

Fermat's Little Theorem

The Many Dropout Lemma (Proposition 35) gives the first part of the following very important theorem as a corollary.

Theorem 36 (Fermat's Little Theorem) *For all natural numbers i and primes p ,*

1. $i^p \equiv i \pmod{p}$, and
2. $i^{p-1} \equiv 1 \pmod{p}$ whenever i is not a multiple of p .

$$i \not\equiv 0 \pmod{p}$$

The fact that the first part of Fermat's Little Theorem implies the second one will be proved later on .

Every natural number i not a multiple of a prime number p has a *reciprocal* modulo p , namely i^{p-2} , as $i \cdot (i^{p-2}) \equiv 1 \pmod{p}$.

Btw

1. Fermat's Little Theorem has applications to:
 - (a) primality testing^a,
 - (b) the verification of floating-point algorithms, and
 - (c) cryptographic security.

^aFor instance, to establish that a positive integer m is not prime one may proceed to find an integer i such that $i^m \not\equiv i \pmod{m}$.

Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

$\neg P$

A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an *equivalent* form and use instead this other statement.

Logical equivalences

$$\begin{array}{ccl} \neg(P \Rightarrow Q) & \iff & P \wedge \neg Q \\ \neg(P \Leftrightarrow Q) & \iff & P \Leftrightarrow \neg Q \\ \neg(\forall x. P(x)) & \iff & \exists x. \neg P(x) \\ \neg(P \wedge Q) & \iff & (\neg P) \vee (\neg Q) \\ \neg(\exists x. P(x)) & \iff & \forall x. \neg P(x) \\ \neg(P \vee Q) & \iff & (\neg P) \wedge (\neg Q) \\ \neg(\neg P) & \iff & P \\ \neg P & \iff & (P \Rightarrow \text{false}) \end{array}$$

Theorem 37 For all statements P and Q ,

$$(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P) .$$

PROOF: Assume P, Q statements.

Assume: $\textcircled{1} P \Rightarrow Q$

Assume: $\neg Q \Leftrightarrow (\textcircled{2} Q \Rightarrow \text{false})$

From $\textcircled{1}$ and $\textcircled{2}$, we have $(P \Rightarrow \text{false}) \Leftrightarrow \neg P$.
as required.

Proof by contradiction

Amongst the equivalences for negation, we have postulated the somewhat controversial:

$$\neg\neg P \iff P$$

which is *classically* accepted.

In this light,

one may equivalently

prove $\neg P \implies \text{false}$;

that is,

assuming $\neg P$ leads to contradiction .

to prove P or equivalently $\neg\neg P$
 $(\neg P \implies \text{false})$

This technique is known as *proof by contradiction*.

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent statement $\neg P \implies \text{false}$

Proof pattern:

In order to prove

P

1. **Write:** We use proof by contradiction. So, suppose P is false.
2. **Deduce a logical contradiction.**
3. **Write:** This is a contradiction. Therefore, P must be true.

Scratch work:

Before using the strategy

Assumptions

Goal

P

:

After using the strategy

Assumptions

Goal

contradiction

:

$\neg P$

Theorem 39 For all statements P and Q ,

$$(\neg Q \Rightarrow \neg P) \Rightarrow (P \Rightarrow Q) .$$

PROOF: Let P, Q be statements.

Assume: $\neg Q \Rightarrow \neg P$ ①

Assume: P ②

RTP: Q .

By contradiction, assume $\neg Q$ ③

Then from ① and ③, we have $\neg P \Leftrightarrow (P \Rightarrow \text{false})$ ④

Therefore, from ② and ④ we have a contradiction.

So, by proof by contradiction, we have Q as required ☒

Proof by contrapositive

Corollary 40 For all statements P and Q ,

$$(P \Rightarrow Q) \Leftrightarrow (\neg Q \Rightarrow \neg P) .$$

Btw Using the above equivalence to prove an implication is known as *proof by contrapositive*.

Corollary 41 For every positive irrational number x , the real number \sqrt{x} is irrational.

$$(\text{x irrational} \Rightarrow \sqrt{x} \text{ irrational}) \Leftrightarrow (\sqrt{x} \text{ rational} \Rightarrow x \text{ rational})$$

Lemma 42 A positive real number x is rational iff

\exists positive integers m, n :

$$x = m/n \wedge \neg(\exists \text{ prime } p : p \mid m \wedge p \mid n)$$

(†)

PROOF: Let x be a pos. real number:

(\Rightarrow) (†) $\Rightarrow x$ rational ✓

(\Leftarrow) Assume: x rational; That is, $\textcircled{1} x = a/b$ for some pos. int. a and b .

RTP : (†)

By contradiction, assume \neg (†)

Equivalently,

$$\neg (\exists \text{pos. int. } m, n. \ x = m/n \wedge \neg (\exists \text{prime p. } p \mid m \wedge p \mid n))$$

$$\Leftrightarrow \forall \text{pos. int. } m, n. \ \neg (x = m/n \wedge \neg (\exists \text{prime p. } p \mid m \wedge p \mid n))$$

$$\Leftrightarrow \forall \text{pos. int. } m, n. \ \neg (x = m/n) \vee (\exists \text{prime p. } p \mid m \wedge p \mid n)$$

$$\Leftrightarrow \forall \text{pos. int. } m, n. \ x = m/n \Rightarrow \exists \text{ prime p. } p \mid m \wedge p \mid n$$

By ①, $x = a/b$ for pos. int. a, b .

and together with ② we have $\exists \text{ prime. } p \mid a \wedge p \mid b$.

$a = p_0 \cdot a_0$ and $b = p_0 \cdot b_0$ for pos. int. a_0 and b_0 .

Then, $x = a_0/b_0$ and together with ② we have

$\exists \text{ prime p. } p \mid a_0 \wedge p \mid b_0$.

$$P \Rightarrow Q \Leftrightarrow \neg P \vee Q$$

So $a_0 = p_1 \cdot a_1$, $b_0 = p_1 \cdot b_1$ for pos. int. a_1 and b_1

Note $a = p_0 \cdot a_0 = p_0 \cdot p_1 \cdot a_1$ and $b = p_0 \cdot b_0 = p_0 \cdot p_1 \cdot b_1$

Also $z = a/b_1$ so by ② \exists prime p_2 . $p_2 | a_1 \wedge p_2 | b_1$.

That is $a_1 = p_2 \cdot a_2 \wedge b_1 = p_2 \cdot b_2$ for pos. int a_2, b_2 .

Note $a = p_0 \cdot p_1 \cdot p_2 \cdot a_2$ and $b = p_0 \cdot p_1 \cdot p_2 \cdot b_2$.

Iterating the argument, we have

$a = p_0 \cdot p_1 \cdot p_2 \cdots \cdot p_l \cdot a_l$ for primes p_i and
a pos. int. a_l .

for an l as large as desired.

In particular $a \geq 2^a$ taking $l = a$ which is absurd

Numbers

Objectives

- ▶ Get an appreciation for the abstract notion of number system, considering four examples: natural numbers, integers, rationals, and modular integers.
- ▶ Prove the correctness of three basic algorithms in the theory of numbers: the division algorithm, Euclid's algorithm, and the Extended Euclid's algorithm.
- ▶ Exemplify the use of the mathematical theory surrounding Euclid's Theorem and Fermat's Little Theorem in the context of public-key cryptography.
- ▶ To understand and be able to proficiently use the Principle of Mathematical Induction in its various forms.

Natural numbers

In the beginning there were the natural numbers

$$\mathbb{N} : 0, 1, \dots, n, n+1, \dots$$

generated from *zero* by successive increment; that is, put in ML:

datatype

```
N = zero | succ of N
```

The basic operations of this number system are:

► Addition

$$\begin{array}{c} m \qquad n \\ \overbrace{* \dots * \qquad \qquad \qquad * \dots \dots \dots *} \\ m+n \end{array}$$

► Multiplication

$$m \left\{ \begin{array}{c} n \\ \overbrace{* \dots \dots \dots \dots \dots *} \\ m \cdot n \\ \vdots \qquad \qquad \qquad \vdots \\ * \dots \dots \dots \dots \dots * \end{array} \right.$$

We can unambiguously write

$$a_1 + a_2 + \cdots + a_e$$

The additive structure $(\mathbb{N}, 0, +)$ of natural numbers with zero and addition satisfies the following:

- Monoid laws

$$0 + n = n = n + 0 , \quad (l + m) + n = l + (m + n)$$

- Commutativity law

$$m + n = n + m$$

and as such is what in the mathematical jargon is referred to as a commutative monoid.

Commutative monoid laws

- Neutral element laws

$$\underbrace{0}_{\text{---}} * \underbrace{\dots}_{n} = \underbrace{\dots}_{n} = \underbrace{\dots}_{n} * \underbrace{0}_{\text{---}}$$

- Associativity law

$$\underbrace{* \dots *}_{\ell+m} \underbrace{* \dots *}_{n} = \underbrace{* \dots *}_{\ell} \underbrace{* \dots *}_{m+n}$$

- Commutativity law

$$\underbrace{* \dots *}_{m} \underbrace{* \dots *}_{n} = \underbrace{* \dots *}_{n} \underbrace{* \dots *}_{m}$$

Monoids

Definition 43 A monoid is an algebraic structure with

- ▶ a neutral element, say e ,
- ▶ a binary operation, say \bullet ,

satisfying

- ▶ neutral element laws: $e \bullet x = x = x \bullet e$
- ▶ associativity law: $(x \bullet y) \bullet z = x \bullet (y \bullet z) \rightsquigarrow x_1 \bullet \dots \bullet x_l$

Monoids

Definition 43 A monoid is an algebraic structure with

- ▶ a neutral element, say e ,
- ▶ a binary operation, say \bullet ,

satisfying

- ▶ neutral element laws: $e \bullet x = x = x \bullet e$
- ▶ associativity law: $(x \bullet y) \bullet z = x \bullet (y \bullet z)$

A monoid is commutative if:

- ▶ commutativity: $x \bullet y = y \bullet x$

is satisfied.

Example:

α lists

$e = \text{nil}$

$\bullet = \text{c}$

satisfied
for $\alpha = \text{unit}$

Also the *multiplicative structure* $(\mathbb{N}, 1, \cdot)$ of natural numbers with one and multiplication is a commutative monoid:

- Monoid laws

$$1 \cdot n = n = n \cdot 1 \quad , \quad (l \cdot m) \cdot n = l \cdot (m \cdot n)$$

- Commutativity law

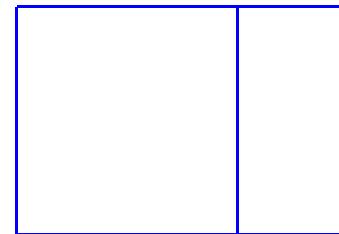
$$m \cdot n = n \cdot m$$

The additive and multiplicative structures interact nicely in that they satisfy the

- Distributive laws

$$l \cdot 0 = 0$$

$$l \cdot (m + n) = l \cdot m + l \cdot n$$



and make the overall structure $(\mathbb{N}, 0, +, 1, \cdot)$ into what in the mathematical jargon is referred to as a *commutative semiring*.