
Semirings

Definition 44 A semiring (or rig) is an algebraic structure with

◮ a commutative monoid structure, say (0,⊕),

◮ a monoid structure, say (1,⊗),

satifying the distributivity laws:

◮ 0⊗ x = 0 = x⊗ 0

◮ x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z), (y⊕ z)⊗ x = (y⊗ x)⊕ (z⊗ x)

A semiring is commutative whenever ⊗ is.
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The additive structure (N, 0,+) of natural numbers with zero and

addition satisfies the following:

◮ Monoid laws

0+ n = n = n+ 0 , (l+m) + n = l+ (m+ n)

◮ Commutativity law

m+ n = n+m

and as such is what in the mathematical jargon is referred to as

a commutative monoid.
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Also the multiplicative structure (N, 1, ·) of natural numbers with one

and multiplication is a commutative monoid:

◮ Monoid laws

1 · n = n = n · 1 , (l ·m) · n = l · (m · n)

◮ Commutativity law

m · n = n ·m
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The additive and multiplicative structures interact nicely in that they

satisfy the

◮ Distributive laws

l · 0 = 0

l · (m+ n) = l ·m+ l · n

and make the overall structure (N, 0,+, 1, ·) into what in the mathe-

matical jargon is referred to as a commutative semiring.
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Cancellation

The additive and multiplicative structures of natural numbers further

satisfy the following laws.

◮ Additive cancellation

For all natural numbers k, m, n,

k+m = k+ n =⇒ m = n .

◮ Multiplicative cancellation

For all natural numbers k, m, n,

if k 6= 0 then k ·m = k · n =⇒ m = n .

— 165 —



Definition 45 A binary operation • allows cancellation by an

element c

◮ on the left: if c • x = c • y implies x = y

◮ on the right: if x • c = y • c implies x = y

Example: The append operation on lists allows cancellation by

any list on both the left and the right.
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Inverses

Definition 46 For a monoid with a neutral element e and a binary

operation •, and element x is said to admit an

◮ inverse on the left if there exists an element ℓ such that ℓ • x = e

◮ inverse on the right if there exists an element r such that x•r = e

◮ inverse if it admits both left and right inverses

Proposition 47 For a monoid (e, •) if an element admits an inverse

then its left and right inverses are equal.

PROOF:
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Groups

Definition 49 A group is a monoid in which every element has an

inverse.

An Abelian group is a group for which the monoid is commutative.
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Inverses

Definition 50

1. A number x is said to admit an additive inverse whenever there

exists a number y such that x+ y = 0.

2. A number x is said to admit a multiplicative inverse whenever

there exists a number y such that x · y = 1.
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Extending the system of natural numbers to: (i) admit all additive

inverses and then (ii) also admit all multiplicative inverses for non-

zero numbers yields two very interesting results:

(i) the integers

Z : . . . − n , . . . , −1 , 0 , 1 , . . . , n , . . .

which then form what in the mathematical jargon is referred to

as a commutative ring, and

(ii) the rationals Q which then form what in the mathematical jargon

is referred to as a field.
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Rings

Definition 51 A ring is a semiring (0,⊕, 1,⊗) in which the commu-

tative monoid (0,⊕) is a group.

A ring is commutative if so is the monoid (1,⊗).

Fields

Definition 52 A field is a commutative ring in which every element

besides 0 has a reciprocal (that is, and inverse with respect to ⊗).
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The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and

positive natural number n, there exists a unique pair of integers q

and r such that q ≥ 0, 0 ≤ r < n, and m = q · n + r.
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The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and

positive natural number n, there exists a unique pair of integers q

and r such that q ≥ 0, 0 ≤ r < n, and m = q · n + r.

Definition 54 The natural numbers q and r associated to a given

pair of a natural number m and a positive integer n determined by

the Division Theorem are respectively denoted quo(m,n) and

rem(m,n).
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The Division Algorithm in ML:

fun divalg( m , n )

= let

fun diviter( q , r )

= if r < n then ( q , r )

else diviter( q+1 , r-n )

in

diviter( 0 , m )

end

fun quo( m , n ) = #1( divalg( m , n ) )

fun rem( m , n ) = #2( divalg( m , n ) )
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Theorem 56 For every natural number m and positive natural

number n, the evaluation of divalg(m,n) terminates, outputing a

pair of natural numbers (q0, r0) such that r0 < n and m = q0 ·n+ r0.

PROOF:
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Proposition 57 Let m be a positive integer. For all natural

numbers k and l,

k ≡ l (mod m) ⇐⇒ rem(k,m) = rem(l,m) .

PROOF:
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Corollary 58 Let m be a positive integer.

1. For every natural number n,

n ≡ rem(n,m) (mod m) .

2. For every integer k there exists a unique integer [k]m such that

0 ≤ [k]m < m and k ≡ [k]m (mod m) .

PROOF:
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