Fermat’s Little Theorem

The Many Dropout Lemma (Proposition 35) gives the first part of the
following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i

and primes p,
1. i* =i (mod p), and ”¢OWP)
2. i*71 =1 (mod p) whenever i is not a multiple of p.

-

The fact that the first part of Fermat's Little Theorem implies the
second one will be proved later on .
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Every natural number i not a multiple of a
prime number p has a reciprocal modulo p,

namely iP7%, as i- (iP) = 1 (mod p).
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Btw

1. Fermat’s Little Theorem has applications to:
(a) primality testing?,
(b) the verification of floating-point algorithms, and

(c) cryptographic security.

“For instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that i™ # i (mod m).
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Negation

Negations are statements of the form

or, in other words,

or

or

or, in symbols,

not P

P is not the case

P is absurd

P leads to contradiction
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A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent
form and use instead this other statement.

Logical equivalences

-(P=Q) < PA-Q
(P<:>Q) — P&=-Q
-(Vx.P(x)) <=  Ix.—P(x)
(P/\Q) — (7P) V (—Q)
-(Ix.P(x)) &  Vx.—P(x)
-(PV Q) < (-P)A(—Q)
-(-P) & P
—P &= (P = false)
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Theorem 37 For all statements P and Q,

(P = Q) = [7Q = —P) .

PROOF: %{wm «P, d %MW-LJ
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Proof by contradiction

Amongst the equivalences for negation, we have postulated the
somewhat controversial:

——P & P
which is classically accepted.

In this light, D
to prove P 0V %v&u% 17

one may equivalently
prove —P — false; C‘Pﬂ >
that is,

assuming — P leads to contradiction.

This technique is known as proof by contradiction.
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The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent
statement =P — false

Proof pattern:
In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.
2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.

— 140-a —



Scratch work:

Before using the strategy
Assumptions Goal

After using the strategy
Assumptions Goal

contradiction
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Theorem 39 For all statements P and Q,

Q = P) = (P = Q) .

PROOF: M P/‘Q ot fwm

ﬁvm@&,i/@,wc %rcc@"lPQ=> (P%W)
/deyglqﬂnm@ &-4@ we hert a w“ﬁ\%%d’«-

gU,La Mbaw\_kao{:oﬁm«, ne heve O o P@Jr@(@

— 143 —



Proof by contrapositive

Corollary 40 For all statements P and Q,

(P = Q) & (/Q = —P)

Btw Using the above equivalence to prove an implication is
Known as proof by contrapositive.

Corollary 41 For every positive irrational number x, the real
number +/x is irrational.

@ TWB—KWA/( = Jz wrolh 5»»)0(:37 Q}f alhnal 2 1 @MB
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Lemma 42 A positive real number x is rational iff

1 positive integers m,n :
x=m/n A =(3primep: plm A pln)

Proor: et 2 bt @ fo reel nuwhe
(=) (+)= erstiadl v .
(&) Actume 7 w‘*wx(/; et i) 2= 4, fbr s0t
wE aamd b
@TP: (#)

#

‘59 mqtfedzcoshé‘«, Al duhd _7@')
Egr;\/aiwl’ I@’
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Numbers
Objectives

Get an appreciation for the abstract notion of number system,
considering four examples: natural numbers, integers,
rationals, and modular integers.

Prove the correctness of three basic algorithms in the theory of
numbers: the division algorithm, Euclid’s algorithm, and the
Extended Euclid’s algorithm.

Exemplify the use of the mathematical theory surrounding
Euclid’s Theorem and Fermat’s Little Theorem in the context of
public-key cryptography.

To understand and be able to proficiently use the Principle of
Mathematical Induction in_its yarious forms.



Natural numbers

In the beginning there were the natural numbers

N : 0, T, ..., n, n+1l,
generated from zero by successive increment; that is, put in ML.:

datatype

N = zero | succ of N
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The basic operations of this number system are:

» Addition
m n
/_/\r -\ N\
ik e o o >|< >|< ...... >5
m:n
» Multiplication
n
. "
m m-n
* ............ >|<
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e Com wwb&fm@&a wile

Oy +8ot ---+ dp

The additive structure (N, 0, +) of natural numbers with zero and
addition satisfies the following:

» Monoid laws 2
O+4n=n=n+0, (l+mM)+n=14+(m+n)

» Commutativity law

m+-n=n-+m

and as such is what in the mathematical jargon is referred to as
a commutative monoid.
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Commutative monoid laws

» Neutral element laws

0 n n n 0
/'/\r -\ ~ 7 -\ ~N 7 -\ \/'/\
...... * — * e o o o o o * — * e o o o o o
» Associativity law
{4+m n ¢ m+n
7N N\ /7~ % ~ N -\

' 7
koo o kK e e e 00 KK ooo o0 000 Sk = ke e kKoo KK o o0 00000
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Monoids

Definition 43 A monoid /s an algebraic structure with
» a neutral element, say e,
» a binary operation, say e,

satisfying
» neutral elementlaws: eex =x=xee¢

» associativity law: (xey)ez=xe (yez) ~— L= "~ Ll

— 160-b —



Monoids

Definition 43 A monoid /s an algebraic structure with

» a neutral element, say e,

» abinary operation, say e, o m& :

satisfying L Lals
E= h/u-(,
» neutral elementlaws: eex =x=xeoe¢
o — 8
» associativity law: (xey)ez=xe (y e z)
A monoid is commutative if: T
sylﬂéﬁd
» commutativity: xey =yex AN ,/le ol= UM

IS satisfied.
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Also the multiplicative structure (N, 1, -) of natural numbers with one
and multiplication is a commutative monoid:

» Monoid laws

Il'n=n=n-1, (I-m)-n=1-(m-n)

» Commutativity law

m-nm=n-m
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The additive and multiplicative structures interact nicely in that they
satisfy the

» Distributive laws
l1-0
l-(m+n) = 1l-m+1l-n

|
o

and make the overall structure (N, 0, -+, 1, -) into what in the mathe-
matical jargon is referred to as a commutative semiring.
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