Modular arithmetic

For every positive integer m, the integers modulo m are:

Ly = O, 1, ..., m—1.

with arithmetic operations of addition +,,, and multiplication -,
defined as follows

k4+nl = k+1, = rem(k+1l,m) ,
kml = k-1, = rem(k-1l,m)

forall 0 <k,l < m.
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Forkand lin Z,,,
k+n.1l and k-, 1
are the unique modular integers in Z,, such that
k+ml=k+1(modm)
k-ml=k-1(modm)

AN
)
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Example 60 The addition and multiplication tables for 7., are:

+410 1 2 3 410 1 2 3
0|01 2 3 0/0 0 0 O
111 2 3 0 1101 2 3
212 3 0 1 210 2 0 2
313 0 1 2 310 3 2 1

Note that the addition table has a cyclic pattern, while there is no
obvious pattern in the multiplication table.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

additive
inverse

0 0
| 3
2 2
3 |

mu{tiplicative
inverse
0 _
1 1
yi _
3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.
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Example 61 The addition and multiplication tables for 7.5 are:

+5/0 1 2 3 4 501 23 4
0101234 0|0 0 000
11123 40 1(0(T)2 3 4
2123 40 1 210 2 4(D3
3134012 3103 (M4 2
4140123 410 4 3 2D

Again, the addition table has a cyclic pattern, while this time the
multiplication table restricted to non-zero elements has a
permutation pattern.
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From the addition and multiplication tables, we can readily read
tables for additive and multiplicative inverses:

a?dditive mu{tiplicative
inverse inverse

0 0 0 —

1 4 1 1

2 3 2 3

3 2 3 2

4 1 4 4

Surprisingly, every non-zero element has a multiplicative inverse.
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Proposition 62 For all natural numbers m > 1, the
modular-arithmetic structure

(an O) _I_m) 1 ) 'm)

IS @ commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have
further mathematical structure in the form of multiplicative inverses
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Proposition 63 Let m be a positive integer. A modular integer k in

Z. has a reciprocal if, and only If, there exist integers i andj such
thatk -i4+m-j=1.

B ROOE: Jot wm be a GLOQ‘C_HJ Wb, Let B b lf"':Z,,,,L

b %, OLR <M, o
(:—-‘-’73 Aggumd k hon a FC%W«*‘/{ wzw/ M/-qu'
Toct, 1 et £ i T ST k. 2= (s m).
/[L\.% k. -1 =4 -m fofau_ TM’?//. q T&ko\?_ .y
o o j;’QM Wart kl:i—yvtfj—:". |

(4'::) AS gt —VTJ«'C«(/AWu‘é Y1) - o f. i+ M'j?l

0\ loFm-fo=1.Thim , R.1,=1.
fof o Jo b3 b BoHA ; LZMM)

YAV _ 193 —
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Integer linear combinations

Definition 64 An integer r is said to be a linear combination of a
pair of integers m and n whenever there are integers s andt such
thats - m+t-n=r.

Proposition 65 Let m be a positive integer. A modular integer k in
Zw has a reciprocal if, and only if, 1 is an integer linear combination
of m and k.
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Important mathematical jargon: Sets

Very roughly, sets are the mathematicians’ data structures.
Informally, we will consider a set as a (well-defined, unordered)

collection of mathematical objects, called the elements (or
members) of the set.
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Set membership

The symbol ‘€’ known as the set membership predicate is central to
the theory of sets, and its purpose is to build statements of the form

X €A

that are true whenever it is the case that the object x is an element
of the set A, and false otherwise.
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The set

Defining sets

of even primes
of booleans
[—2..3]

IS

{2}

{true, false }

{_2>_1>O>1>2>3}

Phrue, plac = § ple 3
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Set comprehension

The basic idea behind set comprehension is to define a set
by means of a property that precisely characterises all the
elements of the set.

Notations:

{IxeA|P(x)} , {xe A:P(x)}
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Set equality

Two sets are equal precisely when they have the same elements
Examples:
» {(xeN:2|x A xisprime} = {2}

» For a positive integer m,
{(xe€Z :m|ix} ={xeZ : x=0 (mod m)}

» (deN:d|0) =N <
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Equivalent predicates specify equal sets:

{x eA[Px)}={xeA|Q(x)}
Iff
Vx € A. P(x) &< Q(x)

Example: For a positive integer m,

{x € Z, | x has a reciprocal in Z,, }

{x € Zy,|1is an integer linear combination of m and x }
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Greatest common divisor

Given a natural number n, the set of its divisors is defined by set
comprehension as follows

Dn)={deN:d|n} .
Example 67
1. D(0) =N

( )
1,2,3,4,6,8,9,12,17,18, 24,34, 36,51, 68,
2. D(1224) = ¢ >

72,102,136, 153, 204, 306, 408, 612, 1224

\ /

Remark Sets of divisors are hard to compute. However, the
computation of the greatest divisor is straightforward. :)
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Going a step further, what about the common divisors of pairs of
natural numbers? That is, the set

CD(m,n)={deN:d|/m Ad|n}

for m,n € N.

Example 68
CD(1224,660) ={1,2,3,4,6,12}

Since CD(n,n) = D(n), the computation of common divisors is as
hard as that of divisors. But, what about the computation of the
greatest common divisor?
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Lemma 71 (Key Lemma) Let m and m'’ be natural numbers and
let n be a positive integer such that m = m’ (mod n). Then,

CD(m,n) =CD(m’,n) .

PROOF:

MB: CD(mn)=CD(amn) o= (mitn)

e
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Mb’ o~ I
Lemma 73 For all positi%egers m andn,

D(n) Jifn|m
CD(m,n) =
7 CD n, rem(m,n ) , otherwise

g},,eeﬁa b 7

Mz remm(m k) (meln)

— 212 —



Lemma 73 For all positive integers m and n,

D(n) ,fn|m
CD(m,n) = A«

\ CD(n, rem(m, n)) , otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma
suggests a recursive procedure:

( .
n fn|m

ng(m> Tl) = 3

| ged (n, rem(m, n)) , otherwise

for computing the greatest common divisor, of two positive integers
m and n. This is

Euclid’s Algorithm
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gcd

fun gcd( m , n )
= let
val (g , r ) = divalg(m , n )
in
if r = 0 then n
else gcd(n , r )

end
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Example 74 (¢gcd(13,34) = 1)
ocd(13,34) = gcd

NB If gcd terminates on input (m,n) with output gcd(m,n) then
CD(m,n) = D(gcd(m,n)).
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Proposition 75 For all natural numbers m,n and a, b,
ifCD(m,n) =D(a) and CD(m,n) = D(b) thena = b.

Proposition 76 For all natural numbers m,n and k, the
following statements are equivalent:

1. CD(m,n) = D(k). Bd‘"“
2. » klm A k|n, and

» for all natural numbersd,d| m N\ d|n — d| k.

e

p—
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Definition 77 For natural numbers m,n the unique natural number
k such that

» k|m /A k|n, and
» for all natural numbersd,d| m N\ d|n — d|k.

Is called the greatest common divisor of m and n, and denoted
gcd(m,n).
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Theorem 78 Euclid’s Algorithm gcd terminates on all pairs of
positive integers and, for such m andn, the positive integer
gcd(m,n) is the greatest common divisor of m andn in the
sense that the following two properties hold:

(1) both gcd(m,n) | m and gcd(m,n) | n, and

(i1) for all positive integers d such thatd | m and d | n it necessarily
follows that d | gcd(m,n).

PROOF:
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gcd(m, n)
1n:qkn+r

njm O<m<n
qg>0,0<r<n

gcd(n, 1) gcd(mn, m)
| S

n=q’-r+7r’

q’ >0, ?<T/<T
ged(r, ')
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Fractions in lowest terms

fun lowterms( m , n )
= let
val gcdval = gcd( m , n )
in
( m div gcdval , n div gcdval )

end
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Some fundamental properties of gcds

Lemma 80 For all positive integers 1, m, and n,
1. (Commutativity) gcd(m,n) = ged(n, m),
2. (Associativity) ged (1, ged(m,n)) = ged(ged(l, m),n),
3. (Linearity)f gcd(l- m,l-n) =1-gcd(m,n).

PROOF:

*Aka (Distributivity).
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Coprimality

Definition 81 Two natural numbers are said to be coprime when-
ever their greatest common divisor is 1.

Euclid’s Theorem

Theorem 82 For positive integers k, m, andn, ifk | (m-n) and
ged(k,m) =1 thenk | n.

PROOF:
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Corollary 83 (Euclid’s Theorem) For positive integers m and n,
and primep, ifp | (m-n) thenp | morp | n.

Now, the second part of Fermat’s Little Theorem follows as a
corollary of the first part and Euclid’s Theorem.

PROOF:
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Fields of modular arithmetic

Corollary 85 For prime p, every non-zero elementi of Z,
has [i"%], as multiplicative inverse. Hence, Z,, is what in
the mathematical jargon is referred to as a field.
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Extended Euclid’s Algorithm

13 + 8

.

34

|

— N N N N~
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Extended Euclid’s Algorithm

o
@ 0 1n N o
N - - - -
b
o
L P2 0 n ¢
| |
© In N N -
© I N N - O
+ + + + + +
@ 0 I N N —
N —_ —_- - -
| | |
o
P o n n N
N —
P S AT N
4\/ 3\/ -~ -~ -~ 4I\/
N — o0 I e

— N N N N
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gcd(34,13)
gcd (13, 8)

gcd(8,5)

ged(5, 3)

ged(3,2)

34
13
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gcd(34,13)
gcd (13, 8)

gcd(8,5)

ged(5, 3)

ged(3,2)

34
13

13
—1-34+3-13
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gcd(34,13)
gcd (13, 8)

ged(8,5)

ged(5, 3)

ged(3,2)

34
13
13
—1-34+3-13
8
34 —-2-13)
2.34 4 (=5)-13
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gcd(34,13)
gcd (13, 8)

gcd(8,5)

ged(5, 3)

ged(3,2)

34
13
13
—1-34+3-13
8
34 —-2-13)
2.34 4 (=5)-13

5
“1.344+3-13
~3.34+8-13
3

— 244-c —
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ocd(34,13) || 8 = 34 —2. 13
gcd(13,8) || 5= 13 —1- 8
= 13 1. (34-2-13)
= —1-34+3-13
ocd(8,5) | 3= 8 —1 3
— [(34—2.13) -1 [=1-34+3.13)
= 2.34+(=5)-13
gcd(5,3) | 2= 5 —T- 3
~ T.34+313 -1 (2-34+(-5) - 13)
= —3.344+8-13
ocd(3,2) | 1= 3 —1- 2
= 2-34+(=5)-13) —1. (-3-34+8-13))
= 5.34+(—13)-13
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Integer linear combinations

Definition 64> An integer r is said to be a linear combination of a
pair of integers m and n whenever

there exist a pair of integers s and t, referred to as the
coefficients of the linear combination, such that

[st]-{m}ZT;

n

that is

s-m+t-n=r.

*See page 195.
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Theorem 87 For all positive integers m andn,
1. gcd(m,n) is a linear combination of m and n, and

2. apairlc;(m,n), le,(m,n) of integer coefficients for it,
I.e. such that

m

} = ged(myn)
n

[ lc1(m,n) ICZ(m> TL) } . {

can be efficiently computed.
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Proposition 88 For all integers m andn,

tlanl[R]=m A [l [T] =
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Proposition 88 For all integers m andn,

tlanl[R]=m A [l [T] =

2. for all integers sq, t1, 11 and s,, t,, 1,

[31 t1]’{m}:r1 N\ [Sztz]’[m}:h

n n
implies
m
Y =T +T2
[1 z] {n} 1 2
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Proposition 88 For all integers m andn,

tlanl[R]=m A [l [T] =

2. for all integers sq, t1, 11 and s,, t,, 1,

[31 t1]’{m}:r1 N\ [Sztz]’[m}:h

n n
implies
m
| =T1+712
[1 2] {n} 1 2

3. for all integers k ands, t, r,

[st}-[:}:rimplies - ?2].{m}:k.

n
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We extend Euclid’s Algorithm gcd(m,n) from computing on pairs
of positive integers to computing on pairs of triples ((s,t), r) with
s, t integers and r a positive integer satisfying the invariant that

s, t are coefficientes expressing r as an integer linear combination

of m and n.
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gcd

fun gcd(m , n )

= let
fun gcditer( rl , c as r2 )
= let
val (q,r) = divalg(rl,r2) (k r = rl-g*r2 *)
in
if r =0
then ¢
else gcditer( c , r )
end
in
gcditer( m n )
end
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egcd

fun egcd( m , n )

= let
fun egcditer( ((s1,t1),rl) , 1lc as ((s2,t2),r2) )
= let
val (q,r) = divalg(rl,r2) (k r = rl-g*r2 *)
1in
if r =0
then lc
else egcditer( 1lc , ((sl-g*s2,tl-g*t2),r) )
end
1n
egcditer( ((1,0),m) , ((0,1),n) )
end
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fun gcd(m , n ) = #2( egcd( m , n ) )

fun 1cil( m , n )

#1( #1( egcd(m , n ) ) )

fun 1c2( m , n )

#2( #1( egcd(m , n ) ) )
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Multiplicative inverses in modular arithmetic

Corollary 92 For all positive integers m and n,
1. n-le;(myn) = ged(m,n) (mod m), and

2. whenever gcd(m,n) =1,

lc;(m,m)| s the multiplicative inverse of [n]y, in Z, .
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Diffie-Hellman cryptographic method

Shared secret key
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Diffie-Hellman cryptographic method

Shared secret key

A & ;
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Diffie-Hellman cryptographic method

Shared secret key

A & ;

a b
$ $
[Ca]p — X B — [Cb]p
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Diffie-Hellman cryptographic method

Shared secret key

A & ;

a b
H H
[Ca]p — X @ @ B — [Cb]p
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Diffie-Hellman cryptographic method

Shared secret key

A & ;

a b
$ $
[c], = « ® ® B =I[c"],
3 X
$ $
k= [B%, (o], =k
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Key exchange

Mathematical modelling:

» Encrypt and decrypt by means of modular exponentiation:
ke, [
» Encrypting-decrypting have no effect:

By Fermat’s Little Theorem,
k!te=1 = ¥ (mod p)
for every natural number c, integer k, and prime p.

» Consider d,e,p suchthate-d=1+c- (p—1); equivalently,
d-e=1(modp—1) .
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Lemma 93 Letp be a prime and e a positive integer with
ged(p — 1,e) = 1. Define

d = [1C2(p—1,€)}

Then, for all integers K,

p—1 -

(k®)4 =k (mod p) .

PROOF:
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(eA,dA) (eB>dB)
0<k<p
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(eA,dA) (eB>dB)
0<k<p

— 261-b —



(eA> dA)
0<k<p

[keA]p — My

— 261-c —




A
(eA> dA)
0<k<p
¢
[keA]p — My
my
¢
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A
(eA> dA)
0<k<p
¢
[keA]p — My
my
¢

[mZdA]p — M3
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Natural Numbers
and mathematical induction

We have mentioned in passing that the natural numbers are
generated from zero by succesive increments. This is in fact the
defining property of the set of natural numbers, and endows it with
a very important and powerful reasoning principle, that of

Mathematical Induction, for establishing universal properties of
natural numbers.
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Principle of Induction

Let P(m) be a statement for m ranging over the set of natural

numbers N.
|f

» the statement P(0) holds, and

» the statement
vneN. (Pn) = P(n+1))
also holds

then

» the statement
VYm € N.P(m)
holds.
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Binomial Theorem

Theorem 29 Foralln € N,

(x+y)" Zk 0 (k) X"yt

PROOF:
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Principle of Induction
from basis ¢

Let P(m) be a statement for m ranging over the natural
numbers greater than or equal a fixed natural number £.
If

» P({) holds, and

» Vn>(CinN. (P(n) = P(n+1)) also holds
then

» Vm > {inN. P(m) holds.
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Principle of Strong Induction
from basis £ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural
numbers greater than or equal a fixed natural number <.
If both

» P({) and

» Vn > Cin N, ((Vke .n].P(k)) = P(n+1))
hold, then

» Vm > {in N.P(m) holds.
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Fundamental Theorem of Arithmetic

Proposition 95 Every positive integer greater than or equal 2 is a
prime or a product of primes.

PROOF:
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Theorem 96 (Fundamental Theorem of Arithmetic) For every
positive integer n there is a unique finite ordered sequence of
primes (p; < --- < py) with{ € N such that

n=1[[pn...,pd -

PROOF:
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Euclid’s infinitude of primes

Theorem 99 The set of primes is infinite.

PROOF:
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Sets
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Objectives

To introduce the basics of the theory of sets and some of its uses.
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Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,
-

1,1 1,2)  o(1,3) 14)  o(1,5)

Q( .( ® .(

2,1) 2,2) 2,3) 2,4) 2,5)

o21)  o(22) (23] (24 ol

-
may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as

[.m,n o2 o(1.2) o22) o(13) o(23) (14 o24) (1,5 .(2,5)]

D

for other considerations.

or even simply as
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are
available within it.
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Set membership

We write € for the membership predicate; so that
x € A stands for x is an element of A .
We further write

x & Afor—=(x € A) .

Example: 0 € {0,1}and 1 ¢ {0} are true statements.
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Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

Vsets A\B. A=B & (Vx.x€ A &< x€B)

Example:

0; 7 10,17 = {1,0; # {2} = 12,2}
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Proposition 100 Forb,c € R, let

A = {xeC|x*—2bx+c=0)}
B = {b+vb —c,b—vb2—c}
C = {b}

Then,

1. A =B, and

2. B=C < b?=c.
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Subsets and supersets
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Lemma 103

1. Reflexivity.
For all sets A, A C A.

2. Transitivity.
Forall setsA,B,C, ACB ABCC) — A CC.

3. Antisymmetry.
For allsets A,B, ACB ANBCA) — A =B.
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Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.

{x e A|P(x)}
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Russell’s paradox
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Empty set

Set theory has an
empty set ,
typically denoted
O or {},

with no elements.
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Cardinality

The cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S|.

Example:
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Finite sets

The finite sets are those with cardinality a natural number.

Example: Forn € N,
n] = {xeN|x<n}

IS finite of cardinality n.
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Powerset axiom

For any set, there is a set consisting of all its subsets.
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NB: The powerset construction can be iterated. In particular,
FeP(PU) & FCPU) ;

that is, & is a set of subsets of U, sometimes referred to as a family.

Example: The family & C P([5]) consisting of the non-empty sub-
sets of 5] ={0,1,2,3,4} whose elements are even is

C = {{O}>{2}>{4}>{O>2}>{O>4}>{2>4}>{O>2>4}} .
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Hasse diagrams
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Proposition 104 For all finite sets U,
H#P(U) =274

PROOF IDEA:
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Venn diagrams?

*From http://en.wikipedia.org/wiki/Intersection_(set_theory) .
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Union Intersection

Complement
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The powerset Boolean algebra

Forall A,B € P(U),

AUB = {xelU|xeAV xeB} €PU)

ANB = {xelU|xeA AxeB} €PU)

A = {xelU|—=(xeA)} c P(U)
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» The union operation U and the intersection operation N are
associative, commutative, and idempotent.

(AUBJUC=AU(BUC), AUB=BUA, AUA=A

(ANB)NC=AN(BNC), ANB=BNA, ANA=A
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» The union operation U and the intersection operation N are
associative, commutative, and idempotent.

(AUBJUC=AU(BUC), AUB=BUA, AUA=A

(ANB)NC=AN(BNC), ANB=BNA, ANA=A

» The empty set () is a neutral element for U and the universal
set U is a neutral element for N.

PUA =A =UNA
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» The empty set () is an annihilator for N and the universal set U
IS an annihilator for U.

DNA=10

UUA=U
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» The empty set () is an annihilator for N and the universal set U
IS an annihilator for U.

DNA=10

UUA=U

» With respect to each other, the union operation U and the
intersection operation N are distributive and absorptive.

AN(BUC)=(ANnBJ)U(ANC), AU(BNC)=(AUB)Nn(AUC)

AU(ANB) = A = AN(AUB)
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» The complement operation ()¢ satisfies complementation laws.

AUA=U, ANA°={(

— 337 —



Proposition 105 Let U be a setand let A,B € P(U).
1. VXePU). AUBCX < (ACX A BCX).
2.¥VXePU). XCANB & (XCA N XCB).

PROOF:
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Corollary 106 Let U be a set and let A, B, C € P(U).

1. C=AUB
iff
ACCABCC]

iff

VX ePU). (XCAANXCB) = XCC(C]
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Sets and logic

P(U) { false, true }
0 false
u true
U V
N /\
(+)° —(+)
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Pairing axiom

For every a and b, there is a set with a and b as its
only elements.

{a, b}
defined by

Vx.x €{a,b} &< (x=a V x =Db)

NB Theset{a, a}is abbreviated as{ a}, andreferred to as a singleton.
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Examples:

> #{0}=1

> #{{0}}=1

> #H 0, {0}}=2
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Proposition 107 For all a,b, c,x,y,
1. {xy}C{a} = x=y=a
2. {C>X}:{C>U} — X =1

PROOF:
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Ordered pairing

Notation:

(a,b) or (a,b)

Fundamental property:

(a>b):(x>y) — a=x /N b:U
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A construction:

For every pair a and b,

<Cl,b> — {{a}> {a>b}}

defines an ordered pairing of a and b.
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Proposition 108 (Fundamental property of ordered pairing)
For all a, b, x,y,

(a,b) = (x,y) &= (a=x N b=y)

PROOF:
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Products

The product A x B of two sets A and B is the set

AxB={x|JaeAbeB.x=(a,b)}
where

V(l],CleA,b],szB.
(a1,b1) = (az,b2) & (a1 =a; A b; =by)

Thus,

Vx e AxB.dlae A.dlbe B.x=(a,b)
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Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal
components is formally

{(xeAXA | daeA.da, e A x=(aq,a;) N ag=aqa;}
but often abbreviated using pattern-matching notation as

{lay,a) EAXAlar=at .
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Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal
components is formally

{(xeAXA | daeA.da, e A x=(aq,a;) N ag=aqa;}
but often abbreviated using pattern-matching notation as
tlana) EAXAlag=a} .

Notation: For a property P(a,b) with a ranging over a set A and b
ranging over a set B,

{(a,b) € AxB|P(a,b)}
abbreviates

{(xeAxB|daeA.dbeB.x=(a,b) A\ P(a,b)} .
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Proposition 110 For all finite sets A and B,

# (A XB) = #A-#B

PROOF IDEA:
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Sets and logic

P(U) { false, true }

0 false

u true

U \V4

N /\
(+)° —(+)

U =

M %
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Big unions

Example:

» Consider the family of sets

4 N\
the sum of the elements of
T = { TCI5]

\ T is less than or equal 2 )

= {0,{0}, (1}, {23, {0,13,{0,2} }

» The big union of the family T is the set [ J T given by the union of
the sets in T
nelJT &< dTeT.neT .

Hence, | JT ={0,1,2}.
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Definition 111 Let U be a set. For a collection of sets F € P(P(U)),
we let the big union (relative to U) be defined as

JF ={xeU|3AecF.xeA} €P(U)
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Proposition 112 For allJ € P(P(P(U))),

J(UT) = U{UA c P(U) \Aeff} cPU) .

PROOF:
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Big intersections

Example:
» Consider the family of sets

S = { S C [5] ‘ the sum of the elements of S is 6 }

— {{2,4},{0,2,4},{1,2,3},{0,1,2,3}}

» The big intersection of the family 8 is the set ()8 given by the
iIntersection of the sets In S:
ne()s & vSed.neSs

Hence, (1S ={2}.
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Definition 113 Let U be a set. For a collection of sets & C P(U),
we let the big intersection (relative to U ) be defined as

NF = {xeU|VAeTF.xecA} .
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Theorem 114 Let
F={SCR[(0€S) A (xeRxeS = (x+1)€S) |
Then, (i) N e Fand (ii) N C (F. Hence, (\F = N.

PROOF:
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Proposition 115 Let U be a set and let ¥ C P(U) be a family of
subsets of U.

1. Forall S € P(U),
S=U7F
iff
WAEﬁAgS}
A VX ePU).(VAeTF.ACX)=SCX]

2. Forall T € P(U),
T=NF
iff
VAETF.TCA]
/\ [VYeCP(U).(VAe&".YgA)éYgT]
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Union axiom

Every collection of sets has a union.

UK

xelJTF & IXeTF.xeX
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For non-empty F we also have

ok

defined by

. xeNTF & (VXeT.xeX)
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D1isjoint unions

Definition 116 The disjoint union A W B of two sets A and B is the
set

AWB = ({1} x A)U ({2} x B)

Thus,
Vx.x € (AWB) < (Ja€A.x=(1,a)) V (FIbeB.x=(2,b)).
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Proposition 118 For all finite sets A and B,
ANB=0 = #(AUB) = #A+ #B

PROOF IDEA:

Corollary 119 For all finite sets A and B,
#(AWB) = #A + #B
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Relations

Definition 121 A (binary) relation R from a set A to a set B

R:A—+—B or ReRelA,B) ,
IS

RCAxB or RePA xB)

Notation 122 One typically writes aRb for (a,b) € R.
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Informal examples:

» Computation.

» Typing.

» Program equivalence.
» Networks.

» Databases.
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Examples:

>

Empty relation.

D:A—+B (a )b < false)
Full relation.
(AxXxB):A—B (a (A xXB)b & true)

Identity (or equality) relation.
idA:{(a,a)IaEA}:A—HA (aidy @’ &< a=a’)

Integer square root.
R={(mn)|m=n*}:N-+2Z (MRn & m=n?
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Internal diagrams

Example:
R=1{1(0,0),(0,—1),(0,1),(1,2),(1,1),(2,1) } :N—=Z
S=1{1(1,0),(1,2),(2,1),(2,3) } : Z—+>Z
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Relational extensionality
R=§:A—+—B

|ff
Vae A.VYbeB. aRb & aSb
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Relational composition
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Theorem 124 Relational composition is associative and has the
identity relation as neutral element.

» Associativity.
ForallR:A—+—B,S:B—+—C,andT:C—+—D,

(ToS)oR = To(SoR)

» Neutral element.
ForallR : A —+ B,

ROidA — R = idBOR
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Relations and matrices

Definition 125

1. For positive integers m andn, an (m x n)-matrix M over a
semiring (S,0,®,1,®) is given by entries M,; € S for all
0<i<mandl <j<n.

Theorem 126 Matrix multiplication is associative and has the

identity matrix as neutral element.
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Relations from [m] to [n] and (m x n)-matrices over Booleans
provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .
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D1irected graphs

Definition 130 A directed graph (A, R) consists of a set A and a
relation R on A (i.e. a relation from A to A).
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Corollary 132 For every set A, the structure
(Rel(A), ida ,o )

IS a monoid.

Definition 133 ForR € Rel(A) andn € N, we let

R™ = Ro---oR € Rel(A)

Vs

n times

be defined asid, forn =0, andasRoR°™ forn =m + 1.
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Paths

Proposition 135 Let (A, R) be a directed graph. For alln € N and
s,t € A, s R°™" t Iff there exists a path of length n. in R with source s
and target t.

PROOF:
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Definition 136 ForR € Rel(A), let

R* = J{R™€Rel(A) [ neN} = [,y R

neN

Corollary 137 Let (A,R) be a directed graph. For all s,t € A,
s R°* t iff there exists a path with source s and targett in R.
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The (n x n)-matrix M = mat(R) of a finite directed graph ([n], R)
for n a positive integer is called its adjacency matrix.

The adjacency matrix M* = mat(R°*) can be computed by matrix
multiplication and addition as M,, where

y

M, = I,
\ My = In—l—(M'Mk)

This gives an algorithm for establishing or refuting the existence of
paths in finite directed graphs.
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Preorders

Definition 138 Apreorder ( P, C ) consists of a set P and a relation
C onP (i.e. C € P(P x P)) satisfying the following two axioms.

» Reflexivity.
Vx e P. xCx
» Iransitivity.

Vx,y,ze P. ( xCy NyCz) = xCz

— 400 —



Examples:
> (R,<)and (R, >).
> (P(A),C) and (P(A), 2).

> (Z, |).
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Theorem 140 ForR C A x A, let
Jr = {QCAXA | RCQ A Qisapreorder} .
Then, (i) R°* € Fk and (ii) R°* C () Fr. Hence, R°* = (1 k.

PROOF:
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Partial functions

Definition 141 A relation R : A —— B is said to be functional, and
called a partial function, whenever it is such that

\V/GEA.\V/b],bzéB. aRb; A aRb, =— b; =0y
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Theorem 143 The identity relation is a partial function, and the
composition of partial functions yields a partial function.

NB
f=g:A—B
Iff
Vae A.(f(a)]l & gla)l ) A f(a) =g(a)
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Example: The following are examples of partial functions.

» rational division —: Q x Q — Q, with domain of definition

{rys) €QxQJs#0};

» integer square root /—: Z — Z, with domain of definition
{meZ|IeZm=n};

» real square root /—: R — R, whose domain of definition is
{x e R|x>0}.
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Proposition 144 For all finite sets A and B,
#(A=B) = (#B+1)™

PROOF IDEA:
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Functions (or maps)

Definition 145 A partial function is said to be total, and referred
fo as a (total) function or map, whenever its domain of definition
coincides with its source.

Theorem 146 For all f € Rel(A, B),

fe(A=B) & Vaec A.dlbeB. afb
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Proposition 147 For all finite sets A and B,
#(A=B) = #B™

PROOF IDEA:
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Theorem 148 The identity partial function is a function, and the
composition of functions yields a function.

NB
1. f=g:A—=Biff Vae A.f(a) = g(a).

2. For all sets A, the identity function id, : A — A is given by the
rule
ida(a) = a

and, for all functions f: A — B and g : B — C, the composition
function go f: A — C is given by the rule

(gof)(a) =g(f(a))
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Inductive definitions

Examples:
» add:N? - N
( add(m,0) = m
<\ add(m,n+1) = add(m,n)+1
» S:N—= N

S(0) = 0
S(n+1) add(n,S(n))

\
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The function

P N—A

)

inductively defined from

,
acA

\ f:-NxA—A

IS the unique such that

y

pa,f(o) — a
pa,f(n+1) — f(n)paf(n))

\
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Examples:

» add:N? 5 N
add(m,n) = p,,(n) for f(x,y) =y + 1

» S: N — N

SES Po,add
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For a set A, consider a € A and a function f: N x A — A.
Definition 149 Define R C N x A to be (a, f)-closed whenever
» ORa, and
» VneN.Vxe A nRx — (n+1) R f(n,x).
Theorem 150 Letp,; = [|{RCE N x A |R s (a,f)-closed }.
1. The relation p : N —— A Is functional and total.

2. The function p,; : N — A is the unique such that p,((0) = a
and p,(n+1) =f(n,p.(n)) foralin e N.
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Bijections

Definition 151 A function f : A — B is said to be bijective, or
a bijection, whenever there exists a (necessarily unique) function
g: B — A (referred to as the inverse of f) such that

1. g is aretraction (or left inverse) for f:

gOf:idA ,

2. g Is asection (orright inverse) for f:

ng:idB
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Proposition 153 For all finite sets A and B,

’

0 ,Iif#A # #B
n! L, If#A=#B =n

\

PROOF IDEA:
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Theorem 154 The identity function is a bijection, and the composi-
tion of bijections yields a bijection.
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Definition 155 Two sets A and B are said to be isomorphic (and
to have the same cardinatity) whenever there is a bijection between
them: in which case we write

A=B or #A=4+#DB

Examples:
1. {0, 1} = {false, true}.

2. N=N" |, N=Z , N=NxN, N=Q.
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Equivalence relations and set partitions

» Equivalence relations.
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» Set partitions.
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Theorem 158 For every set A,
EqRel(A) = Part(A)

PROOF:
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Calculus of bijections

» A=A ,A=B — B=A,(A=BAB=C) = A=C
» IfA=Xand B = Y then
PA)=P(X) , AxB=XXY , AWB=XWY ,
Rel(A,B) = Rel(X,Y) , (A=B)=(X=2Y) |,
(A=B)=(X=Y) , Bij(A,B)=BijX,Y)
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A=Z[1lxA , (AxB)xC=Ax(BxC), AxB=BxA

OJWA=A, AYBWC=2AW(BWC), AUB=BUWA

0] xA=[0] , (AWB)x C=(AxC)w (B xC)
A=0)=[1, (A= (BxC)=(A=B)x(A=C)
(l0=A)=[1], (A¥gB)=C)=(A=C)x (B=C)
(M=A)=A, (AxB)=C)= (A= (B= ()
(A=B)= (A= (Bwl]))

P(A) = (A= [2])
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Characteristic (or indicator) functions
PA) = (A =[2])
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Finite cardinality

Definition 160 A set A is said to be finite whenever A = [n] for
somen € N, in which case we write #A = n.
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Theorem 161 For all m,n € N,

1. P([n]) = [2"]

> o AN W N
3 2
L
2
|12
E)
_|_
_:
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Infinity axiom

There is an infinite set, containing () and closed under successor.
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Bijections
Proposition 162 For a function f : A — B, the following are
equivalent.
1. f Is bijective.

2. VbeB.dlae A.f(a) =b.

3. (VbEB.HaEA.f(a):b)
A\
(Va1,az cA.fla;) =flay) = a; = az)
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Surjections

Definition 163 A function f : A — B is said to be surjective, or a
surjection, and indicated f : A — B whenever

YbeB.3acA.fla)=b
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Theorem 164 The identity function is a surjection, and the
composition of surjections yields a surjection.

The set of surjections from A to B is denoted
Sur(A, B)
and we thus have

Bij(A,B) C Sur(A,B) € Fun(A,B) € PFun(A,B) C Rel(A,B) .
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Enumerability

Definition 166

1. A set A is said to be enumerable whenever there exists a
surjection N — A, referred to as an enumeration.

2. A countable set is one that is either empty or enumerable.
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Examples:

1. A bijective enumeration of Z.

—3|—2|—1
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2. A bijective enumeration of N x N.

=~ W DN
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Proposition 167 Every non-empty subset of an enumerable set is
enumerable.

PROOF:
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Countability

Proposition 168
1. N, Z, Q are countable sets.
2. The product and disjoint union of countable sets is countable.
3. Every finite set is countable.

4. Every subset of a countable set is countable.
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Axiom of choice

Every surjection has a section.
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Injections

Definition 169 A function f : A — B is said to be injective, or an
Injection, and indicated f : A — B whenever

Va,a € A (fla)) = flay)) = a1 =,
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Theorem 170 The identity function is an injection, and the compo-
sition of injections yields an injection.

The set of injections from A to B is denoted

Inj(A, B)
and we thus have

Sur(A, B)

¢ N

Z

Bij(A, B) Fun(A,B) € PFun(A,B) C Rel(A,B)

S
A &

Inj(A, B)

with

Bij(A,B) = Sur(A,B)NInj(A,B)
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Proposition 171 For all finite sets A and B,

’

(A5) - (#A) , if#A < #B

0 , otherwise

\

PROOF IDEA:
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Relational images

Definition 174 LetR : A —+— B be a relation.

» Thedirectimage of X C A under R is the set?(X) C B, defined
as

R(X) = {beB|3xecX.xRb} .

NB This construction yields a function ? : P(A) — P(B).
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. . . —
» Theinverse image of Y C B underR is the set R(Y) C A,

defined as

R(Y) = {acA|VbeEB.aRb = beY)

NB This construction yields a function R : P(B) — P(A).
— 460 —



Replacement axiom

The direct image of every definable functional property
on a set is a set.
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Set-indexed constructions

For every mapping associating a set A; to each element of a set I,
we have the set

Uit Ai = U{Ailiel} = {al3ielae A} .
Examples:

1. Indexed disjoint unions:
L"jiel Ay = Uiel 1) x A4

2. Finite sequences on a set A:

A" = wnEN A"
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3. Finite partial functions from a set A to a set B:
(A —fin B) — @sgfpﬁn(;\) (S = B)
where

Pan(A) = {S C A Sis finite }

4. Non-empty indexed intersections: for I = (),

Niar Av = {xelUAilVielLxe A}

5. Indexed products:

[TaA = { ae (1= UgA) | YieLad ea )
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Proposition 177 An enumerable indexed disjoint union of
enumerable sets is enumerable.

PROOF:

Corollary 179 If X and A are countable sets then so are A*,

:Pﬁn(A)J and (X iﬁn A)
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THEOREM OF THE DAY

Cantor’s Uncountability Theorem There are uncountably many infinite 0-1 sequences.

Proof: Suppose you could count the sequences. Label them in order: S, S5, S3,..., and denote by S;(j) the j-th entry of sequence S;. Now
define a new sequence, S, whose i-th entry is S;(/)+ 1 (mod 2). So S is S 1(1)+1,5,(2)+1,53(3)+1,S44)+1,..., with all entries remaindered
modulo 2. S is certainly an infinite sequence of Os and 1s. So it must appear in our list: it is, say, S, so its k-th entry is (k). But this is, by
definition, S (k) + 1 (mod 2) # S (k). So we have contradicted the possibility of forming our enumeration. QED.

The theorem establishes that the real numbers are uncountable — that is, they cannot be enumerated in a list indexed by the positive integers
(1, 2, 3,...). To see this informally, consider the infinite sequences of Os and 1s to be the binary expansions of fractions (e.g. 0.010011... =
0/2+1/4+0/8+0/16+1/32+1/64 +...). More generally, it says that the set of subsets of a countably infinite set is uncountable, and to see
that, imagine every 0-1 sequence being a different recipe for building a subset: the i-th entry tells you whether to include the i-th element (1) or
exclude it (0).

Georg Cantor (1845-1918) discovered this theorem in 1874 but it apparently took another twenty years of thought about what
were then new and controversial concepts: ‘sets’, ‘cardinalities’, ‘orders of infinity’, to invent the important proof given here,
using the so-called diagonalisation method.

Web link: www.math.hawaii.edu/~dale/godel/godel.html. There is an interesting discussion on mathoverflow.net about the history of diagonalisation:
type ‘earliest diagonal’ into their search box.

Further reading: Mathematics: the Loss of Certainty by Morris Kline, Oxford University Press, New York, 1980.

Created by Robin Whitty for www.theoremoftheday.org .
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Unbounded cardinality

Theorem 180 (Cantor’s diagonalisation argument) For every
set A, no surjection from A to P(A) exists.

PROOF:
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Definition 181 A fixed-point of a function f : X — X is an element
x € X such that f(x) = x.

Theorem 182 (Lawvere’s fixed-point argument) For sets A and
X, if there exists a surjection A — (A = X) then every function
X — X has a fixed-point; and hence X is a singleton.

PROOF:
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Corollary 183 The sets
PN) = (N=[2]) = [0,1] = R

are not enumerable.

Corollary 184 There are non-computable infinite sequences of
bits.
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Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of e-Induction .
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