbers 2 ≤ k ≤ n,

either k is prime or a product of primes .

We will now prove that

either n+ 1 is a prime or a product of primes (†)

by cases (see page 111).

— 293 —

If n + 1 is a prime, then of course (†) holds. Now suppose that

n + 1 is composite. Hence, it is the product of natural numbers p

and q in the integer interval [2..n]. Since, by the Strong Induction

Hypothesis (SIH), both p and q are either primes or a product of

primes, so is n+ 1 = p · q; and (†) holds.

By the Principle of Strong Induction (from basis 2), we conclude that

every natural number greater than or equal 2 is either a prime or a

product of primes.

— 294 —

Theorem 97 (Fundamental Theorem of Arithmetic) For every

positive integer n there is a unique finite ordered sequence of

primes (p1 ≤ · · · ≤ pℓ) with ℓ ∈ N such that

n =
∏

(p1, . . . , pℓ) .

NB For ℓ = 0, the sequence is empty and
∏

() = 1; for ℓ = 1,∏
(p1) = p1; and, for ℓ ≥ 2,

∏
(p1, . . . , pℓ) = p1 · . . . · pℓ.

YOUR PROOF:

— 295 —

MY PROOF: Since, by the previous proposition, every number

greater than or equal 2 is a prime or a product of primes, it can

either be expressed as
∏

(p) for a prime p or as
∏

(p1, . . . , pℓ) with

ℓ ≥ 2 for a finite ordered sequence of primes p1, . . . , pℓ. As for the

number 1, it can uniquely be expressed in this form as the product∏
() of the empty sequence ().

We are thus left with the task of showing that for n ≥ 2 in N, such

representations are unique.

— 296 —

To this end, we will establish that

for all ℓ, k ≥ 1 in N, and for all finite ordered sequences

of primes (p1 ≤ · · · ≤ pℓ) and (q1 ≤ · · · ≤ qk),

if
∏

(p1, . . . , pℓ) =
∏

(q1, . . . , qk) then (p1, . . . , pℓ) =

(q1, . . . , qk); that is, ℓ = k and pi = qi for all i ∈ [1..ℓ] .

(†)

Let (p1 ≤ · · · ≤ pℓ) and (q1 ≤ · · · ≤ qk) with ℓ, k ≥ 1 in N, be two

arbitrary finite ordered sequences of primes, and assume that∏
(p1, . . . , pℓ) =

∏
(q1, . . . , qk).

By Euclid’s Theorem (Corollary 84 on page 240), since p1 divides∏
(p1, . . . , pℓ) =

∏
(q1, . . . , qk) it follows that it divides, and hence

equals, some qi for i ∈ [1..k]; so that q1 ≤ p1. Analogously, one

argues that p1 ≤ q1; so that p1 = q1.

— 297 —

It follows by cancellation that
∏

(p2, . . . , pℓ) =
∏

(q2, . . . , qk), and

by iteration of this argument that pi = qi for all 1 ≤ i ≤ min(ℓ, k).

But, ℓ cannot be greater than k because otherwise one would have∏
(pk+1, . . . , pℓ) = 1, which is absurd. Analogously, k cannot be

greater than ℓ; and we are done.

Btw, my argument above requires an “iteration”, and I have already

mentioned that, typically, these are induction proofs in disguise. To

reinforce this, I will now give an inductive proof of uniqueness.a

aHowever, do have in mind that later on in the course, you will encounter more

Structural Principles of Induction for finite sequences and other such data types.
— 298 —

Indeed, we consider (†) on page 297 in the form

∀ ℓ ≥ 1 in N. P(ℓ) (‡)

for P(ℓ) the statement

(IH)

For all k ≥ 1 in N, and for all finite ordered sequences

of primes (p1 ≤ · · · ≤ pℓ) and (q1 ≤ · · · ≤ qk),

if
∏

(p1, . . . , pℓ) =
∏

(q1, . . . , qk) then (p1, . . . , pℓ) =

(q1, . . . , qk); that is, ℓ = k and pi = qi for all i ∈ [1..ℓ] .

and prove (‡) by the Principle of Induction (from basis 1).

Base case: Establishing P(1) is equivalent to showing that for all

finite ordered sequences (q1 ≤ · · · ≤ qk) with k ≥ 1 in N, if∏
(q1, . . . , qk) is prime then k = 1; which is the case by definition

of prime number.

— 299 —

Inductive step: Let ℓ ≥ 1 in N and assume the Induction Hypothesis

P(ℓ).

To prove P(ℓ+ 1), let k ≥ 1 be an arbitrary natural number, and let

(p1 ≤ · · · ≤ pℓ+1) and (q1 ≤ · · · ≤ qk) be arbitrary finite ordered

sequences of primes. In addition, assume that
∏

(p1, . . . , pℓ+1) =
∏

(q1, . . . , qk) .

By arguments as above, it follows that

p1 = q1

and hence that
∏

(p2, . . . , pℓ+1) =
∏

(q2, . . . , qk) .

— 300 —

Furthermore, note that k > 1; because otherwise the product of the

2 or more primes p1, . . . , pℓ+1 would be a prime, which is absurd.

We have now the finite ordered sequence of primes (p2, . . . , pℓ+1)

of length ℓ and the finite ordered sequence of primes (q2, . . . , qk) of

length (k− 1) ≥ 1 such that
∏

(p2, . . . , pℓ+1) =
∏

(q2, . . . , qk) to

which we may apply the Induction Hypothesis (IH). Doing so, it

follows that ℓ = k− 1 and that pi = qi for all i ∈ [2..ℓ+ 1].

Thus, ℓ+ 1 = k and pi = qi for all i ∈ [1..ℓ + 1]. Hence, P(ℓ+ 1)

holds.

— 301 —

Homework

1. Argue that the uniqueness of prime factorisation is also a

consequence of the statement

∀ ℓ ≥ 1 in N. P ′(ℓ) (∗)
for P ′(ℓ) the statement a

For all k ≥ ℓ in N and for all finite ordered sequences

of primes (p1 ≤ · · · ≤ pℓ) and (q1 ≤ · · · ≤ qk),

if
∏

(p1, . . . , pℓ) =
∏

(q1, . . . , qk) then (p1, . . . , pℓ) =

(q1, . . . , qk); that is, ℓ = k and pi = qi for all i ∈ [1..ℓ] .

2. Prove (∗) above by the Principle of Induction (from basis 1),

and compare your proof with mine for (‡).

aNote that the difference with the previously considered Induction Hypothesis

is in the range of k, which here is ≥ ℓ and previously was ≥ 1.
— 302 —

THEOREM OF THE DAY
The Fundamental Theorem of Arithmetic Every integer greater than one can be expressed uniquely
(up to order) as a product of powers of primes.

Every number corresponds to a unique path (which we may call a fundamental path) plotted on the xy-plane. Starting at (0, 0) we progress

horizontally along the x axis for each prime factor, taking the primes in ascending order. After each prime, we ascend the y axis to represent its

power. Thus:
256 = 28 143 = 11 × 13 (= 111

.131) 42706587 = 3.76
.112 132187055 = 5.75

.112
.13.

The end-points of fundamental paths may be called fundamental points. Some well-known conjectures about primes can be expressed in terms

of questions about fundamental points: Goldbach’s conjecture that every even integer greater than 2 is the sum of two primes could be solved if

we knew which points on the line y = 2 were fundamental (the line for 143 shows that 24=11+13, for instance.) The ‘twin primes conjecture’,

that there are infinitely many primes separated by 2 is a question about fundamental points on the line y = 1 (for example, (3, 1) and (5, 1) are

fundamental points.)

Euclid, Book 7, Proposition 30 of the Elements, proves that if a prime divides the product of two numbers then it must divide one or

both of these numbers. This provided a key ingredient of the Fundamental Theorem which then had to wait more than two thousand

years before it was finally established as the bedrock of modern number theory by Gauss, in 1798, in his Disquisitiones Arithmeticae.

Web link: www.dpmms.cam.ac.uk/˜wtg10/FTA.html

Further reading: Elementary Number Theory by Gareth Jones and Mary Jones, Springer, Berlin, 1998.

Created by Robin Whitty for www.theoremoftheday.org

— 303 —

gcd and min

It is sometimes customary, and very convenient, to restate the

Fundamental Theorem of Arithmetic in the following terms:

Every positive integer n is expressible as
∏

p pnp

where the product is taken over all primes but where the

powers are natural numbers with np 6= 0 for only finitely

many primes p.

Example 98

◮ 1224 = 22 · 32 · 50 · 70 · 110 · 130 · 171 · 190 · . . .

◮ 660 = 22 · 31 · 51 · 70 · 111 · 130 · . . .

— 304 —

In these terms, gcds are given by taking mins of powers. Precisely,

gcd
(∏

p pmp ,
∏

p pnp
)

=
∏

p pmin(mp,np) . (⋆)

Example 99

gcd(1224, 660)

= 2min(2,2) · 3min(2,1) · 5min(0,1) · 7min(0,0) · 11min(0,1) · 13min(0,0)

· 17min(1,0) · 19min(0,0) · . . .
= 22 · 3
= 12

— 305 —

Euclid ′s infinitude of primes

Theorem 100 The set of primes is infinite.

YOUR PROOF:

— 306 —

MY PROOF: We use proof by contradiction. So, suppose that the

set of primes is finite, and let p1, . . . , pℓ with ℓ ∈ N be the collection

of them all. Consider the natural number p = p1 · . . . · pℓ + 1. As p is

not in the list of primes, by the Fundamental Theorem of Arithmetic

(see Proposition 96), it is a product of primes. Thus, there exists a

pi for i ∈ [1..ℓ] such that pi | p; and, since pi | (p1 · · · · · pℓ), we have

that pi divides p−(p1 · . . . ·pℓ) = 1. This is a contradiction. Therefore,

the set of primes is infinite.

— 307 —

THEOREM OF THE DAY
Euclid’s Infinity of Primes There are infinitely many prime numbers.

Primes are integers greater than 1 which are not areas of rectangles whose sides are both integers greater than 1.

A prime number is an integer greater than one which cannot be divided exactly by any other integer greater than one. Euclid’s proof, well over

two thousand years old, that such numbers form an infinity, is often cited by mathematicians today as the prototype of a beautiful mathematical

argument. Thus, suppose there are just N primes, where N is a positive integer. Then we can list the primes: p1, p2, . . . , pN . Calculate

q = 1 + p1 × p2 × . . . × pN . Now q cannot be prime since it is larger than any prime in our list. But dividing q by any prime in our list leaves

remainder 1, so q cannot be divided exactly by any prime in our list. So it cannot be divided by any integer greater than 1 other than q and is

therefore prime by definition. This contradiction refutes the assertion that there were only N primes. So no such assertion can be made.

Remarks: (1) Euclid’s proof uses the fact that non-divisibility by a prime implies non-divisibility by a non-prime (a composite). This is the

content of Book 7, Proposition 32 of his Elements.

(2) It would be a mistake to think that we always get a new prime directly from q since, for example, 2 × 3 × 5 × 7 × 11 × 13 = 30030 and
1 + 30030 is not prime, being the product of the two prime numbers 59 and 509.

Scant record exists of any such person as Euclid of Alexandria (325–265 BC) having existed. However, the Elements certainly
date from third century BC Alexandria and although Greek mathematics, rooted in geometry, did not recognise the concept of
infinity, this theorem with what is effectively this proof appears as Proposition 20 in Book IX.

Web link: aleph0.clarku.edu/∼djoyce/java/elements/bookIX/propIX20.html. Is 1 prime? Find out here: arxiv.org/abs/1209.2007.

Further reading: Ancient Mathematics (Sciences of Antiquity), by Serafina Cuomo, Routledge, 2001.
Created by Robin Whitty for www.theoremoftheday

— 308 —

Sets

Topics

Abstract sets. Extensionality. Subsets and supersets. Separation

and comprehension. Russell’s paradox. Empty set. Powerset.

Hasse and Venn diagrams. The powerset Boolean algebra.

Unordered and ordered pairing. Singletons. Products. Big unions.

Big intersections. Disjoint unions. Relations. Matrices. Directed

graphs. Reachability. Preorders. Reflexive-transitive closure.

Partial functions. Functions (or maps). Bijections. Equivalence

relations and set partitions. Calculus of bijections. Characteristic

(or indicator) functions. Finite and infinite sets. Surjections. Stirling

numbers of the second kind. Enumerability and countability.

Choice. Injections. Cantor-Bernstein-Schroeder Theorem. Direct

and inverse images. Replacement. Set-indexed constructions.
— 309 —

Unbounded cardinality: Cantor’s diagonalisation argument and

Lawvere’s fixed-point argument. Foundation.

Complementary reading:

◮ Chapters 1, 30, and 31 of How to Think Like a Mathematician

by K. Houston.

◮ Chapters 4.1 and 7 of Mathematics for Computer Science by

E. Lehman, F. T. Leighton, and A. R. Meyer.

◮ Chapters 1.3, 1.4, 4, 5, and 7 of How to Prove it by

D. J. Velleman.

— 310 —

Objectives

To introduce the basics of the theory of sets and some of its uses.

— 311 —

Abstract sets
adapted from Section 1.1 of Sets for Mathematics

by F.W. Lawvere and R. Rosebrugh

An abstract set is supposed to have elements, each of which has no

structure, and is itself supposed to have no internal structure (except

that the elements can be distinguished as equal or unequal) and to

have no external structure except for the number of elements. There

are sets of all possible sizes, including finite and infinite sizes.

— 312 —

It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,

?> =<

89 :;
•(1,1) •(1,2) •(1,3) •(1,4) •(1,5)

•(2,1) •(2,2) •(2,3) •(2,4) •(2,5)

may be a convenient way of picturing a certain set for some con-

siderations, but what is apparently the same set may be pictured

as

?> =<
89 :;•(1,1) •(2,1) •(1,2) •(2,2) •(1,3) •(2,3) •(1,4) •(2,4) •(1,5) •(2,5)

or even simply as

?> =<
89 :;• • • • • • • • • •

for other considerations.
— 313 —

Set Theory

Set Theorya is the branch of mathematical logic that studies axiom

systems for the notion of abstract set as based on a membership

predicate (recall page 200). As we will see (on page 325), care

must be taken in such endeavour.

Set Theory aims at providing foundations for mathematics. There

are however other approaches, as Category Theory and Type

Theory, that also play an important role in Computer Science.

a(for which you may consult the book Naive Set Theory by P.Halmos)

— 314 —

A widely used set theory is ZFC: Zermelo-Fraenkel Set Theory

with Choice. It embodies postulates of: extensionality (page 316);

separation [aka restricted comprehension, subset, or

specification] (page 322); powerset (page 329); pairing (page 345);

union (page 371); infinity (page 441); choice (page 454)

replacement (page 465); foundation [aka regularity] (page 481).

We are not going to be formally studying Set Theory here; rather,

we will be naively looking at ubiquituous structures that are

available within it.

— 315 —

Set membership

We write ∈ for the membership predicate; so that

x ∈ A stands for x is an element of A .

We further write

x 6∈ A for ¬(x ∈ A) .

Example: 0 ∈ { 0, 1 } and 1 6∈ { 0 } are true statements.

— 316 —

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

∀ sets A,B. A = B ⇐⇒ (∀ x. x ∈ A ⇐⇒ x ∈ B) .

Example:

{0} 6= {0, 1} = {1, 0} 6= {2} = {2, 2}

— 317 —

Proposition 101 For b, c ∈ R, let

A = { x ∈ C | x2 − 2bx+ c = 0 }

B = {b+
√
b2 − c , b−

√
b2 − c }

C = {b }

Then,

1. A = B, and

2. B = C ⇐⇒ b2 = c.

— 318 —

Subsets and supersets

Definition 102 For sets A and B, A is said to be a subset of B,

written A ⊆ B, and B is said to be a superset of A, written B ⊇ A,

whenever the statement

∀ x. x ∈ A =⇒ x ∈ B

holds.

Example:

{0} ⊆ {0, 1} ⊇ {1}

Notation 103 The proper subset notation A ⊂ B stands for

(A ⊆ B ∧ A 6= B). Analogously, the proper superset notation

B ⊃ A stands for (B ⊇ A ∧ B 6= A).

— 319 —

Lemma 104

1. Reflexivity.

For all sets A, A ⊆ A.

2. Transitivity.

For all sets A, B, C, (A ⊆ B ∧ B ⊆ C) =⇒ A ⊆ C.

3. Antisymmetry.

For all sets A, B, (A ⊆ B ∧ B ⊆ A) =⇒ A = B.

— 320 —

Proper subsets

We let

A ⊂ B

stand for

A ⊆ B ∧ A 6= B .

Hence,

A ⊂ B iff (∀ x. x ∈ A =⇒ x ∈ B) ∧ (∃y. y 6∈ A ∧ y ∈ B) .

— 321 —

Separation principle

For any set A and any definable property P, there is a

set containing precisely those elements of A for which

the property P holds.

— 322 —

Set comprehension

The set whose existence is postulated by the separation principle

for a set A and a property P is typically denoted

{ x ∈ A | P(x) } .

(Recall the discussion on set comprehension on page 203.)

Thus, the statement (†) on page 203 follows.

— 323 —

NB

{ x ∈ A | P(x) } ⊆ {y ∈ B | Q(y) }

is equivalent to

∀ z.
[

z ∈ A ∧ P(z)
]

=⇒
[

z ∈ B ∧ Q(z)
]

— 324 —

Russell ′s paradox

The separation principle does not allow us to consider the class of

those R such that R 6∈ R as a set (and, btw, the same goes for the

class of all sets). This is not a bug, but a feature!

— 325 —

Empty set

Set theory has an

empty set ,

typically denoted

∅ or { } ,

with no elements.

Its defining statement is

∀ x. x 6∈ ∅
or, equivalently,

¬(∃ x. x ∈ ∅) .

NB: ∅ = { x ∈ A | false }.

— 326 —

Cardinality

The cardinality of a set specifies its size. If this is a natural number,

then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S |.

Example:

#∅ = 0

— 327 —

Finite sets

The finite sets are those with cardinality a natural number.

Example: For n ∈ N,

[n] = { x ∈ N | x < n }

is finite of cardinality n.

— 328 —

Powerset axiom

For any set, there is a set consisting of all its subsets.

The set of all subsets of a set U whose existence is postulated by

the powerset axiom is typically denoted

P(U) .

Thus,

∀X. X ∈ P(U) ⇐⇒ X ⊆ U .

— 329 —

NB: The powerset construction can be iterated. In particular,

F ∈ P
(

P(U)
)

⇐⇒ F ⊆ P(U) ;

that is, F is a set of subsets of U, sometimes referred to as a family.

Example: The family E ⊆ P
(

[5]
)

consisting of the non-empty sub-

sets of [5] = { 0, 1, 2, 3, 4 } whose elements are even is

E =
{
{0} , {2} , {4} , {0, 2} , {0, 4} , {2, 4} , {0, 2, 4}

}
.

— 330 —

Hasse diagramsa

Example: P
(

{x, y, z}
)

aFrom http://en.wikipedia.org/wiki/Powerset; see also

http://en.wikipedia.org/wiki/Hasse_diagram.
— 331 —

Proposition 105 For all finite sets U,

#P(U) = 2#U .

PROOF IDEA a :

aSee Theorem 162.1 on page 440.
— 332 —

Venn diagramsa

aFrom http://en.wikipedia.org/wiki/Union_(set_theory) and

http://en.wikipedia.org/wiki/Intersection_(set_theory); see also

http://en.wikipedia.org/wiki/Venn_diagram.
— 333 —

Union Intersection

Complement

— 334 —

Homework Explicitly describe the family

S = {S ⊆ [5] | the sum of the elements of S is 6 }

and depict its Hasse and Venn diagrams.

— 335 —

The powerset Boolean algebra

(P(U) , ∅ , U , ∪ , ∩ , (·)c)

For all A,B ∈ P(U),

A ∪ B = { x ∈ U | x ∈ A ∨ x ∈ B } ∈ P(U)

A ∩ B = { x ∈ U | x ∈ A ∧ x ∈ B } ∈ P(U)

Ac = { x ∈ U | ¬(x ∈ A) } ∈ P(U)

— 336 —

◮ The union operation ∪ and the intersection operation ∩ are

associative, commutative, and idempotent.

(A ∪ B) ∪ C = A ∪ (B ∪ C) , A ∪ B = B ∪A , A ∪A = A

(A ∩ B) ∩ C = A ∩ (B ∩ C) , A ∩ B = B ∩A , A ∩A = A

◮ The empty set ∅ is a neutral element for ∪ and the universal

set U is a neutral element for ∩.

∅ ∪A = A = U ∩A

— 337 —

◮ The empty set ∅ is an annihilator for ∩ and the universal set U

is an annihilator for ∪.

∅ ∩A = ∅

U ∪A = U

◮ With respect to each other, the union operation ∪ and the

intersection operation ∩ are distributive and absorptive.

A∩(B∪C) = (A∩B)∪(A∩C) , A∪(B∩C) = (A∪B)∩(A∪C)

A ∪ (A ∩ B) = A = A ∩ (A ∪ B)

— 338 —

◮ The complement operation (·)c satisfies complementation laws.

A ∪Ac = U , A ∩Ac = ∅

— 339 —

Proposition 106 Let U be a set and let A,B ∈ P(U).

1. ∀X ∈ P(U). A ∪ B ⊆ X ⇐⇒
(

A ⊆ X ∧ B ⊆ X
)

.

2. ∀X ∈ P(U). X ⊆ A ∩ B ⇐⇒
(

X ⊆ A ∧ X ⊆ B
)

.

YOUR PROOF:

— 340 —

MY PROOF:

1. Let X ∈ P(U).

(=⇒) Assume A ∪ B ⊆ X. Then, since A ⊆ A ∪ B and

B ⊆ A ∪ B, we have by transitivity of ⊆ (Lemma 104(2) on

page 320) both that A ⊆ X and B ⊆ X as required.

(⇐=) Assume that (i) A ⊆ X and (ii) B ⊆ X. We need show

that, for all u ∈ U,
(

u ∈ A ∨ u ∈ B
)

=⇒ u ∈ X .

So, let u ∈ U and assume (iii) u ∈ A ∨ u ∈ B. Then, if u ∈ A

we have u ∈ X, by assumption (i); and, if u ∈ B we also have

u ∈ X, by assumption (ii). Thus, assumption (iii) yields u ∈ X

as required.

— 341 —

2. Let X ∈ P(U).

(=⇒) Assume X ⊆ A ∩ B. Then, since A ∩ B ⊆ A and

A ∩ B ⊆ B, we have by transitivity of ⊆ (Lemma 104(2) on

page 320) both that X ⊆ A and X ⊆ B as required.

(⇐=) Assume that (i) X ⊆ A and (ii) X ⊆ B. We need show

that, for all u ∈ U,

u ∈ X =⇒
(

u ∈ A ∧ u ∈ B
)

.

So, let u ∈ U and assume u ∈ X. Then, by (i), x ∈ A and,

by (ii), x ∈ B as required.

— 342 —

Corollary 107 Let U be a set and let A,B,C ∈ P(U).

1. C = A ∪ B

iff
[

A ⊆ C∧ B ⊆ C
]

∧
[

∀X ∈ P(U).
(

A ⊆ X ∧ B ⊆ X
)

=⇒ C ⊆ X
]

2. C = A ∩ B

iff
[

C ⊆ A∧ C ⊆ B
]

∧
[

∀X ∈ P(U).
(

X ⊆ A ∧ X ⊆ B
)

=⇒ X ⊆ C
]

— 343 —

Sets and logic

P(U)
{
false , true

}

∅ false

U true

∪ ∨

∩ ∧

(·)c ¬(·)

— 344 —

Pairing axiom

For every a and b, there is a set with a and b as its

only elements.

The set whose existence is postulated by the pairing axiom for a

and b is typically denoted by

{a , b } .

Thus, the statement

∀x. x ∈ {a, b} ⇐⇒ (x = a ∨ x = b)

holds, and we have that:

{a, b} = 1 ⇐⇒ a = b and # {a, b} = 2 ⇐⇒ a 6= b .

— 345 —

Singletons

For every a, the pairing axiom provides the set {a, a} which is

abbreviated as

{a } ,

and referred to as a singleton.

NB

{a } = 1

— 346 —

Examples:

∅ ⊂ { ∅ } ⊂ { ∅ , { ∅ } } ⊃ { { ∅ } } ⊃ ∅

◮ # { ∅ } = 1

◮ # { { ∅ } } = 1

◮ #{ ∅ , { ∅ } } = 2

NB

{ ∅ } ∈ { { ∅ } } , { ∅ } 6⊆ { { ∅ } } , { { ∅ } } 6⊆ { ∅ }

— 347 —

Proposition 108 For all a, b, c, x, y,

1. { x, y } ⊆ {a } =⇒ x = y = a

2. { c, x } = { c, y } =⇒ x = y

YOUR PROOF:

— 348 —

MY PROOF: Let a, b, c, x, y be arbitrary.

1. Assume { x, y } ⊆ {a }.

Then, x ∈ {a } and therefore x = a. Analogously, y = a.

2. Assume { c, x } = { c, y }.

Then, (x = c ∨ x = y) ∧ (y = c ∨ y = x).

Therefore, (x = y = c) ∨ (x = y). In either case, x = y.

— 349 —

Ordered pairing

Notation:

(a, b) or 〈a, b〉

Fundamental property:

(a, b) = (x, y) =⇒ a = x ∧ b = y

— 350 —

A construction:

For every pair a and b, three applications of the pairing axiom

provide the set

〈a, b〉 =
{
{a } , {a, b }

}

which defines an ordered pairing of a and b.

— 351 —

Proposition 109 (Fundamental property of ordered pairing)

For all a, b, x, y,

〈a, b〉 = 〈x, y〉 ⇐⇒
(

a = x ∧ b = y
)

.

YOUR PROOF:

— 352 —

MY PROOF: Let a, b, x, y be arbitrary.

(⇐=) Vacuous.

(=⇒) Assume
{
{a }, {a, b }

}
=
{
{ x }, { x, y }

}
.

Then, {a } = { x } ∨ {a } = { x, y }; and, in either case, a = x.

Hence,
{
{a }, {a, b }

}
=
{
{a }, {a, y }

}
and, by Proposition 108.2

(on page 348), {a, b } = {a, y } which, again by Proposition 108.2,

implies b = y.

— 353 —

Products

The product A× B of two sets A and B is the set

A× B =
{
x | ∃a ∈ A,b ∈ B. x = (a, b)

}

where

∀a1, a2 ∈ A,b1, b2 ∈ B.

(a1, b1) = (a2, b2) ⇐⇒ (a1 = a2 ∧ b1 = b2) .

Thus,

∀ x ∈ A× B.∃!a ∈ A.∃!b ∈ B. x = (a, b) .

— 354 —

More generally, for a fixed natural number n and sets A1, . . . , An, we

have

∏n
i=1 Ai = A1 × · · · ×An

=
{
x | ∃a1 ∈ A1, . . . , an ∈ An. x = (a1, . . . , an)

}

where

∀a1, a
′
1 ∈ A1, . . . , an, a

′
n ∈ An.

(a1, . . . , an) = (a ′
1, . . . , a

′
n) ⇐⇒ (a1 = a ′

1 ∧ · · · ∧ an = a ′
n) .

NB Cunningly enough, the definition is such that
∏0

i=1 Ai = { () }.

Notation 110 For a natural number n and a set A, one typically

writes An for
∏n

i=1 A.

— 355 —

Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal

components is formally

{ x ∈ A×A | ∃a1 ∈ A.∃a2 ∈ A. x = (a1, a2) ∧ a1 = a2 }

but often abbreviated using pattern-matching notation as

{ (a1, a2) ∈ A×A | a1 = a2 } .

Notation: For a property P(a, b) with a ranging over a set A and b

ranging over a set B,

{ (a, b) ∈ A× B | P(a, b) }

abbreviates

{ x ∈ A× B | ∃a ∈ A.∃b ∈ B. x = (a, b) ∧ P(a, b) } .
— 356 —

Proposition 111 For all finite sets A and B,

(A× B) = #A ·#B .

PROOF IDEA a :

aSee Theorem 162.2 on page 440.
— 357 —

Sets and logic

P(U)
{
false , true

}

∅ false

U true

∪ ∨

∩ ∧

(·)c ¬(·)
⋃ ∃
⋂ ∀

— 358 —

Big unions

Example:

◮ Consider the family of sets

T =




 T ⊆ [5]
the sum of the elements of

T is less than or equal 2






=
{
∅ , {0} , {1} , {2} , {0, 1} , {0, 2}

}

◮ The big union of the family T is the set
⋃

T given by the union of

the sets in T:

n ∈ ⋃

T ⇐⇒ ∃ T ∈ T. n ∈ T .

Hence,
⋃

T = { 0, 1, 2 }.

— 359 —

Definition 112 Let U be a set. For a collection of sets F ∈ P(P(U)),

we let the big union (relative to U) be defined as

⋃

F =
{
x ∈ U | ∃A ∈ F. x ∈ A

}
∈ P(U) .

Btw To get some intuition behind this definition, it might be useful

to compare the construction with the ML function

flatten : ’a list list -> ’a list

associated with the ML list datatype constructor.

— 360 —

Examples:

1. For A,A1, A2 ∈ P(U),

⋃ ∅ = ∅
⋃

{A} = A
⋃

{A1, A2} = A1 ∪A2

⋃

{A,A1, A2} = A ∪A1 ∪A2

— 361 —

2. For F ∈ P(P(P(U))), let us introduce the notation
{

⋃

A ∈ P(U) A ∈ F

}

for the set
{

X ∈ P(U) ∃A ∈ F. X =
⋃

A

}
∈ P(P(U))

noticing that this is justified by the fact that, for all x ∈ U,

x ∈ ⋃
{
X ∈ P(U) | ∃A ∈ F. X =

⋃

A
}

⇐⇒ ∃X ∈ P(U).∃A ∈ F. X =
⋃

A ∧ x ∈ X

⇐⇒ ∃A ∈ F. x ∈ ⋃

A

— 362 —

We then have the following associativity law :

Proposition 113 For all F ∈ P(P(P(U))),

⋃
(
⋃

F
)

=
⋃

{
⋃

A ∈ P(U) A ∈ F

}
∈ P(U) .

Btw In trying to understand this statement, ponder about the

following analogous identity for the ML list datatype

constructor: for all F : ’a list list list,

flatten (flatten F)

= flatten (map flatten F) : ’a list

The above two identities are the associativity law of a mathematical

structure known as a monad, which has become a fundamental tool

in functional programming.

— 363 —

YOUR PROOF:

— 364 —

MY PROOF: For F ∈ P(P(P(U))) and x ∈ U, one calculates

that:

x ∈ ⋃
(
⋃

F)

⇐⇒ ∃X ∈ ⋃

F. x ∈ X

⇐⇒ ∃A ∈ F. ∃X ∈ A. x ∈ X

⇐⇒ ∃A ∈ F. x ∈ ⋃

A

⇐⇒ x ∈ ⋃
{
⋃

A ∈ P(U) | A ∈ F
}

— 365 —

Big intersections

Example:

◮ Consider the family of sets

S =
{

S ⊆ [5] the sum of the elements of S is 6

}

=
{
{ 2, 4 } , { 0, 2, 4 } , { 1, 2, 3 } , { 0, 1, 2, 3 }

}

◮ The big intersection of the family S is the set
⋂

S given by the

intersection of the sets in S:

n ∈ ⋂

S ⇐⇒ ∀S ∈ S. n ∈ S .

Hence,
⋂

S = { 2 }.

— 366 —

Definition 114 Let U be a set. For a collection of sets F ⊆ P(U),

we let the big intersection (relative to U) be defined as

⋂

F =
{
x ∈ U | ∀A ∈ F. x ∈ A

}
.

Examples: For A,A1, A2 ∈ P(U),

⋂ ∅ = U
⋂

{A} = A
⋂

{A1, A2} = A1 ∩A2

⋂

{A,A1, A2} = A ∩A1 ∩A2

— 367 —

Theorem 115 Let

F =
{

S ⊆ R (0 ∈ S) ∧
(

∀x ∈ R. x ∈ S =⇒ (x+ 1) ∈ S
)

}
.

Then, (i) N ∈ F and (ii) N ⊆ ⋂

F. Hence,
⋂

F = N.

NB This result is typically interpreted as stating that:

N is the least set of numbers containing 0 and closed under

successors.

— 368 —

PROOF:

— 369 —

Proposition 116 Let U be a set and let F ⊆ P(U) be a family of

subsets of U.

1. For all S ∈ P(U),

S =
⋃

F

iff
[

∀A ∈ F. A ⊆ S
]

∧
[

∀X ∈ P(U). (∀A ∈ F. A ⊆ X)⇒ S ⊆ X
]

2. For all T ∈ P(U),

T =
⋂

F

iff
[

∀A ∈ F. T ⊆ A
]

∧
[

∀Y ∈ P(U). (∀A ∈ F. Y ⊆ A)⇒ Y ⊆ T
]

— 370 —

Union axiom

Every collection of sets has a union.

The set whose existence is postulated by the union axiom for a

collection F is typically denoted

⋃

F

and, in the case F = {A,B}, abbreviated to

A ∪ B .

Thus,

x ∈ ⋃

F ⇐⇒ ∃X ∈ F. x ∈ X ,

and hence

x ∈ (A ∪ B) ⇐⇒ (x ∈ A) ∨ (x ∈ B) .
— 371 —

Using the separation and union axioms, for every collection F,

consider the set
{
x ∈ ⋃

F | ∀X ∈ F. x ∈ X
}

.

For non-empty F this set is denoted

⋂

F

because, in this case,

∀x. x ∈ ⋂

F ⇐⇒
(

∀X ∈ F. x ∈ X
)

.

In particular, for F = {A,B}, this is abbreviated to

A ∩ B

with defining property

∀ x. x ∈ (A ∩ B) ⇐⇒ (x ∈ A) ∧ (x ∈ B) .
— 372 —

Tagging

The construction

{ ℓ }×A =
{
(ℓ, a) | a ∈ A

}

provides copies of A, as tagged by labels ℓ.

Indeed, note that

∀y ∈
(

{ ℓ }×A
)

.∃! x ∈ A. y = (ℓ, x) ,

and that { ℓ1 }×A1 = { ℓ2 }×A2 ⇐⇒ (ℓ1 = ℓ2) ∧ (A1 = A2) so that

{ ℓ1 }×A = { ℓ2 }×A ⇐⇒ ℓ1 = ℓ2 .

— 373 —

Disjoint unions

Definition 117 The disjoint union A ⊎ B of two sets A and B is the

set

A ⊎ B =
(

{1}×A
)

∪
(

{2}× B
)

.

Thus,

∀ x. x ∈ (A ⊎ B) ⇐⇒
(

∃a ∈ A. x = (1, a)
)

∨
(

∃b ∈ B. x = (2, b)
)

.

— 374 —

More generally, for a fixed natural number n and sets A1, . . . , An, we

have

⊎n
i=1Ai = A1 ⊎ · · · ⊎An

=
(

{1}×A1

)

∪ · · · ∪
(

{n}×An

)

NB Cunningly enough, the definition is such that
⊎0

i=1 Ai = ∅.

Notation 118 For a natural number n and a set A, one typically

writes n ·A for
⊎n

i=1A.

— 375 —

Proposition 119 For all finite sets A and B,

A ∩ B = ∅ =⇒ # (A ∪ B) = #A+#B .

PROOF IDEA:

— 376 —

Corollary 120a For all finite sets A and B,

(A ⊎ B) = #A+#B .

aSee Theorem 162.3 on page 440.
— 377 —

Corollary 121 Let m,n be a positive integers and k a natural

number. For finite sets A1, . . . , An, if #Ai ≤ k for all 1 ≤ i ≤ n

and #
(
⊎n

i=1 Ai

)

= m then m ≤ n · k.

NB The contrapositive gives:

The Generalised Pigeonhole Principle

Let m,n be positive integers and k a natural number. If m

objects are distributed into n boxes and m > n · k, then at

least one box contains at least k+ 1 objects.

— 378 —

Relations

Definition 122 A (binary) relation R from a set A to a set B , de-

noted

R : A−→p B or R ∈ Rel(A,B) ,

is a subset of the product set A× B; that is,

R ⊆ A× B or R ∈ P(A× B) .

Notation 123 One typically writes aRb for (a, b) ∈ R.

— 379 —

NB Binary relations come with a source and a target.

One may also consider more general n-ary relations, for any natural

number n. These are defined as subsets of n-ary products; that is,

elements of

P(A1 × · · · ×An)

for sets A1, · · · , An.

— 380 —

Informal examples:

◮ Computation.

◮ Typing.

◮ Program equivalence.

◮ Networks.

◮ Databases.

— 381 —

Examples:

◮ Empty relation.

∅ : A−→p B (a ∅ b ⇐⇒ false)

◮ Full relation.

(A× B) : A−→p B (a (A× B) b ⇐⇒ true)

◮ Identity (or equality) relation.

idA =
{
(a, a) | a ∈ A

}
: A−→p A (a idA a ′ ⇐⇒ a = a ′)

◮ Integer square root.

R2 =
{
(m,n) | m = n2

}
: N−→p Z (m R2 n ⇐⇒ m = n2)

— 382 —

Internal diagrams

Example:

R =
{
(0, 0), (0,−1), (0, 1), (1, 2), (1, 1), (2, 1)

}
: N−→p Z

S =
{
(1, 0), (1, 2), (2, 1), (2, 3)

}
: Z−→p Z

— 383 —

Relational extensionality

R = S : A−→p B

iff

∀a ∈ A.∀b ∈ B. aRb ⇐⇒ aSb

— 384 —

Relational composition

Definition 124 The composition of two relations R : A −→p B and

S : B−→p C is the relation

S ◦ R : A−→p C

defined by setting

a (S ◦ R) c ⇐⇒ ∃b ∈ B. a R b ∧ b S c

for all a ∈ A and c ∈ C.

— 385 —

Theorem 125 Relational composition is associative and has the

identity relation as neutral element. That is,

◮ Associativity.

For all R : A−→p B, S : B−→p C, and T : C−→p D,

(T ◦ S) ◦ R = T ◦ (S ◦ R)

◮ Neutral element.

For all R : A−→p B,

R ◦ idA = R = idB ◦ R .

— 386 —

Relations and matrices

Definition 126

1. For positive integers m and n, an (m× n)-matrix M over a

semiring
(

S, 0,⊕, 1,⊙
)

is given by entries Mi,j ∈ S for all

0 ≤ i < m and 0 ≤ j < n.

Btw Rows and columns are enumerated from 0, and not 1.

This is non-standard, but convenient for what follows.

— 387 —

2. The identity (n× n)-matrix In has entries

(In)i,j =





1 , if i = j

0 , if i 6= j

3. The multiplication of an (ℓ×m)-matrix L with an (m×n)-matrix

M is the (ℓ× n)-matrix M · L with entries

(M · L)i,j = (M0,j ⊙ Li,0)⊕ · · · ⊕ (Mm−1,j ⊙ Li,m−1)

=
⊕m−1

k=0 Mk,j ⊙ Li,k

Theorem 127 Matrix multiplication is associative and has the

identity matrix as neutral element.

— 388 —

Definition 128

1. The null (m× n)-matrix Zm,n has entries

(Zm,n)i,j = 0 .

2. The addition of two (m× n)-matrices M and L is the

(m× n)-matrix M+ L with entries

(M+ L)i,j = Mi,j ⊕ Li,j .

Theorem 129

1. Matrix addition is associative, commutative, and has the null

matrix as neutral element.

— 389 —

2. For every (ℓ×m)-matrices L, L ′ and (m× n)-matrices M,M ′,

the distributive laws

M · Zℓ,m = Zℓ,n , Zm,n · L = Zℓ,n

and

M · (L+ L ′) = (M · L) + (M · L ′)

(M+M ′) · L = (M · L) + (M ′ · L)
hold.

— 390 —

Definition 130 For every natural number n, let

[n] = {0, . . . , n− 1} .

NB Cunningly enough, [0] = ∅; so that # [n] = n.

— 391 —

A relation R : [m] −→p [n] can be seen as the (m× n)-matrix mat(R)

over the commutative semiring of Booleans

(

{false, true} , false , true , ∨ , ∧
)

given by

mat(R)i,j =
[

(i, j) ∈ R
]

.

Conversely, every (m× n)-matrix M can be seen as the relation

rel(M) : [m] −→p [n] given by

(i, j) ∈ rel(M) ⇐⇒ Mi,j .

— 392 —

In fact,

rel
(

mat(R)
)

= R and mat
(

rel(M)
)

= M .

Hence, relations from [m] to [n] and (m× n)-matrices over

Booleans provide two alternative views of the same structure.

More interestingly, this carries over to identities :

mat(id[n]) = In and rel(In) = id[n] ,

and to composition/multiplication :

mat(S ◦ R) = mat(S) ·mat(R) and rel(M · L) = rel(M) ◦ rel(L) .

— 393 —

Indeed,

(i, j) ∈ rel
(

mat(S) ·mat(R)
)

⇐⇒
(

mat(S) ·mat(R)
)

i,j

⇐⇒
∨m−1

k=0 mat(S)k,j ∧ mat(R)i,k

⇐⇒ ∃k ∈ [m]. (k, j) ∈ S ∧ (i, k) ∈ R

⇐⇒ (i, j) ∈
(

S ◦ R
)

Thus, the composition of relations between finite sets can be

implemented by means of matrix multiplication:

S ◦ R = rel
(

mat(S) ·mat(R)
)

.

— 394 —

Directed graphs

Definition 131 A directed graph (A,R) consists of a set A and a

relation R on A (i.e. a relation from A to A).

Notation 132 We write Rel(A) for the set of relations on a set A;

that is, Rel(A) = P(A×A).

— 395 —

Corollary 133 For every set A, the structure

(

Rel(A) , idA , ◦)

is a monoid.

Definition 134 For R ∈ Rel(A) and n ∈ N, we let

R◦n = R ◦ · · · ◦ R︸ ︷︷ ︸
n times

∈ Rel(A)

be defined as idA for n = 0, and as R ◦ R◦m for n = m+ 1.

— 396 —

Paths

Definition 135 Let (A,R) be a directed graph. For s, t ∈ A, a path

of length n ∈ N in R, with source s and target t, is a tuple

(a0, . . . , an) ∈ An+1 such that a0 = s, an = t, and ai R ai+1 for all

0 ≤ i < n.

NB Cunningly enough, the unary tuple (a0) is a path of length 0

with source s and target t iff s = a0 = t.

— 397 —

Proposition 136 Let (A,R) be a directed graph. For all n ∈ N and

s, t ∈ A, s R◦n t iff there exists a path of length n in R with source s

and target t.

PROOF:

— 398 —

Definition 137 For R ∈ Rel(A), let

R◦∗ =
⋃
{
R◦n ∈ Rel(A) | n ∈ N

}
=

⋃

n∈N R◦n .

Corollary 138 Let (A,R) be a directed graph. For all s, t ∈ A,

s R◦∗ t iff there exists a path with source s and target t in R.

— 399 —

The (n× n)-matrix M = mat(R) of a finite directed graph
(

[n], R
)

for n a positive integer is called its adjacency matrix .

The adjacency matrix M∗ = mat(R◦∗) can be computed by matrix

multiplication and addition as Mn where




M0 = In

Mk+1 = In +
(

M ·Mk

)

This gives an algorithm for establishing or refuting the existence of

paths in finite directed graphs.

— 400 —

NB The same algorithm but over other semirings (rather than over

the Boolean semiring) can be used to compute other information

on paths; like the weight of shortest pathsa, or the set of paths.

a(for which you may see Chapter 25.1 of Introduction to Algorithms (Second

Edition) by T.H.Cormen, C. E. Leiserson, R. L.Rivest, and C. Stein)
— 401 —

Preorders

Definition 139 A preorder
(

P , ⊑
)

consists of a set P and a relation

⊑ on P (i.e. ⊑ ∈ P(P × P)) satisfying the following two axioms.

◮ Reflexivity.

∀ x ∈ P. x ⊑ x

◮ Transitivity.

∀ x, y, z ∈ P. (x ⊑ y ∧ y ⊑ z) =⇒ x ⊑ z

Definition 140 A partial order, or poseta, is a preorder
(

P , ⊑
)

that

further satisfies

◮ Antisymmetry.

∀ x, y ∈ P. (x ⊑ y ∧ y ⊑ x) =⇒ x = y

a(standing for partially ordered set)
— 402 —

Examples:

◮ (R,≤) and (R,≥).

◮ (P(A),⊆) and (P(A),⊇).

◮ (Z , |).

— 403 —

Theorem 141 For R ⊆ A×A, let

FR =
{
Q ⊆ A×A | R ⊆ Q ∧ Q is a preorder

}
.

Then, (i) R◦∗ ∈ FR and (ii) R◦∗ ⊆ ⋂

FR. Hence, R◦∗ =
⋂

FR.

NB This result is typically interpreted in various forms as stating

that:

◮ R◦∗ is the reflexive-transitive closure of R.

◮ R◦∗ is the least preorder containing R.

◮ R◦∗ is the preorder freely generated by R.

— 404 —

PROOF:

— 405 —

Partial functions

Definition 142 A relation R : A −→p B is said to be functional, and

called a partial function, whenever it is such that

∀a ∈ A.∀b1, b2 ∈ B. aRb1 ∧ aRb2 =⇒ b1 = b2 .

NB R : A−→p B is not functional if there are a in A and b1 6= b2 in B

such that both (a, b1) and (a, b2) are in R.

— 406 —

Example: The relation

{
(x, y) | y = x2

}
: Z−→p N

is functional, while the relation

{
(m,n) | m = n2

}
: N−→p Z

is not because, for instance, both (1, 1) and (1,−1) are in it.

— 407 —

Notation 143 We write f : A ⇀ B to indicate that f is a partial

function from A to B, and let

PFun(A,B) = (A⇀⇀B) ⊆ Rel(A,B)

denote the set of partial functions from A to B.

Every partial function f : A⇀ B satisfies that

for each element a of A there is at most one element b of B

such that b is a value of f at a.

The expression

f(a)

is taken to denote “the value” of f at a whenever this exists and

considered undefined otherwise.

— 408 —

To see this in action, let f : A ⇀ B and g : B ⇀ C and consider the

expression

g
(

f(a)
)

.

This is defined iff f(a) is defined (and hence an element of B) and

also g
(

f(a)
)

is defined (and hence an element of C), in which case

it denotes the value of (g ◦ f) at a.

One typically writes f(a) ↓ (respectively f(a) ↑) to indicate that the

partial function f is defined (respectively undefined) at a.

Thus, in symbols,

[

f(a)↓ ∧ g
(

f(a)
)

↓
]

=⇒
[(

g ◦ f
)

(a)↓ ∧
(

g ◦ f
)

(a) = g
(

f(a)
)]

.

— 409 —

Theorem 144 The identity relation is a partial function, and the

composition of partial functions yields a partial function.

NB

f = g : A⇀ B

iff

∀a ∈ A.
(

f(a)↓ ⇐⇒ g(a)↓
)

∧ f(a) = g(a)

— 410 —

In practice, a partial function f : A⇀ B is typically defined by

specifying:

◮ a domain of definition Df ⊆ A, and

◮ a mapping

f : a 7→ ba

given by a rule that to each element a in the domain of

definition Df assigns a unique element ba in the target B (so

that f(a) = ba).

— 411 —

Warning: When proceeding as above, it is important

to note that you need make sure that:

1. Df is a subset of A,

2. for every a in Df, the ba as described by your

mapping (i.e. rule) is unique and is in B (so that

it is a well-defined value for f at a).

— 412 —

Example: The following are examples of partial functions.

◮ rational division ÷ : Q×Q⇀ Q, with domain of definition{
(r, s) ∈ Q×Q | s 6= 0

}
;

◮ integer square root
√
−: Z⇀ Z, with domain of definition{

m ∈ Z | ∃n ∈ Z.m = n2
}

;

◮ real square root
√
−: R⇀ R, whose domain of definition is{

x ∈ R | x ≥ 0
}

.

— 413 —

Btw There are alternative notations for mappings

f : a 7→ ba

that, although with different syntax, you have already encountered;

namely, the notations

f(a) = ba and f = λa. ba

from which the ML declaration styles

fun f(a) = ba and val f = fn a => ba

come from.

— 414 —

Proposition 145 For all finite sets A and B,

(A⇀⇀B) = (#B+ 1)#A .

PROOF IDEA a :

aSee Theorem 162.4 on page 440.
— 415 —

Functions (or maps)

Definition 146 A partial function is said to be total, and referred

to as a (total) function or map, whenever its domain of definition

coincides with its source.

The notation f : A→ B is used to indicate that f is a function from A

to B, and we write

Fun(A,B) = (A⇒ B)

for the set of functions from A to B.

— 416 —

Thus,

(A⇒ B) ⊆ (A⇀⇀B) ⊆ Rel(A,B)

and we have the following fact:

Theorem 147 For all f ∈ Rel(A,B),

f ∈ (A⇒ B) ⇐⇒ ∀a ∈ A.∃!b ∈ B. a f b .

— 417 —

Proposition 148 For all finite sets A and B,

(A⇒ B) = #B#A .

PROOF IDEA a :

aSee Theorem 162.5 on page 440.
— 418 —

Our discussion on how to define partial functions also applies to

functions; but, because of their total nature, simplifies as follows.

In practice, a function f : A→ B is defined by specifying a mapping

f : a 7→ ba

given by a rule that to each a ∈ A assigns a unique element ba ∈ B

(which is the value of f at a denoted f(a)).

Warning: When proceeding as above, it is important to note that

your mapping should be defined for every a in A and that the

described ba should be a uniquely determined element of B.

— 419 —

Theorem 149 The identity partial function is a function, and the

composition of functions yields a function.

NB

1. f = g : A→ B iff ∀a ∈ A. f(a) = g(a).

2. For all sets A, the identity function idA : A→ A is given by the

rule

idA(a) = a

and, for all functions f : A→ B and g : B→ C, the composition

function g ◦ f : A→ C is given by the rule
(

g ◦ f
)

(a) = g
(

f(a)
)

.

— 420 —

Inductive definitions

Examples:

◮ add : N2 → N



add(m,0) = m

add(m,n+ 1) = add(m,n) + 1

◮ S : N→ N 



S(0) = 0

S(n+ 1) = add(n, S(n))

— 421 —

The function

ρa,f : N→ A

inductively defined from




a ∈ A

f : N×A→ A

is the unique such that




ρa,f(0) = a

ρa,f(n+ 1) = f
(

n,ρa,f(n)
)

— 422 —

Examples:

◮ add : N2 → N

add(m,n) = ρm,f(n) for f(x, y) = y+ 1

◮ S : N→ N

S = ρ0,add

— 423 —

For a set A, consider a ∈ A and a function f : N×A→ A.

Definition 150 Define R ⊆ N×A to be (a, f)-closed whenever

◮ 0Ra, and

◮ ∀n ∈ N.∀ x ∈ A.nRx =⇒ (n+ 1) R f(n, x).

Theorem 151 Let ρa,f =
⋂

{R ⊆ N×A | R is (a, f)-closed }.

1. The relation ρa,f : N−→p A is functional and total.

2. The function ρa,f : N→ A is the unique such that ρa,f(0) = a

and ρa,f(n+ 1) = f
(

n,ρa,f(n)
)

for all n ∈ N.

— 424 —

Bijections, I

Definition 152 A function f : A → B is said to be bijective, or

a bijection, whenever there exists a (necessarily unique) function

g : B→ A (referred to as the inverse of f) such that

1. g is a retraction (or left inverse) for f:

g ◦ f = idA ,

2. g is a section (or right inverse) for f:

f ◦ g = idB .

Notation 153 The inverse of a function f is necessarily unique and

typically denoted f−1.

— 425 —

Example: The mapping mat associating an (m × n)-matrix to a

relation from [m] to [n] is a bijection, with inverse the mapping rel;

see page 392 for definitions.

The set of bijections from A to B is denoted

Bij(A,B)

and we thus have

Bij(A,B) ⊆ Fun(A,B) ⊆ PFun(A,B) ⊆ Rel(A,B) .

— 426 —

Proposition 154 For all finite sets A and B,

#Bij(A,B) =





0 , if #A 6= #B

n! , if #A = #B = n

PROOF IDEA a :

aSee Theorem 162.6 on page 440.
— 427 —

Theorem 155 The identity function is a bijection, and the composi-

tion of bijections yields a bijection.

— 428 —

Definition 156 Two sets A and B are said to be isomorphic (and

to have the same cardinatity) whenever there is a bijection between

them; in which case we write

A ∼= B or #A = #B .

Examples:

1. {0, 1} ∼= {false, true}.

2. N ∼= N+ , N ∼= Z , N ∼= N× N , N ∼= Q .

— 429 —

Equivalence relations and set partitions

◮ Equivalence relations.

Definition 157 A relation E on a set A is said to be an equivalence

relation whenever it is:

1. reflexive

∀x ∈ A. xE x

2. symmetric

∀x, y ∈ A. xEy =⇒ yEx

3. transitive

∀x, y, z ∈ A. (xEy ∧ yE z) =⇒ xE z

The set of all equivalence relations on A is denoted EqRel(A).

— 430 —

◮ Set partitions.

Definition 158 A partition P of a set A is a set of non-empty

subsets of A (that is, P ⊆ P(A) and ∅ 6∈ P), whose elements are

typically referred to as blocks, such that

1. the union of all blocks yields A:
⋃

P = A ,

and

2. all blocks are pairwise disjoint:

for all b1, b2 ∈ P, b1 6= b2 =⇒ b1 ∩ b2 = ∅ .

The set of all partitions of A is denoted Part(A).

— 431 —

The partitions of a 5-element seta

aFrom http://en.wikipedia.org/wiki/Partition_of_a_set.
— 432 —

Theorem 159 For every set A,

EqRel(A) ∼= Part(A) .

PROOF OUTLINE:

1. Prove that the mapping

E 7→ A/E
=
{
b ⊆ A | ∃a ∈ A.b = [a]E

}

where [a]E = { x ∈ A | xEa }

yields a function EqRel(A)→ Part(A).

2. Prove that the mapping

P 7→ ≡P

where x ≡R y ⇐⇒ ∃b ∈ P. x ∈ b ∧ y ∈ b

yields a function Part(A)→ EqRel(A).

3. Prove that the above two functions are inverses of each other.
— 433 —

Proposition 160 For all finite sets A,

#EqRel(A) = #Part(A) = B#A

where, for n ∈ N, the so-called Bell numbers are defined by

Bn =





1 , for n = 0
∑m

i=0

(

m
i

)

Bi , for n = m+ 1

PROOF IDEA a :

aSee Theorem 162.7-8 on page 440.
— 434 —

Calculus of bijections, I

◮ A ∼= A , A ∼= B =⇒ B ∼= A , (A ∼= B ∧ B ∼= C) =⇒ A ∼= C

◮ If A ∼= X and B ∼= Y then

P(A) ∼= P(X) , A× B ∼= X× Y , A ⊎ B ∼= X ⊎ Y ,

Rel(A,B) ∼= Rel(X, Y) , (A⇀⇀B) ∼= (X⇀⇀Y) ,

(A⇒ B) ∼= (X⇒ Y) , Bij(A,B) ∼= Bij(X, Y)

— 435 —

◮ A ∼= [1]×A , (A× B)× C ∼= A× (B× C) , A× B ∼= B×A

◮ [0] ⊎A ∼= A , (A ⊎ B) ⊎ C ∼= A ⊎ (B ⊎ C) , A ⊎ B ∼= B ⊎A

◮ [0]×A ∼= [0] , (A ⊎ B)× C ∼= (A× C) ⊎ (B× C)

◮
(

A⇒ [1]
)

∼= [1] ,
(

A⇒ (B× C)
)

∼= (A⇒ B)× (A⇒ C)

◮
(

[0]⇒ A
)

∼= [1] ,
(

(A ⊎ B)⇒ C
)

∼= (A⇒ C)× (B⇒ C)

◮ ([1]⇒ A) ∼= A ,
(

(A× B)⇒ C) ∼=
(

A⇒ (B⇒ C)
)

◮ (A⇀⇀B) ∼=
(

A⇒ (B ⊎ [1])
)

◮ P(A) ∼=
(

A⇒ [2]
)

— 436 —

Characteristic (or indicator) functions

P(A) ∼=
(

A ⇒ [2]
)

— 437 —

Example: The key combinatorial argument in proving Pascal’s rule

(see pages 275 and 279) resides in the bijection

P
(

X ⊎ [1]
)

∼= P(X) ⊎ P(X)

deducible as

P
(

X ⊎ [1]
)

∼=
(

(X ⊎ [1])⇒ [2]
)

∼=
(

X⇒ [2]
)

×
(

[1]⇒ [2]
)

∼= P(X)× [2]

∼= P(X)×
(

[1] ⊎ [1]
)

∼=
(

P(X)× [1]
)

⊎
(

P(X)× [1]
)

∼= P(X) ⊎ P(X)

— 438 —

Finite cardinality

Definition 161 A set A is said to be finite whenever A ∼= [n] for

some n ∈ N, in which case we write #A = n.

— 439 —

Theorem 162 For all m,n ∈ N,

1. P
(

[n]
)

∼= [2n]

2. [m]× [n] ∼= [m · n]

3. [m] ⊎ [n] ∼= [m+ n]

4.
(

[m]⇀⇀[n]
)

∼=
[

(n+ 1)m
]

5.
(

[m]⇒ [n]
)

∼= [nm]

6. Bij
(

[n], [n]
)

∼= [n!]

7. Part
(

[0]
)

∼= [1]

8. Part
(

[n+ 1]
)

∼=
⊎

S⊆[n] Part(S
c)

— 440 —

Infinity axiom

There is an infinite set, containing ∅ and closed under successor.

— 441 —

Bijections, II

Proposition 163 For a function f : A→ B, the following are

equivalent.

1. f is bijective.

2. ∀b ∈ B.∃!a ∈ A. f(a) = b.

3.
(

∀b ∈ B.∃a ∈ A. f(a) = b
)

∧
(

∀a1, a2 ∈ A. f(a1) = f(a2) =⇒ a1 = a2

)

— 442 —

Surjections

Definition 164 A function f : A→ B is said to be surjective, or a

surjection, and indicated f : A։ B whenever

∀b ∈ B.∃a ∈ A. f(a) = b .

Examples:

1. Every bijection is a surjection.

2. The unique function A→ [1] is surjective iff A 6= ∅.

3. The quotient function A→ A/E
: a 7→ [a]E = { x ∈ A | xEa }

associated to an equivalence relation E on a set A is surjective.

— 443 —

4. The projection function A× B→ A : (a, b) 7→ a is surjective iff

B 6= ∅ or A = ∅.

5. For natural numbers m and n with m < n, there is no surjection

from [m] to [n].

— 444 —

Theorem 165 The identity function is a surjection, and the

composition of surjections yields a surjection.

The set of surjections from A to B is denoted

Sur(A,B)

and we thus have

Bij(A,B) ⊆ Sur(A,B) ⊆ Fun(A,B) ⊆ PFun(A,B) ⊆ Rel(A,B) .

— 445 —

Proposition 166

1. For all finite sets A and natural numbers n, the cardinality of

the set Partn(A) of partitions of A in n blocks has cardinality

S
(

#A,n
)

, where the Stirling numbers of the second kind

S(m,n) are defined by

◮ S(0, 0) = 1;

◮ S(k, 0) = S(0, k) = 0, for k ≥ 1;

◮ S(m+ 1, n+ 1) = S(m,n) + (n+ 1) · S(m,n + 1),

for m,n ≥ 0.

2. For all finite sets A and B,

#Sur(A,B) = S
(

#A,#B
)

· (#B)! .

— 446 —

PROOF IDEA:

— 447 —

Enumerability

Definition 167

1. A set A is said to be enumerable whenever there exists a

surjection N։ A, referred to as an enumeration.

2. A countable set is one that is either empty or enumerable.

Btw For an enumeration e : N։ A, if

e(n) = a (n ∈ N, a ∈ A)

we think of the natural number n as a code for the element a of A.

Codes need not be unique, but since
{
e(n) ∈ A | n ∈ N

}
= A

every element of A is guaranteed to have a code. These will be

unique whenever the enumeration is a bijection.
— 448 —

Examples:

1. A bijective enumeration of Z.

· · · −3 −2 −1 0 1 2 3 · · ·
· · · 5 3 1 0 2 4 6 · · ·

— 449 —

2. A bijective enumeration of N× N.

0 1 2 3 4 5 · · ·
0 0 2 3 9 10 · · ·
1 1 4 8 11

2 5 7 12

3 6 13
. . .

4 14
...

...

— 450 —

Proposition 168 Every non-empty subset of an enumerable set is

enumerable.

YOUR PROOF:

— 451 —

MY PROOF: Let ∅ 6= S ⊆ A and let e : N։ A be surjective.

Note that {n ∈ N | e(n) ∈ S } 6= ∅ and let

µ(0) = min {n ∈ N | e(n) ∈ S } .

Furthermore, define by induction

µ(k+ 1) = min {n ∈ N | n > µ(k) ∧ e(n) ∈ S } (k ∈ N)

where, by convention, min ∅ = µ(0).a

Finally, one checksb that the mapping

k 7→ e
(

µ(k)
)

(k ∈ N)

defines a function N։ S that is surjective.

aBtw, the operation of minimisation is at the heart of recursion theory.
bPlease do it!

— 452 —

Countability

Proposition 169

1. N, Z, Q are countable sets.

2. The product and disjoint union of countable sets is countable.

3. Every finite set is countable.

4. Every subset of a countable set is countable.

Btw Corollary 180 (on page 470) provides more examples.

— 453 —

Axiom of choice

Every surjection has a section.

— 454 —

Injections

Definition 170 A function f : A → B is said to be injective, or an

injection, and indicated f : A֌ B whenever

∀a1, a2 ∈ A.
(

f(a1) = f(a2)
)

=⇒ a1 = a2 .

— 455 —

Examples:

◮ Every section is an injection; so that, in particular, bijections are

injections.

◮ All functions including a set into another one are injections.

◮ For all natural numbers k, the function N→ N : n 7→ n+ k is an

injection.

◮ For all natural numbers k, the function N → N : n 7→ n · k is an

injection iff k ≥ 1.

◮ For all natural numbers k, the function N → N : n 7→ kn is an

injection iff k ≥ 2.

— 456 —

Theorem 171 The identity function is an injection, and the compo-

sition of injections yields an injection.

The set of injections from A to B is denoted

Inj(A,B)

and we thus have

Sur(A,B)⊆

Bij(A,B)

⊆
⊆ Fun(A,B) ⊆ PFun(A,B) ⊆ Rel(A,B)

Inj(A,B)

⊆

with

Bij(A,B) = Sur(A,B) ∩ Inj(A,B) .
— 457 —

Proposition 172 For all finite sets A and B,

#Inj(A,B) =






(

#B
#A

)

· (#A)! , if #A ≤ #B

0 , otherwise

PROOF IDEA:

— 458 —

Cantor-Bernstein-Schroeder Theorem

Definition 173 A set A is of less than or equal cardinality to a set

B whenever there is an injection A֌ B, in which case we write

A . B or #A ≤ #B .

NB It follows from the axiom of choice that the existence of a

surjection B։ A implies #A ≤ #B.

— 459 —

Theorem 174 (Cantor-Schroeder-Bernstein theorem) For all

sets A and B,

(

A . B ∧ B . A
)

=⇒ A ∼= B .

— 460 —

Relational images

Definition 175 Let R : A−→p B be a relation.

◮ The direct image of X ⊆ A under R is the set
−→
R (X) ⊆ B, defined

as

−→
R (X) = {b ∈ B | ∃ x ∈ X. xRb } .

NB This construction yields a function
−→
R : P(A)→ P(B).

— 461 —

◮ The inverse image of Y ⊆ B under R is the set
←−
R (Y) ⊆ A,

defined as

←−
R (Y) = {a ∈ A | ∀b ∈ B. aRb =⇒ b ∈ Y }

NB This construction yields a function
←−
R : P(B)→ P(A).

— 462 —

Functional images

Proposition 176 Let f : A→ B be a function.

For all X ⊆ A,

−→
f (X) =

{
b ∈ B | ∃a ∈ X. f(a) = b

}
.

Remark More intuitively, this set is commonly denoted by

{
f(a) ∈ B | a ∈ X

}

conveying the idea that the direct-image function is to the powerset

construction as the map function is to the list type constructor.

— 463 —

Proposition 177 Let f : A→ B be a function.

For all Y ⊆ B,

←−
f (Y) =

{
a ∈ A | f(a) ∈ Y

}
.

Remark Hence,

a ∈←−f (Y) ⇐⇒ f(a) ∈ Y .

— 464 —

Replacement axiom

The direct image of every definable functional property

on a set is a set.

— 465 —

Set-indexed constructions

For every mapping associating a set Ai to each element of a set I,

we have the set

⋃

i∈IAi =
⋃
{
Ai | i ∈ I

}
=
{
a | ∃ i ∈ I. a ∈ Ai

}
.

Examples:

1. Indexed disjoint unions:
⊎

i∈IAi =
⋃

i∈I {i}×Ai

2. Finite sequences on a set A:

A∗ =
⊎

n∈NA
n

— 466 —

3. Finite partial functions from a set A to a set B:

(A⇀⇀fin B) =
⊎

S∈Pfin(A) (S⇒ B)

where

Pfin(A) =
{
S ⊆ A | S is finite

}

4. Non-empty indexed intersections: for I 6= ∅,
⋂

i∈I Ai =
{
x ∈ ⋃

i∈IAi | ∀ i ∈ I. x ∈ Ai

}

5. Indexed products:
∏

i∈IAi =
{

α ∈
(

I⇒
⋃

i∈IAi

)

∀ i ∈ I. α(i) ∈ Ai

}

— 467 —

Proposition 178 An enumerable indexed disjoint union of

enumerable sets is enumerable.

YOUR PROOF:

— 468 —

MY PROOF: Let {Ai }i∈I be a family of sets indexed by a set I.

Furthermore, let e : N։ I be a surjection and, for all i ∈ I, let

ei : N։ Ai be surjections.

The function ε : N× N→
⊎

i∈IAi defined, for all (m,n) ∈ N× N, by

ε(m,n) =
(

i, ei(n)
)

, where i = e(m)

is a surjection, which pre-composed with any surjection N։ N× N

yields a surjection N։
⊎

i∈IAi as required.

— 469 —

Corollary 179 A countable indexed disjoint union of countable sets

is countable.

Corollary 180 If X and A are countable sets then so are A∗,

Pfin(A), and (X⇀⇀finA).

— 470 —

Calculus of bijections, II

◮
⊎

i∈[n]Ai
∼=

(

(· · · (A0 ⊎A1) · · ·) ⊎An−1

)

◮
∏

i∈[n]Ai
∼=

(

(· · · (A0 ×A1) · · ·)×An−1

)

◮
(
⊎

i∈IAi

)

× B ∼=
⊎

i∈I(Ai × B)

◮
(

A⇒
∏

i∈I Bi

)

∼=
∏

i∈I(A⇒ Bi)

◮
((

⊎

i∈IAi

)

⇒ B
)

∼=
∏

i∈I(Ai ⇒ B)

◮ A ∼=
⊎

a∈A[1]

◮ (A⇒ B) ∼=
∏

a∈A B

— 471 —

Combinatorial examples:

1. . The combinatorial content of the Binomial Theorem

(Theorem 266 and page 271) comes from a bijection
(

U⇒ (X ⊎ Y)
)

∼=
⊎

S∈P(U) (S⇒ X)× (Sc ⇒ Y)

available for any triple of sets U,X, Y.

2. The combinatorial content underlying the Bell numbers comes

from a bijection

Part
(

A ⊎ [1]
)

∼=
⊎

S⊆A Part(Sc) .

available for all sets A.

— 472 —

THEOREM OF THE DAY
Cantor’s Uncountability Theorem There are uncountably many infinite 0-1 sequences.

Proof: Suppose you could count the sequences. Label them in order: S 1, S 2, S 3, . . . , and denote by S i(j) the j-th entry of sequence S i. Now

define a new sequence, S , whose i-th entry is S i(i)+1 (mod 2). So S is S 1(1)+1, S 2(2)+1, S 3(3)+1, S 4(4)+1, . . . , with all entries remaindered

modulo 2. S is certainly an infinite sequence of 0s and 1s. So it must appear in our list: it is, say, S k, so its k-th entry is S k(k). But this is, by

definition, S k(k) + 1 (mod 2) , S k(k). So we have contradicted the possibility of forming our enumeration. QED.

The theorem establishes that the real numbers are uncountable — that is, they cannot be enumerated in a list indexed by the positive integers

(1, 2, 3, . . .). To see this informally, consider the infinite sequences of 0s and 1s to be the binary expansions of fractions (e.g. 0.010011 . . . =

0/2 + 1/4 + 0/8 + 0/16 + 1/32 + 1/64 + . . .). More generally, it says that the set of subsets of a countably infinite set is uncountable, and to see

that, imagine every 0-1 sequence being a different recipe for building a subset: the i-th entry tells you whether to include the i-th element (1) or

exclude it (0).

Georg Cantor (1845–1918) discovered this theorem in 1874 but it apparently took another twenty years of thought about what
were then new and controversial concepts: ‘sets’, ‘cardinalities’, ‘orders of infinity’, to invent the important proof given here,
using the so-called diagonalisation method.

Web link: www.math.hawaii.edu/∼dale/godel/godel.html. There is an interesting discussion on mathoverflow.net about the history of diagonalisation:

type ‘earliest diagonal’ into their search box.

Further reading: Mathematics: the Loss of Certainty by Morris Kline, Oxford University Press, New York, 1980.

Created by Robin Whitty for www.theoremoftheday.org

— 473 —

Unbounded cardinality

Theorem 181 (Cantor’s diagonalisation argument) For every

set A, no surjection from A to P(A) exists.

YOUR PROOF:

Btw The diagonalisation technique is very important in both logic

and computation.
— 474 —

MY PROOF: Assume, by way of contradiction, a surjection

e : A։ P(A), and let a ∈ A be such that

e(a) =
{
x ∈ A | x 6∈ e(x)

}
.

Then,

∀ x ∈ A. x ∈ e(a) ⇐⇒ x 6∈ e(x)

and hence

a ∈ e(a) ⇐⇒ a 6∈ e(a) ;

that is, a contradiction. Therefore, there is no surjection from A to

P(A).

— 475 —

Definition 182 A fixed-point of a function f : X→ X is an element

x ∈ X such that f(x) = x.

Btw Solutions to many problems in computer science are

computations of fixed-points.

Theorem 183 (Lawvere’s fixed-point argument) For sets A and

X, if there exists a surjection A։ (A⇒ X) then every function

X→ X has a fixed-point; and hence X is a singleton.

YOUR PROOF:

— 476 —

MY PROOF: Assume a surjection e : A։ (A⇒ X). Then, for an

arbitrary function f : X→ X let a ∈ A be such that

e(a) = λ x ∈ A. f
(

e(x)(x)
)

∈ (A⇒ X) .

Then,

e(a)(a) = f
(

e(a)(a)
)

,

and we are done.

— 477 —

Corollary 184 The sets

P(N) ∼=
(

N⇒ [2]
)

∼= [0, 1] ∼= R

are not enumerable.

Corollary 185 There are non-computable infinite sequences of

bits; that is, there are infinite sequences of bits σ with the property

that for all programs p that forever print bits there is a natural

number index ip for which the ip bit of σ disagrees with the ip bit

output by p.

— 478 —

Corollary 186 For a set D, there exists a surjection D։ (D⇒ D)

iff D is a singleton.

Note however that in ML we have the

datatype

D = afun of D -> D

coming with functions

afun : (D->D) -> D

fn x => case x of afun f => f : D -> (D->D)

that is highly non-trivial!

— 479 —

And indeed is inhabited by an enumerable infinitude of elements;

for instance,

afun(fn x => x) : D

afun(fn x => case x of afun f => f x) : D

afun(fn x => case x of afun f => f f x) : D

afun(fn x => case x of

afun f => case f x of

afun g => g x) : D

— 480 —

Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of ∈-Induction .

— 481 —

Well-founded relations

Definition 187 Let ≺ ⊆ A×A be a relation on a set A.

1. An element m ∈ S ⊆ A is a minimal element of S whenever

¬
(

∃ x ∈ S. x ≺ m
)

(equivalently, ∀ x ∈ A. x ≺ m =⇒ x 6∈ S).

2. The binary relation ≺ on A is well-founded whenever every non-

empty subset of A has a minimal element.

Example: The strictly less than relation on natural numbers is well-

founded.

— 482 —

Proposition 188 A relation ≺ ⊆ A × A on a set A is well-founded

if, and only if, there are no infinite sequences

a0 , a1 , . . . , ai , . . .

that are descending in the sense that

a0 ≻ a1 ≻ · · · ≻ ai ≻ · · ·

— 483 —

Principle of Well-founded induction

Let ≺⊆ A×A be a well-founded relation and let P(a) be a statement

for a ∈ A.

To prove

∀a ∈ A.P(a)

show that, for x ∈ A, the induction hypothesis

(IH) ∀y ∈ A.y ≺ x =⇒ P(y)

implies

P(x) .

In symbols,
(

∀ x ∈ A.
[

∀y ∈ A.y ≺ x =⇒ P(y)
]

=⇒ P(x)
)

=⇒ ∀a ∈ A.P(a)

— 484 —

Homework

1. Show that

(

∀ x ∈ N.
[

∀y ∈ N. y < x =⇒ P(y)
]

=⇒ P(x)
)

⇐⇒
(

P(0) ∧
[

∀n ∈ N.
(

∀y ∈ N. y ≤ n =⇒ P(y)
)

=⇒ P(n+ 1)
])

2. Spellout the principle of well-founded induction for

N× N ordered by each of the following two well-founded

relations:

(a) (i, j) < (k, l) ⇐⇒ (i < k) ∧ (j < l)

(b) (i, j) < (k, l) ⇐⇒ (i < k) ∨
[

(i = k) ∧ (j < l)
]

— 485 —

