Lemma 73 For all positive integers m and n,

$$\mathrm{CD}(m,n) = \left\{ \begin{array}{ll} \mathrm{D}(n) & \text{, if } n \mid m \\ \\ \mathrm{CD}\big(n,\mathrm{rem}(m,n)\big) & \text{, otherwise} \end{array} \right.$$

Since a positive integer n is the greatest divisor in D(n), the lemma suggests a recursive procedure:

$$\gcd(m,n) = \left\{ \begin{array}{ll} n & \text{, if } n \mid m \\ \\ \gcd\left(n,\operatorname{rem}(m,n)\right) & \text{, otherwise} \end{array} \right.$$

for computing the *greatest common divisor*, of two positive integers m and n. This is

Euclid's Algorithm

```
gcd
fun gcd( m , n )
 = let
      val(q,r) = divalg(m,n)
    in
      if r = 0 then n
      else gcd( n , r )
    end
```

Proposition 75 For all natural numbers m, n and a, b, if CD(m, n) = D(a) and CD(m, n) = D(b) then a = b.

Proposition 75 For all natural numbers m, n and a, b,

if
$$CD(m, n) = D(a)$$
 and $CD(m, n) = D(b)$ then $a = b$.

Proposition 76 For all natural numbers m, n and k, the following statements are equivalent:

1.
$$CD(m,n) = D(k)$$
.

- 2. \triangleright k | m \land k | n, and
 - $\bullet \text{ for all natural numbers d, d} \mid m \wedge d \mid n \implies d \mid k.) \Leftarrow (\divideontimes)$

We have argued for
$$(1) \Rightarrow (2)$$
.

 $-216-a$

Definition 77 For natural numbers m, n the unique natural number k such that

- $ightharpoonup k \mid m \land k \mid n$, and
- ▶ for all natural numbers d, d | m \wedge d | n \Longrightarrow d | k.

is called the greatest common divisor of \mathfrak{m} and \mathfrak{n} , and denoted $\gcd(\mathfrak{m},\mathfrak{n}).$

Theorem 78 Euclid's Algorithm gcd terminates on all pairs of positive integers and, for such m and n, the positive integer gcd(m,n) is the greatest common divisor of m and n in the sense that the following two properties hold:

- (i) both $gcd(m, n) \mid m \text{ and } gcd(m, n) \mid n, \text{ and}$
- (ii) for all positive integers d such that $d \mid m$ and $d \mid n$ it necessarily follows that $d \mid gcd(m, n)$.

PROOF: We have CD(m,n) = D(gcd(m,n)) if gcd terminates by construction. So the algorithm is partially correct.

gcd(m,n) $m = q \cdot n + r$ 0 < m < nn|mq > 0, 0 < r < ngcd(n,r)gcd(n, m)q' > 0, 0 < r' < rgcd(r,r')04 ... < r < r < n $n = q' \cdot r + r' > r + r' > 2r'$ r/< n/2 mg ged has running time O (logn)

Fractions in lowest terms

Some fundamental properties of gcds

Lemma 80 For all positive integers l, m, and n, to write 1. (Commutativity) gcd(m,n) = gcd(n,m), gcd(l,m,n)

- 2. (Associativity) gcd(l, gcd(m, n)) = gcd(gcd(l, m), n), —
- 3. (Linearity) $\gcd(l \cdot m, l \cdot n) = l \cdot \gcd(m, n)$.

PROOF: (1)
$$D(gcd(m,n)) = CD(m,n)$$

 $= CD(n,m)$
 $= D(gcd(n,m))$
 $gcd(m,n) = gcd(n,m)$

^aAka (Distributivity).

Coprimality

Definition 81 Two natural numbers are said to be coprime whenever their greatest common divisor is 1.

Euclid's Theorem

Theorem 82 For positive integers k, m, and n, if $k \mid (m \cdot n)$ and gcd(k, m) = 1 then $k \mid n$.

PROOF: Let
$$R, m, n$$
 be $f.s.int$.

Assume 0 $k | (m \cdot n)$ and $g.cd(k, m) = 1$

RTP: $k | n$

By 0 , $m \cdot n = k \cdot l$ for a $p.s.int$.

By 2 , $n = n \cdot g.cd(k, m) = g.cd(n, k, n \cdot m) = g.cd(n, k, lk)$

Corollary 83 (Euclid's Theorem) For positive integers \mathfrak{m} and \mathfrak{n} , and prime \mathfrak{p} , if $\mathfrak{p} \mid (\mathfrak{m} \cdot \mathfrak{n})$ then $\mathfrak{p} \mid \mathfrak{m}$ or $\mathfrak{p} \mid \mathfrak{n}$.

Now, the second part of Fermat's Little Theorem follows as a corollary of the first part and Euclid's Theorem.

PROOF: Let m, n be pos. at. Let p be a prime. Assume pl(m.n) RTP: plm v pln Coses: (1) If plm me are done.

(2) If ptm Then ged (p,m)=1 Sopln.

$$i^{p} \equiv i \pmod{p}$$
 $p!(i^{p-i}) = i(i^{p-i}-1)$
 $If pti Then p!i^{p-i}-1;$
 $That is, i^{p-i} \equiv 1 \pmod{p}$
 $i^{p-2}.i$
 $[i^{p-2}]_{p}.i$

mbliplicative in verse of din Zp.

Fields of modular arithmetic

Corollary 85 For prime p, every non-zero element i of \mathbb{Z}_p has $[i^{p-2}]_p$ as multiplicative inverse. Hence, \mathbb{Z}_p is what in the mathematical jargon is referred to as a field.

Extended Euclid's Algorithm

Example 86

Integer linear combinations

Definition 64^a An integer r is said to be a <u>linear combination</u> of a pair of integers m and n whenever

there exist a pair of integers s and t, referred to as the *coefficients* of the linear combination, such that

$$\left[\begin{array}{cc} s & t \end{array}\right] \cdot \left[\begin{array}{c} m \\ n \end{array}\right] = r ;$$

that is

$$s \cdot m + t \cdot n = r$$
.

^aSee page 195.

Theorem 87 For all positive integers m and n,

- 1. gcd(m, n) is a linear combination of m and n, and
- 2. a pair $lc_1(m, n)$, $lc_2(m, n)$ of integer coefficients for it, i.e. such that

$$\left[\begin{array}{cc} \operatorname{lc}_1(m,n) & \operatorname{lc}_2(m,n) \end{array}\right] \cdot \left[\begin{array}{c} m \\ n \end{array}\right] \ = \ \gcd(m,n) \quad \text{,} \quad$$

can be efficiently computed.

Proposition 88 For all integers m and n,

1.
$$\begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} m \\ n \end{bmatrix} = m \wedge \begin{bmatrix} 0 & 1 \\ 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} m \\ n \end{bmatrix} = n$$
;

Proposition 88 For all integers m and n,

1.
$$\left[\begin{array}{cc} ?_1 ?_2 \end{array}\right] \cdot \left[\begin{array}{c} m \\ n \end{array}\right] = m \wedge \left[\begin{array}{cc} ?_1 ?_2 \end{array}\right] \cdot \left[\begin{array}{c} m \\ n \end{array}\right] = n ;$$

2. for all integers s_1 , t_1 , r_1 and s_2 , t_2 , r_2 ,

$$\left[\begin{array}{cc} s_1 & t_1 \end{array}\right] \cdot \left[\begin{array}{c} m \\ n \end{array}\right] = r_1 \wedge \left[\begin{array}{cc} s_2 & t_2 \end{array}\right] \cdot \left[\begin{array}{c} m \\ n \end{array}\right] = r_2$$

$$\begin{array}{ccc} \textit{implies} \\ S_1 + S_2 & \text{thtt} \\ \left[\begin{array}{c} x_1 & ?_2 \end{array} \right] \cdot \left[\begin{array}{c} m \\ n \end{array} \right] = r_1 + r_2 \; ; \end{array}$$

Proposition 88 For all integers m and n,

1.
$$\left[\begin{array}{cc} ?_1 ?_2 \end{array}\right] \cdot \left[\begin{array}{c} m \\ n \end{array}\right] = m \wedge \left[\begin{array}{cc} ?_1 ?_2 \end{array}\right] \cdot \left[\begin{array}{c} m \\ n \end{array}\right] = n ;$$

2. for all integers s_1 , t_1 , r_1 and s_2 , t_2 , r_2 ,

$$\begin{bmatrix} s_1 & t_1 \end{bmatrix} \cdot \begin{bmatrix} m \\ n \end{bmatrix} = r_1 \wedge \begin{bmatrix} s_2 & t_2 \end{bmatrix} \cdot \begin{bmatrix} m \\ n \end{bmatrix} = r_2$$

implies

$$\left[\begin{array}{cc} ?_1 ?_2 \end{array}\right] \cdot \left[\begin{array}{c} m \\ n \end{array}\right] = r_1 + r_2 ;$$

3. for all integers k and s, t, r, $h \in \mathcal{L}$ $\begin{bmatrix} s & t \end{bmatrix} \cdot \begin{bmatrix} m \\ n \end{bmatrix} = r \text{ implies } \begin{bmatrix} \chi_1 & \chi_2 \end{bmatrix} \cdot \begin{bmatrix} m \\ n \end{bmatrix} = k \cdot r.$

We extend Euclid's Algorithm gcd(m, n) from computing on pairs of positive integers to computing on pairs of triples ((s, t), r) with s, t integers and r a positive integer satisfying the invariant that s, t are coefficientes expressing r as an integer linear combination of m and n.

```
gcd
```

```
fun gcd( m , n )
                 (s.t)
   fun gcditer(
   = let
       val (q,r) = divalg(r1,r2) (* r = r1-q*r2 *)
     in
       if r = 0
       then c
       else gcditer(
     end
 in
    gcditer(
 end
```

```
egcd
```

```
fun egcd( m , n )
= let
    fun egcditer( ((s1,t1),r1) , lc as ((s2,t2),r2) )
    = let
        val(q,r) = divalg(r1,r2) (* r = r1-q*r2 *)
      in
        if r = 0
        then lc
        else egcditer( lc , ((s1-q*s2,t1-q*t2),r)
      end
  in
   egcditer(((1,0),m), ((0,1),n))
  end
                        — 250-а —
```

```
fun gcd( m , n ) = #2( egcd( m , n ) )
fun lc1( m , n ) = #1( #1( egcd( m , n ) ) )
fun lc2( m , n ) = #2( #1( egcd( m , n ) ) )
```

Multiplicative inverses in modular arithmetic

Corollary 92 For all positive integers m and n,

```
1. n \cdot lc_2(m, n) \equiv gcd(m, n) \pmod{m}, and
```

2. whenever gcd(m, n) = 1,

 $\left[\operatorname{lc}_2(\mathfrak{m},\mathfrak{n})\right]_{\mathfrak{m}}$ is the multiplicative inverse of $[\mathfrak{n}]_{\mathfrak{m}}$ in $\mathbb{Z}_{\mathfrak{m}}$.