Semirings

Definition 44 A semiring (or rig) is an algebraic structure with
» acommutative monoid structure, say (0, ®),
» a monoid structure, say (1, ®),
satifying the distributivity laws:
P 0Rx=0=x®0
> x®(Yydz)=(x0y)d x®z), ([ydz)@x=(Yy®x)® (z®x)

A semiring is commutative whenever  is.
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The additive structure (N, 0, +) of natural numbers with zero and
addition satisfies the following:

» Monoid laws

O+4n=n=n+0, (l+mM)+n=14+(m+n)

» Commutativity law

m+-n=n-+m

and as such is what in the mathematical jargon is referred to as
a commutative monoid.
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Also the multiplicative structure (N, 1, -) of natural numbers with one
and multiplication is a commutative monoid:

» Monoid laws

Il'n=n=n-1, (I-m)-n=1-(m-n)

» Commutativity law

m-nm=n-m
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The additive and multiplicative structures interact nicely in that they
satisfy the

» Distributive laws
l1-0
l-(m+n) = 1l-m+1l-n

|
o

and make the overall structure (N, 0, -+, 1, -) into what in the mathe-
matical jargon is referred to as a commutative semiring.
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Cancellation

The additive and multiplicative structures of natural numbers further
satisfy the following laws.
» Additive cancellation

For all natural numbers k, m, n,
K+fm=k+n = m=n

» Multiplicative cancellation

For all natural numbers k, m, n,
fk#A0thenk-m=k-n = m=n
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Definition 45 A binary operation e allows cancellation by an
element c

» ontheleft: ifcex =cey impliesx =y

» ontheright: ifxec=yecimpliesx =y

Example: The append operation on lists allows cancellation by
any list on both the left and the right.
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Inverses

Definition 46 For a monoid with a neutral element e and a binary
operation e, and element x is said to admit an

» inverse on the left if there exists an element { such thatlex = e
» inverse on the right if there exists an elementr such that xer = e

» inverse If it admits both left and right inverses

Proposition 47 For a monoid (e, o) if an element admits an inverse
then its left and right inverses are equal.

ot 1 be s et Wi Aft v L
wed r[?k‘b‘ e Iged F-Tlflétia, Lox=e=z T,

/er, = e.l = C@ T/}f‘::jc['l' B‘—‘- ﬁ-e =L
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Groups

Definition 49 A group /s a monoid in which every element has an
Inverse.

An Abelian group is a group for which the monoid is commutative.
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Inverses

Definition 50

1. A number x is said to admit an additive inverse whenever there
exists a numbery such that x +y = 0.

2. A number x Is said to admit a multiplicative inverse whenever
there exists a numbery such thatx -y = 1.
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Extending the system of natural numbers to: (i) admit all additive
iInverses and then (ii) also admit all multiplicative inverses for non-
zero numbers yields two very interesting results:

(1) the integers

Zi . ...—my ..., —1,0, 1, ..., n, ...

which then form what in the mathematical jargon is referred to
as a commutative ring, and

(il) the rationals Q@ which then form what in the mathematical jargon
Is referred to as a field.
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Rings

Definition 51 Aring is a semiring (0, ®, 1, ®) in which the commu-
tative monoid (0, &) is a group.

A ring is commutative if so is the monoid (1, ®).

Fields

Definition 52 A field is a commutative ring in which every element
besides 0 has a reciprocal (that is, and inverse with respect to & ).
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The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers q
andr suchthatq >0,0<r<n,andm=q-n+r.
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The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and

positive natural number n, there exists a unique pair of integers q
e ———C

andr suchthatq >0,0<r<n,andm=q-n+r.

Definition 54 The natural numbers q and r associated to a given
pair of a natural number m and a positive integer n determined by
the Division Theorem are respectively denoted quo(m,n) and
rem(m,n).

MR e guo(mn): ok 22 (i)
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W
The Division Algorithm in ML: 0%9(3 (. )

I
fun divalg( m , n ) aL;\rVTlFCO,m}
= let
fun diviter( q , T ) J:N—-l%(q,rB

= if r < n then (q, r )

else diviter( gq+1 , r-n ) W<YL/\W>/VL

iIldiviter( O, m) a—t’%rib(%'r) Mﬁrﬁ,ﬁ'}

end

fun quo( m , n ) #1( divalg(m , n ) )

fun rem( m , n ) #2( divalg(m , n ) )
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Theorem 56 For every natural number m and positive natural
number n, the evaluation of divalg(m,n) terminates, outputing a
pair of natural numbers (qo, 1) such thatro < n andm = qo-n+ry.
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Proposition 57 Let m be a positive integer. For all natural
numbers k and 1,

k=1 (mod m) < rem(k,m) = rem(l, m)

PROOF:
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Corollary 58 Let m be a positive integer.
1. For every natural number n,

n =rem(n,m) (modm) .

2.) For every integer k there exists a unique integer [kl., such that

0<[klp,<m and k= k|, (modm) .




