
Fermat ′s Little Theorem

The Many Dropout Lemma (Proposition 35) gives the first part of the

following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i

and primes p,

1. ip ≡ i (mod p), and

2. ip−1 ≡ 1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat’s Little Theorem implies the

second one will be proved later on .
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Every natural number i not a multiple of a

prime number p has a reciprocal modulo p,

namely ip−2, as i · (ip−2) ≡ 1 (mod p).
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Btw

1. Fermat’s Little Theorem has applications to:

(a) primality testinga,

(b) the verification of floating-point algorithms, and

(c) cryptographic security.

aFor instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that im 6≡ i (mod m).
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Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

¬P
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A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent

form and use instead this other statement.

Logical equivalences

¬
�

P =⇒ Q
�

⇐⇒ P ∧ ¬Q

¬
�

P ⇐⇒ Q
�

⇐⇒ P ⇐⇒ ¬Q

¬
�

∀x. P(x)
�

⇐⇒ ∃x.¬P(x)
¬
�

P ∧ Q
�

⇐⇒ (¬P) ∨ (¬Q)

¬
�

∃x. P(x)
�

⇐⇒ ∀x.¬P(x)
¬
�

P ∨ Q
�

⇐⇒ (¬P) ∧ (¬Q)

¬
�

¬P
�

⇐⇒ P

¬P ⇐⇒ (P ⇒ false)
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Theorem 37 For all statements P and Q,

(P =⇒ Q) =⇒ (¬Q =⇒ ¬P) .

PROOF:
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Proof by contradiction

Amongst the equivalences for negation, we have postulated the

somewhat controversial:

¬¬P ⇐⇒ P

which is classically accepted.

In this light,

to prove P

one may equivalently

prove ¬P =⇒ false ;

that is,

assuming ¬P leads to contradiction .

This technique is known as proof by contradiction.
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The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent

statement ¬P =⇒ false

Proof pattern:

In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.

2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.
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Scratch work:

Before using the strategy

Assumptions Goal

P
...

After using the strategy

Assumptions Goal

contradiction
...

¬P
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Theorem 39 For all statements P and Q,

(¬Q =⇒ ¬P) =⇒ (P =⇒ Q) .

PROOF:
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Proof by contrapositive

Corollary 40 For all statements P and Q,

(P =⇒ Q) ⇐⇒ (¬Q =⇒ ¬P) .

Btw Using the above equivalence to prove an implication is

known as proof by contrapositive.

Corollary 41 For every positive irrational number x, the real

number
√
x is irrational.
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Lemma 42 A positive real number x is rational iff

∃positive integers m,n :

x = m/n ∧ ¬
�

∃prime p : p | m ∧ p | n
� (†)

PROOF:
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Numbers
Objectives

◮ Get an appreciation for the abstract notion of number system,

considering four examples: natural numbers, integers,

rationals, and modular integers.

◮ Prove the correctness of three basic algorithms in the theory of

numbers: the division algorithm, Euclid’s algorithm, and the

Extended Euclid’s algorithm.

◮ Exemplify the use of the mathematical theory surrounding

Euclid’s Theorem and Fermat’s Little Theorem in the context of

public-key cryptography.

◮ To understand and be able to proficiently use the Principle of

Mathematical Induction in its various forms.— 155 —



Natural numbers

In the beginning there were the natural numbers

N : 0 , 1 , . . . , n , n+ 1 , . . .

generated from zero by successive increment; that is, put in ML:

datatype

N = zero | succ of N
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The basic operations of this number system are:

◮ Addition
mz }| {∗ · · · ∗

nz }| {∗ · · · · · · ∗| {z }
m+n

◮ Multiplication

m

�
nz }| {∗ · · · · · · · · · · · · ∗

... m · n ...

∗ · · · · · · · · · · · · ∗

— 157 —



The additive structure (N, 0,+) of natural numbers with zero and

addition satisfies the following:

◮ Monoid laws

0+ n = n = n+ 0 , (l+m) + n = l+ (m+ n)

◮ Commutativity law

m+ n = n+m

and as such is what in the mathematical jargon is referred to as

a commutative monoid.
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Commutative monoid laws

◮ Neutral element laws
0z}|{ nz }| {∗ · · · · · · ∗ =

nz }| {∗ · · · · · · ∗ =

nz }| {∗ · · · · · · ∗
0z}|{

◮ Associativity law

ℓ+mz }| {∗ · · · ∗∗ · · · · · · ∗
nz }| {∗ · · · · · · · · · ∗ =

ℓz }| {∗ · · · ∗
m+nz }| {∗ · · · · · · ∗∗ · · · · · · · · · ∗

◮ Commutativity law

mz }| {∗ · · · ∗
nz }| {∗ · · · · · · ∗ =

nz }| {∗ · · · · · · ∗
mz }| {∗ · · · ∗
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Monoids

Definition 43 A monoid is an algebraic structure with

◮ a neutral element, say e,

◮ a binary operation, say •,

satisfying

◮ neutral element laws: e • x = x = x • e

◮ associativity law: (x • y) • z = x • (y • z)
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Monoids

Definition 43 A monoid is an algebraic structure with

◮ a neutral element, say e,

◮ a binary operation, say •,

satisfying

◮ neutral element laws: e • x = x = x • e

◮ associativity law: (x • y) • z = x • (y • z)

A monoid is commutative if:

◮ commutativity: x • y = y • x

is satisfied.
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Also the multiplicative structure (N, 1, ·) of natural numbers with one

and multiplication is a commutative monoid:

◮ Monoid laws

1 · n = n = n · 1 , (l ·m) · n = l · (m · n)

◮ Commutativity law

m · n = n ·m
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The additive and multiplicative structures interact nicely in that they

satisfy the

◮ Distributive laws

l · 0 = 0

l · (m+ n) = l ·m+ l · n

and make the overall structure (N, 0,+, 1, ·) into what in the mathe-

matical jargon is referred to as a commutative semiring.
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