
Unique existence

The notation

∃! x. P(x)

stands for

the unique existence of an x for which the property P(x) holds .

That is,

∃x. P(x) ∧
�

∀y.∀z.
�

P(y) ∧ P(z)
�

=⇒ y = z
�

— 100 —

Example: The congruence property modulo m uniquely charac-

terises the natural numbers from 0 to m− 1.

Proposition 24 Let m be a positive integer and let n be an integer.

Define

P(z) = [0 ≤ z < m ∧ z ≡ n (mod m)] .

Then

∀ x, y. P(x) ∧ P(y) =⇒ x = y .

PROOF:

— 101 —

A proof strategy

To prove

∀ x.∃!y. P(x, y) ,

for an arbitrary x construct the unique witness and name it,

say as f(x), showing that

P
�

x, f(x)
�

and

∀y. P(x, y) =⇒ y = f(x)

hold.

— 102 —

Disjunctions

◮ How to prove them as goals.

◮ How to use them as assumptions.

— 103 —

Disjunction

Disjunctive statements are of the form

P or Q

or, in other words,

either P, Q, or both hold

or, in symbols,

P ∨ Q

— 104 —

The main proof strategy for disjunction:

To prove a goal of the form

P ∨ Q

you may

1. try to prove P (if you succeed, then you are done); or

2. try to prove Q (if you succeed, then you are done);

otherwise

3. break your proof into cases; proving, in each case,

either P or Q.

— 105 —

Proposition 25 For all integers n, either n2 ≡ 0 (mod 4) or

n2 ≡ 1 (mod 4).

PROOF:

— 106 —

The use of disjunction:

To use a disjunctive assumption

P1 ∨ P2

to establish a goal Q, consider the following two cases in

turn: (i) assume P1 to establish Q, and (ii) assume P2 to

establish Q.

— 112 —

Scratch work:

Before using the strategy

Assumptions Goal

Q
...

P1 ∨ P2

After using the strategy

Assumptions Goal Assumptions Goal

Q Q
...

...

P1 P2

— 113 —

Proof pattern:

In order to prove Q from some assumptions amongst which there

is

P1 ∨ P2

write: We prove the following two cases in turn: (i) that assuming

P1, we have Q; and (ii) that assuming P2, we have Q. Case (i):

Assume P1. and provide a proof of Q from it and the other as-

sumptions. Case (ii): Assume P2. and provide a proof of Q from

it and the other assumptions.

— 114 —

A little arithmetic

Lemma 27 For all positive integers p and natural numbers m, if

m = 0 or m = p then
�

p
m

�

≡ 1 (mod p).

PROOF:

— 115 —

Lemma 28 For all integers p and m, if p is prime and 0 < m < p

then
�

p
m

�

≡ 0 (mod p).

PROOF:

— 117 —

Proposition 29 For all prime numbers p and integers 0 ≤ m ≤ p,

either
�

p
m

�

≡ 0 (mod p) or
�

p
m

�

≡ 1 (mod p).

PROOF:

— 119 —

Binomial Theorem

(m+ n)p =
Pp

k=0

�

p
k

�

·mp−k · nk

— 122 —

A little more arithmetic

Corollary 33 (The Freshman’s Dream) For all natural numbers m,

n and primes p,

(m+ n)p ≡ mp + np (mod p) .

PROOF:

— 123 —

Corollary 34 (The Dropout Lemma) For all natural numbers m and

primes p,

(m+ 1)p ≡ mp + 1 (mod p) .

Proposition 35 (The Many Dropout Lemma) For all natural num-

bers m and i, and primes p,

(m+ i)p ≡ mp + i (mod p) .

PROOF:

— 126 —

Fermat ′s Little Theorem

The Many Dropout Lemma (Proposition 35) gives the first part of the

following very important theorem as a corollary.

Theorem 36 (Fermat’s Little Theorem) For all natural numbers i

and primes p,

1. ip ≡ i (mod p), and

2. ip−1 ≡ 1 (mod p) whenever i is not a multiple of p.

The fact that the first part of Fermat’s Little Theorem implies the

second one will be proved later on .

— 128 —

Every natural number i not a multiple of a

prime number p has a reciprocal modulo p,

namely ip−2, as i · (ip−2) ≡ 1 (mod p).

— 129 —

Btw

1. Fermat’s Little Theorem has applications to:

(a) primality testinga,

(b) the verification of floating-point algorithms, and

(c) cryptographic security.

aFor instance, to establish that a positive integer m is not prime one may

proceed to find an integer i such that im 6≡ i (mod m).
— 130 —

Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

¬P
— 132 —

A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an equivalent

form and use instead this other statement.

Logical equivalences

¬
�

P =⇒ Q
�

⇐⇒ P ∧ ¬Q

¬
�

P ⇐⇒ Q
�

⇐⇒ P ⇐⇒ ¬Q

¬
�

∀x. P(x)
�

⇐⇒ ∃x.¬P(x)
¬
�

P ∧ Q
�

⇐⇒ (¬P) ∨ (¬Q)

¬
�

∃x. P(x)
�

⇐⇒ ∀x.¬P(x)
¬
�

P ∨ Q
�

⇐⇒ (¬P) ∧ (¬Q)

¬
�

¬P
�

⇐⇒ P

¬P ⇐⇒ (P ⇒ false)

— 133 —

Theorem 37 For all statements P and Q,

(P =⇒ Q) =⇒ (¬Q =⇒ ¬P) .

PROOF:

— 134 —

Proof by contradiction

Amongst the equivalences for negation, we have postulated the

somewhat controversial:

¬¬P ⇐⇒ P

which is classically accepted.

— 139 —

Proof by contradiction

Amongst the equivalences for negation, we have postulated the

somewhat controversial:

¬¬P ⇐⇒ P

which is classically accepted.

In this light,

to prove P

one may equivalently

prove ¬P =⇒ false ;

that is,

assuming ¬P leads to contradiction .

This technique is known as proof by contradiction.

— 139-a —

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent

statement ¬P =⇒ false

— 140 —

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent

statement ¬P =⇒ false

Proof pattern:

In order to prove

P

1. Write: We use proof by contradiction. So, suppose

P is false.

2. Deduce a logical contradiction.

3. Write: This is a contradiction. Therefore, P must

be true.

— 140-a —

Scratch work:

Before using the strategy

Assumptions Goal

P
...

After using the strategy

Assumptions Goal

contradiction
...

¬P

— 141 —

Theorem 39 For all statements P and Q,

(¬Q =⇒ ¬P) =⇒ (P =⇒ Q) .

PROOF:

— 143 —

Proof by contrapositive

Corollary 40 For all statements P and Q,

(P =⇒ Q) ⇐⇒ (¬Q =⇒ ¬P) .

Btw Using the above equivalence to prove an implication is

known as proof by contrapositive.

Corollary 41 For every positive irrational number x, the real

number
√
x is irrational.

— 145 —

Lemma 42 A positive real number x is rational iff

∃positive integers m,n :

x = m/n ∧ ¬
�

∃prime p : p | m ∧ p | n
� (†)

PROOF:

— 148 —

Numbers
Objectives

◮ Get an appreciation for the abstract notion of number system,

considering four examples: natural numbers, integers,

rationals, and modular integers.

◮ Prove the correctness of three basic algorithms in the theory of

numbers: the division algorithm, Euclid’s algorithm, and the

Extended Euclid’s algorithm.

◮ Exemplify the use of the mathematical theory surrounding

Euclid’s Theorem and Fermat’s Little Theorem in the context of

public-key cryptography.

◮ To understand and be able to proficiently use the Principle of

Mathematical Induction in its various forms.— 155 —

Natural numbers

In the beginning there were the natural numbers

N : 0 , 1 , . . . , n , n+ 1 , . . .

generated from zero by successive increment; that is, put in ML:

datatype

N = zero | succ of N

— 156 —

The basic operations of this number system are:

◮ Addition
mz }| {∗ · · · ∗

nz }| {∗ · · · · · · ∗| {z }
m+n

◮ Multiplication

m

�
nz }| {∗ · · · · · · · · · · · · ∗

... m · n ...

∗ · · · · · · · · · · · · ∗

— 157 —

The additive structure (N, 0,+) of natural numbers with zero and

addition satisfies the following:

◮ Monoid laws

0+ n = n = n+ 0 , (l+m) + n = l+ (m+ n)

◮ Commutativity law

m+ n = n+m

and as such is what in the mathematical jargon is referred to as

a commutative monoid.

— 158 —

Commutative monoid laws

◮ Neutral element laws
0z}|{ nz }| {∗ · · · · · · ∗ =

nz }| {∗ · · · · · · ∗ =

nz }| {∗ · · · · · · ∗
0z}|{

◮ Associativity law

ℓ+mz }| {∗ · · · ∗∗ · · · · · · ∗
nz }| {∗ · · · · · · · · · ∗ =

ℓz }| {∗ · · · ∗
m+nz }| {∗ · · · · · · ∗∗ · · · · · · · · · ∗

◮ Commutativity law

mz }| {∗ · · · ∗
nz }| {∗ · · · · · · ∗ =

nz }| {∗ · · · · · · ∗
mz }| {∗ · · · ∗

— 159 —

Monoids

Definition 43 A monoid is an algebraic structure

— 160 —

Monoids

Definition 43 A monoid is an algebraic structure with

◮ a neutral element, say e,

◮ a binary operation, say •,

— 160-a —

Monoids

Definition 43 A monoid is an algebraic structure with

◮ a neutral element, say e,

◮ a binary operation, say •,

satisfying

◮ neutral element laws: e • x = x = x • e

◮ associativity law: (x • y) • z = x • (y • z)

— 160-b —

Monoids

Definition 43 A monoid is an algebraic structure with

◮ a neutral element, say e,

◮ a binary operation, say •,

satisfying

◮ neutral element laws: e • x = x = x • e

◮ associativity law: (x • y) • z = x • (y • z)

A monoid is commutative if:

◮ commutativity: x • y = y • x

is satisfied.
— 160-c —

Also the multiplicative structure (N, 1, ·) of natural numbers with one

and multiplication is a commutative monoid:

◮ Monoid laws

1 · n = n = n · 1 , (l ·m) · n = l · (m · n)

◮ Commutativity law

m · n = n ·m

— 162 —

The additive and multiplicative structures interact nicely in that they

satisfy the

◮ Distributive laws

l · 0 = 0

l · (m+ n) = l ·m+ l · n

and make the overall structure (N, 0,+, 1, ·) into what in the mathe-

matical jargon is referred to as a commutative semiring.

— 163 —

Semirings

Definition 44 A semiring (or rig) is an algebraic structure

— 164 —

Semirings

Definition 44 A semiring (or rig) is an algebraic structure with

◮ a commutative monoid structure, say (0,⊕),

◮ a monoid structure, say (1,⊗),

— 164-a —

Semirings

Definition 44 A semiring (or rig) is an algebraic structure with

◮ a commutative monoid structure, say (0,⊕),

◮ a monoid structure, say (1,⊗),

satifying the distributivity laws:

◮ 0⊗ x = 0 = x⊗ 0

◮ x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z), (y⊕ z)⊗ x = (y⊗ x)⊕ (z⊗ x)

— 164-b —

Semirings

Definition 44 A semiring (or rig) is an algebraic structure with

◮ a commutative monoid structure, say (0,⊕),

◮ a monoid structure, say (1,⊗),

satifying the distributivity laws:

◮ 0⊗ x = 0 = x⊗ 0

◮ x⊗ (y⊕ z) = (x⊗ y)⊕ (x⊗ z), (y⊕ z)⊗ x = (y⊗ x)⊕ (z⊗ x)

A semiring is commutative whenever ⊗ is.

— 164-c —

Cancellation

The additive and multiplicative structures of natural numbers further

satisfy the following laws.

◮ Additive cancellation

For all natural numbers k, m, n,

k+m = k+ n =⇒ m = n .

◮ Multiplicative cancellation

For all natural numbers k, m, n,

if k 6= 0 then k ·m = k · n =⇒ m = n .

— 165 —

Definition 45 A binary operation • allows cancellation by an

element c

◮ on the left: if c • x = c • y implies x = y

◮ on the right: if x • c = y • c implies x = y

Example: The append operation on lists allows cancellation by

any list on both the left and the right.

— 166 —

Inverses

Definition 46 For a monoid with a neutral element e and a binary

operation •, and element x is said to admit an

◮ inverse on the left if there exists an element ℓ such that ℓ • x = e

◮ inverse on the right if there exists an element r such that x•r = e

◮ inverse if it admits both left and right inverses

— 167 —

Inverses

Definition 46 For a monoid with a neutral element e and a binary

operation •, and element x is said to admit an

◮ inverse on the left if there exists an element ℓ such that ℓ • x = e

◮ inverse on the right if there exists an element r such that x•r = e

◮ inverse if it admits both left and right inverses

Proposition 47 For a monoid (e, •) if an element admits an inverse

then its left and right inverses are equal.

PROOF:

— 167-a —

Groups

Definition 49 A group is a monoid in which every element has an

inverse.

An Abelian group is a group for which the monoid is commutative.

— 170 —

Inverses

Definition 50

1. A number x is said to admit an additive inverse whenever there

exists a number y such that x+ y = 0.

2. A number x is said to admit a multiplicative inverse whenever

there exists a number y such that x · y = 1.

— 171 —

Extending the system of natural numbers to: (i) admit all additive

inverses and then (ii) also admit all multiplicative inverses for non-

zero numbers yields two very interesting results:

— 172 —

Extending the system of natural numbers to: (i) admit all additive

inverses and then (ii) also admit all multiplicative inverses for non-

zero numbers yields two very interesting results:

(i) the integers

Z : . . . − n , . . . , −1 , 0 , 1 , . . . , n , . . .

which then form what in the mathematical jargon is referred to

as a commutative ring, and

(ii) the rationals Q which then form what in the mathematical jargon

is referred to as a field.

— 172-a —

Rings

Definition 51 A ring is a semiring (0,⊕, 1,⊗) in which the commu-

tative monoid (0,⊕) is a group.

A ring is commutative if so is the monoid (1,⊗).

Fields

Definition 52 A field is a commutative ring in which every element

besides 0 has a reciprocal (that is, and inverse with respect to ⊗).

— 173 —

The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and

positive natural number n, there exists a unique pair of integers q

and r such that q ≥ 0, 0 ≤ r < n, and m = q · n + r.

— 174 —

The division theorem and algorithm

Theorem 53 (Division Theorem) For every natural number m and

positive natural number n, there exists a unique pair of integers q

and r such that q ≥ 0, 0 ≤ r < n, and m = q · n + r.

Definition 54 The natural numbers q and r associated to a given

pair of a natural number m and a positive integer n determined by

the Division Theorem are respectively denoted quo(m,n) and

rem(m,n).

— 174-a —

PROOF OF Theorem 53:

— 176 —

The Division Algorithm in ML:

fun divalg(m , n)

= let

fun diviter(q , r)

= if r < n then (q , r)

else diviter(q+1 , r-n)

in

diviter(0 , m)

end

fun quo(m , n) = #1(divalg(m , n))

fun rem(m , n) = #2(divalg(m , n))

— 177 —

Theorem 56 For every natural number m and positive natural

number n, the evaluation of divalg(m,n) terminates, outputing a

pair of natural numbers (q0, r0) such that r0 < n and m = q0 ·n+ r0.

PROOF:

— 178 —

Proposition 57 Let m be a positive integer. For all natural

numbers k and l,

k ≡ l (mod m) ⇐⇒ rem(k,m) = rem(l,m) .

PROOF:

— 181 —

Corollary 58 Let m be a positive integer.

1. For every natural number n,

n ≡ rem(n,m) (mod m) .

PROOF:

— 183 —

Corollary 58 Let m be a positive integer.

1. For every natural number n,

n ≡ rem(n,m) (mod m) .

2. For every integer k there exists a unique integer [k]m such that

0 ≤ [k]m < m and k ≡ [k]m (mod m) .

PROOF:

— 183-a —

Modular arithmetic

For every positive integer m, the integers modulo m are:

Zm : 0 , 1 , . . . , m− 1 .

with arithmetic operations of addition +m and multiplication ·m
defined as follows

k+m l = [k+ l]m = rem(k+ l,m) ,

k ·m l = [k · l]m = rem(k · l,m)

for all 0 ≤ k, l < m.

— 186 —

For k and l in Zm,

k+m l and k ·m l

are the unique modular integers in Zm such that

k+m l ≡ k+ l (mod m)

k ·m l ≡ k · l (mod m)

— 187 —

Example 60 The addition and multiplication tables for Z4 are:

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

·4 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Note that the addition table has a cyclic pattern, while there is no

obvious pattern in the multiplication table.

— 188 —

From the addition and multiplication tables, we can readily read

tables for additive and multiplicative inverses:

additive
inverse

0 0

1 3

2 2

3 1

multiplicative
inverse

0 −

1 1

2 −

3 3

Interestingly, we have a non-trivial multiplicative inverse; namely, 3.

— 189 —

Example 61 The addition and multiplication tables for Z5 are:

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

·5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Again, the addition table has a cyclic pattern, while this time the

multiplication table restricted to non-zero elements has a

permutation pattern.

— 190 —

From the addition and multiplication tables, we can readily read

tables for additive and multiplicative inverses:

additive
inverse

0 0

1 4

2 3

3 2

4 1

multiplicative
inverse

0 −

1 1

2 3

3 2

4 4

Surprisingly, every non-zero element has a multiplicative inverse.

— 191 —

Proposition 62 For all natural numbers m > 1, the

modular-arithmetic structure

(Zm, 0,+m, 1, ·m)

is a commutative ring.

NB Quite surprisingly, modular-arithmetic number systems have

further mathematical structure in the form of multiplicative inverses

.

— 192 —

Proposition 63 Let m be a positive integer. A modular integer k in

Zm has a reciprocal if, and only if, there exist integers i and j such

that k · i+m · j = 1.

PROOF:

— 193 —

Integer linear combinations

Definition 64 An integer r is said to be a linear combination of a

pair of integers m and n whenever there are integers s and t such

that s ·m+ t · n = r.

Proposition 65 Let m be a positive integer. A modular integer k in

Zm has a reciprocal if, and only if, 1 is an integer linear combination

of m and k.

— 195 —

Important mathematical jargon : Sets

Very roughly, sets are the mathematicians’ data structures.

Informally, we will consider a set as a (well-defined, unordered)

collection of mathematical objects, called the elements (or

members) of the set.

— 196 —

Set membership

The symbol ‘∈’ known as the set membership predicate is central to

the theory of sets, and its purpose is to build statements of the form

x ∈ A

that are true whenever it is the case that the object x is an element

of the set A, and false otherwise.

— 198 —

Defining sets

The set

of even primes

of booleans

[−2..3]

is

{ 2 }

{ true , false }

{−2 , −1 , 0 , 1 , 2 , 3 }

— 200 —

Set comprehension

The basic idea behind set comprehension is to define a set

by means of a property that precisely characterises all the

elements of the set.

Notations:

{ x ∈ A | P(x) } , { x ∈ A : P(x) }

— 201 —

Set equality

Two sets are equal precisely when they have the same elements

Examples:

◮ { x ∈ N : 2 | x ∧ x is prime } = { 2 }

◮ For a positive integer m,

{ x ∈ Z : m | x } = { x ∈ Z : x ≡ 0 (mod m) }

◮ {d ∈ N : d | 0 } = N

— 203 —

Equivalent predicates specify equal sets:

{ x ∈ A | P(x) } = { x ∈ A | Q(x) }

iff

∀ x ∈ A. P(x) ⇐⇒ Q(x)

— 204 —

Equivalent predicates specify equal sets:

{ x ∈ A | P(x) } = { x ∈ A | Q(x) }

iff

∀ x ∈ A. P(x) ⇐⇒ Q(x)

Example: For a positive integer m,

{ x ∈ Zm | x has a reciprocal in Zm }

=

{ x ∈ Zm | 1 is an integer linear combination of m and x }

— 204-a —

Greatest common divisor

Given a natural number n, the set of its divisors is defined by set

comprehension as follows

D(n) =
�
d ∈ N : d | n

	
.

— 205 —

Greatest common divisor

Given a natural number n, the set of its divisors is defined by set

comprehension as follows

D(n) =
�
d ∈ N : d | n

	
.

Example 67

1. D(0) = N

2. D(1224) =





1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68,

72, 102, 136, 153, 204, 306, 408, 612, 1224






Remark Sets of divisors are hard to compute. However, the

computation of the greatest divisor is straightforward. :)

— 205-a —

Going a step further, what about the common divisors of pairs of

natural numbers? That is, the set

CD(m,n) =
�
d ∈ N : d | m ∧ d | n

	

for m,n ∈ N.

— 206 —

Going a step further, what about the common divisors of pairs of

natural numbers? That is, the set

CD(m,n) =
�
d ∈ N : d | m ∧ d | n

	

for m,n ∈ N.

Example 68

CD(1224, 660) = { 1, 2, 3, 4, 6, 12 }

Since CD(n,n) = D(n), the computation of common divisors is as

hard as that of divisors. But, what about the computation of the

greatest common divisor?

— 206-a —

Lemma 71 (Key Lemma) Let m and m ′ be natural numbers and

let n be a positive integer such that m ≡ m ′ (mod n). Then,

CD(m,n) = CD(m ′, n) .

PROOF:

— 208 —

Lemma 73 For all positive integers m and n,

CD(m,n) =





D(n) , if n | m

CD
�

n, rem(m,n)
�

, otherwise

— 212 —

Lemma 73 For all positive integers m and n,

CD(m,n) =





D(n) , if n | m

CD
�

n, rem(m,n)
�

, otherwise

Since a positive integer n is the greatest divisor in D(n), the lemma

suggests a recursive procedure:

gcd(m,n) =





n , if n | m

gcd
�

n, rem(m,n)
�

, otherwise

for computing the greatest common divisor, of two positive integers

m and n. This is

Euclid ′s Algorithm

— 212-a —

gcd

fun gcd(m , n)

= let

val (q , r) = divalg(m , n)

in

if r = 0 then n

else gcd(n , r)

end

— 213 —

Example 74 (gcd(13, 34) = 1)

gcd(13, 34) = gcd(34, 13)

= gcd(13, 8)

= gcd(8, 5)

= gcd(5, 3)

= gcd(3, 2)

= gcd(2, 1)

= 1

NB If gcd terminates on input (m,n) with output gcd(m,n) then

CD(m,n) = D
�

gcd(m,n)
�

.

— 215 —

Proposition 75 For all natural numbers m,n and a, b,

if CD(m,n) = D(a) and CD(m,n) = D(b) then a = b.

— 216 —

Proposition 75 For all natural numbers m,n and a, b,

if CD(m,n) = D(a) and CD(m,n) = D(b) then a = b.

Proposition 76 For all natural numbers m,n and k, the

following statements are equivalent:

1. CD(m,n) = D(k).

2. ◮ k | m ∧ k | n, and

◮ for all natural numbers d, d | m ∧ d | n =⇒ d | k.

— 216-a —

Definition 77 For natural numbers m,n the unique natural number

k such that

◮ k | m ∧ k | n, and

◮ for all natural numbers d, d | m ∧ d | n =⇒ d | k.

is called the greatest common divisor of m and n, and denoted

gcd(m,n).

— 217 —

Theorem 78 Euclid’s Algorithm gcd terminates on all pairs of

positive integers and, for such m and n, the positive integer

gcd(m,n) is the greatest common divisor of m and n in the

sense that the following two properties hold:

(i) both gcd(m,n) | m and gcd(m,n) | n, and

(ii) for all positive integers d such that d | m and d | n it necessarily

follows that d | gcd(m,n).

PROOF:

— 218 —

gcd(m,n)

n|m

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

m = q · n + r

q > 0 , 0 < r < n
0<m<n

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

n gcd(n, r)

r|n

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣

n = q ′
· r + r ′

q ′ > 0 , 0 < r ′ < r

gcd(n,m)

r gcd(r, r ′)

— 220 —

Fractions in lowest terms

fun lowterms(m , n)

= let

val gcdval = gcd(m , n)

in

(m div gcdval , n div gcdval)

end

— 226 —

Some fundamental properties of gcds

Lemma 80 For all positive integers l, m, and n,

1. (Commutativity) gcd(m,n) = gcd(n,m),

2. (Associativity) gcd
�

l, gcd(m,n)
�

= gcd(gcd(l,m), n),

3. (Linearity)a gcd(l ·m, l · n) = l · gcd(m,n).

PROOF:

aAka (Distributivity).
— 227 —

Coprimality

Definition 81 Two natural numbers are said to be coprime when-

ever their greatest common divisor is 1.

Euclid ′s Theorem

Theorem 82 For positive integers k, m, and n, if k | (m · n) and

gcd(k,m) = 1 then k | n.

PROOF:

— 236 —

Corollary 83 (Euclid’s Theorem) For positive integers m and n,

and prime p, if p | (m · n) then p | m or p | n.

Now, the second part of Fermat’s Little Theorem follows as a

corollary of the first part and Euclid’s Theorem.

PROOF:

— 238 —

Fields of modular arithmetic

Corollary 85 For prime p, every non-zero element i of Zp

has [ip−2]p as multiplicative inverse. Hence, Zp is what in

the mathematical jargon is referred to as a field.

— 242 —

Extended Euclid ′s Algorithm

Example 86

gcd(34, 13) 34 = 2· 13 + 8

= gcd(13, 8) 13 = 1· 8 + 5

= gcd(8, 5) 8 = 1· 5 + 3

= gcd(5, 3) 5 = 1· 3 + 2

= gcd(3, 2) 3 = 1· 2 + 1

= gcd(2, 1) 2 = 2· 1 + 0

= 1

— 243 —

Extended Euclid ′s Algorithm

Example 86

gcd(34, 13) 34 = 2· 13 + 8 8 = 34 −2· 13

= gcd(13, 8) 13 = 1· 8 + 5 5 = 13 −1· 8

= gcd(8, 5) 8 = 1· 5 + 3 3 = 8 −1· 5

= gcd(5, 3) 5 = 1· 3 + 2 2 = 5 −1· 3

= gcd(3, 2) 3 = 1· 2 + 1 1 = 3 −1· 2

= gcd(2, 1) 2 = 2· 1 + 0

= 1

— 243-a —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= gcd(8, 5) 3 = 8 −1· 5

= gcd(5, 3) 2 = 5 −1· 3

= gcd(3, 2) 1 = 3 −1· 2

— 244 —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
z }| {
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

= gcd(5, 3) 2 = 5 −1· 3

= gcd(3, 2) 1 = 3 −1· 2

— 244-a —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
z }| {
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
z }| {
(34− 2 · 13) −1·

z }| {
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

= gcd(3, 2) 1 = 3 −1· 2

— 244-b —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
z }| {
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
z }| {
(34− 2 · 13) −1·

z }| {
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

=
z }| {
−1 · 34+ 3 · 13 −1·

z }| {
(2 · 34+ (−5) · 13)

= −3 · 34+ 8 · 13
= gcd(3, 2) 1 = 3 −1· 2

— 244-c —

gcd(34, 13) 8 = 34 −2· 13

= gcd(13, 8) 5 = 13 −1· 8

= 13 −1·
z }| {
(34− 2 · 13)

= −1 · 34+ 3 · 13
= gcd(8, 5) 3 = 8 −1· 5

=
z }| {
(34− 2 · 13) −1·

z }| {
(−1 · 34+ 3 · 13)

= 2 · 34+ (−5) · 13
= gcd(5, 3) 2 = 5 −1· 3

=
z }| {
−1 · 34+ 3 · 13 −1·

z }| {
(2 · 34+ (−5) · 13)

= −3 · 34+ 8 · 13
= gcd(3, 2) 1 = 3 −1· 2

=
z }| {
(2 · 34+ (−5) · 13) −1·

z }| {
(−3 · 34+ 8 · 13))

= 5 · 34+ (−13) · 13

— 244-d —

Integer linear combinations

Definition 64a An integer r is said to be a linear combination of a

pair of integers m and n whenever

there exist a pair of integers s and t, referred to as the

coefficients of the linear combination, such that

�

s t
�

·
�

m

n

�

= r ;

that is

s ·m+ t · n = r .

aSee page 195.
— 245 —

Theorem 87 For all positive integers m and n,

1. gcd(m,n) is a linear combination of m and n, and

2. a pair lc1(m,n), lc2(m,n) of integer coefficients for it,

i.e. such that

�

lc1(m,n) lc2(m,n)
�

·
�

m

n

�

= gcd(m,n) ,

can be efficiently computed.

— 247 —

Proposition 88 For all integers m and n,

1.
�

?1 ?2
�

·
�

m

n

�

= m ∧
�

?1 ?2
�

·
�

m

n

�

= n ;

— 248 —

Proposition 88 For all integers m and n,

1.
�

?1 ?2
�

·
�

m

n

�

= m ∧
�

?1 ?2
�

·
�

m

n

�

= n ;

2. for all integers s1, t1, r1 and s2, t2, r2,

�

s1 t1
�

·
�

m

n

�

= r1 ∧
�

s2 t2
�

·
�

m

n

�

= r2

implies

�

?1 ?2
�

·
�

m

n

�

= r1 + r2 ;

— 248-a —

Proposition 88 For all integers m and n,

1.
�

?1 ?2
�

·
�

m

n

�

= m ∧
�

?1 ?2
�

·
�

m

n

�

= n ;

2. for all integers s1, t1, r1 and s2, t2, r2,

�

s1 t1
�

·
�

m

n

�

= r1 ∧
�

s2 t2
�

·
�

m

n

�

= r2

implies

�

?1 ?2
�

·
�

m

n

�

= r1 + r2 ;

3. for all integers k and s, t, r,

�

s t
�

·
�

m

n

�

= r implies
�

?1 ?2
�

·
�

m

n

�

= k · r .

— 248-b —

We extend Euclid’s Algorithm gcd(m,n) from computing on pairs

of positive integers to computing on pairs of triples
�

(s, t), r
�

with

s, t integers and r a positive integer satisfying the invariant that

s, t are coefficientes expressing r as an integer linear combination

of m and n.

— 249 —

gcd

fun gcd(m , n)

= let

fun gcditer(r1 , c as r2)

= let

val (q,r) = divalg(r1,r2) (* r = r1-q*r2 *)

in

if r = 0

then c

else gcditer(c , r)

end

in

gcditer(m , n)

end

— 250 —

egcd

fun egcd(m , n)

= let

fun egcditer(((s1,t1),r1) , lc as ((s2,t2),r2))

= let

val (q,r) = divalg(r1,r2) (* r = r1-q*r2 *)

in

if r = 0

then lc

else egcditer(lc , ((s1-q*s2,t1-q*t2),r))

end

in

egcditer(((1,0),m) , ((0,1),n))

end

— 250-a —

fun gcd(m , n) = #2(egcd(m , n))

fun lc1(m , n) = #1(#1(egcd(m , n)))

fun lc2(m , n) = #2(#1(egcd(m , n)))

— 253 —

Multiplicative inverses in modular arithmetic

Corollary 92 For all positive integers m and n,

1. n · lc2(m,n) ≡ gcd(m,n) (mod m), and

2. whenever gcd(m,n) = 1,
�

lc2(m,n)
�

m
is the multiplicative inverse of [n]m in Zm .

— 256 —

Diffie-Hellman cryptographic method

Shared secret key

A B

— 257 —

Diffie-Hellman cryptographic method

Shared secret key

A

a

c, p
B

b

— 257-a —

Diffie-Hellman cryptographic method

Shared secret key

A

a

[ca]p = α

c, p
B

b

β = [cb]p

— 257-b —

Diffie-Hellman cryptographic method

Shared secret key

A

a

[ca]p = α

β

c, p
B

b

β = [cb]p

α

��������α

��◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗ ��������β

��♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

— 257-c —

Diffie-Hellman cryptographic method

Shared secret key

A

a

[ca]p = α

β

k = [βa]p

c, p
B

b

β = [cb]p

α

[αb]p = k

��������α

��◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗ ��������β

��♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

— 257-d —

Key exchange

Mathematical modelling:

◮ Encrypt and decrypt by means of modular exponentiation:

[ke]p [ℓd]p

◮ Encrypting-decrypting have no effect:

By Fermat’s Little Theorem,

k1+c·(p−1) ≡ k (mod p)

for every natural number c, integer k, and prime p.

◮ Consider d, e, p such that e · d = 1+ c · (p− 1); equivalently,

d · e ≡ 1 (mod p− 1) .

— 258 —

Lemma 93 Let p be a prime and e a positive integer with

gcd(p− 1, e) = 1. Define

d =
�

lc2(p− 1, e)
�

p−1
.

Then, for all integers k,

(ke)d ≡ k (mod p) .

PROOF:

— 259 —

A B

— 261 —

A

(eA, dA)

0 ≤ k < p

p
B

(eB, dB)

— 261-a —

A

(eA, dA)

0 ≤ k < p

[keA]p = m1

p
B

(eB, dB)

m1

��������m1
��

— 261-b —

A

(eA, dA)

0 ≤ k < p

[keA]p = m1

m2

p
B

(eB, dB)

m1

m2 = [m1
eB]p

��������m1
��

��������m2
��

— 261-c —

A

(eA, dA)

0 ≤ k < p

[keA]p = m1

m2

[m2
dA]p = m3

p
B

(eB, dB)

m1

m2 = [m1
eB]p

m3

��������m1
��

��������m2
��

��������m3
��

— 261-d —

A

(eA, dA)

0 ≤ k < p

[keA]p = m1

m2

[m2
dA]p = m3

p
B

(eB, dB)

m1

m2 = [m1
eB]p

m3

[m3
dB]p = k

��������m1
��

��������m2
��

��������m3
��

— 261-e —

Natural Numbers
and mathematical induction

We have mentioned in passing that the natural numbers are

generated from zero by succesive increments. This is in fact the

defining property of the set of natural numbers, and endows it with

a very important and powerful reasoning principle, that of

Mathematical Induction, for establishing universal properties of

natural numbers.

— 263 —

Principle of Induction

Let P(m) be a statement for m ranging over the set of natural

numbers N.

If

◮ the statement P(0) holds, and

◮ the statement

∀n ∈ N.
�

P(n) =⇒ P(n+ 1)
�

also holds

then

◮ the statement

∀m ∈ N. P(m)

holds.

— 264 —

Binomial Theorem

Theorem 29 For all n ∈ N,

(x+ y)n =
Pn

k=0

�

n
k

�

· xn−k · yk .

PROOF:

— 269 —

Principle of Induction
from basis ℓ

Let P(m) be a statement for m ranging over the natural

numbers greater than or equal a fixed natural number ℓ.

If

◮ P(ℓ) holds, and

◮ ∀n ≥ ℓ in N.
�

P(n) =⇒ P(n+ 1)
�

also holds

then

◮ ∀m ≥ ℓ in N. P(m) holds.

— 283 —

Principle of Strong Induction

from basis ℓ and Induction Hypothesis P(m).

Let P(m) be a statement for m ranging over the natural

numbers greater than or equal a fixed natural number ℓ.

If both

◮ P(ℓ) and

◮ ∀n ≥ ℓ in N.
�

�

∀k ∈ [ℓ..n]. P(k)
�

=⇒ P(n+ 1)
�

hold, then

◮ ∀m ≥ ℓ in N. P(m) holds.

— 287 —

Fundamental Theorem of Arithmetic

Proposition 95 Every positive integer greater than or equal 2 is a

prime or a product of primes.

PROOF:

— 289 —

Theorem 96 (Fundamental Theorem of Arithmetic) For every

positive integer n there is a unique finite ordered sequence of

primes (p1 ≤ · · · ≤ pℓ) with ℓ ∈ N such that

n =
Q

(p1, . . . , pℓ) .

PROOF:

— 293 —

Euclid ′s infinitude of primes

Theorem 99 The set of primes is infinite.

PROOF:

— 304 —

Sets

— 307 —

Objectives

To introduce the basics of the theory of sets and some of its uses.

— 309 —

Abstract sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,

�� ��

�� ��
•(1,1) •(1,2) •(1,3) •(1,4) •(1,5)

•(2,1) •(2,2) •(2,3) •(2,4) •(2,5)

may be a convenient way of picturing a certain set for some con-

siderations, but what is apparently the same set may be pictured

as

�� ��
�� ��•(1,1) •(2,1) •(1,2) •(2,2) •(1,3) •(2,3) •(1,4) •(2,4) •(1,5) •(2,5)

or even simply as

�� ��
�� ��• • • • • • • • • •

for other considerations.
— 311 —

Naive Set Theory

We are not going to be formally studying Set Theory here; rather,

we will be naively looking at ubiquituous structures that are

available within it.

— 313 —

Set membership

We write ∈ for the membership predicate; so that

x ∈ A stands for x is an element of A .

We further write

x 6∈ A for ¬(x ∈ A) .

Example: 0 ∈ { 0, 1 } and 1 6∈ { 0 } are true statements.

— 314 —

Extensionality axiom

Two sets are equal if they have the same elements.

Thus,

∀ sets A,B. A = B ⇐⇒ (∀ x. x ∈ A ⇐⇒ x ∈ B) .

Example:

{0} 6= {0, 1} = {1, 0} 6= {2} = {2, 2}

— 315 —

Proposition 100 For b, c ∈ R, let

A = { x ∈ C | x2 − 2bx+ c = 0 }

B = {b+
√
b2 − c , b−

√
b2 − c }

C = {b }

Then,

1. A = B, and

2. B = C ⇐⇒ b2 = c.

— 316 —

Subsets and supersets

— 317 —

Lemma 103

1. Reflexivity.

For all sets A, A ⊆ A.

2. Transitivity.

For all sets A, B, C, (A ⊆ B ∧ B ⊆ C) =⇒ A ⊆ C.

3. Antisymmetry.

For all sets A, B, (A ⊆ B ∧ B ⊆ A) =⇒ A = B.

— 318 —

Separation principle

For any set A and any definable property P, there is a

set containing precisely those elements of A for which

the property P holds.

{ x ∈ A | P(x) }

— 320 —

Russell ′s paradox

— 323 —

Empty set

Set theory has an

empty set ,

typically denoted

∅ or { } ,

with no elements.

— 324 —

Cardinality

The cardinality of a set specifies its size. If this is a natural number,

then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S |.

Example:

#∅ = 0

— 325 —

Finite sets

The finite sets are those with cardinality a natural number.

Example: For n ∈ N,

[n] = { x ∈ N | x < n }

is finite of cardinality n.

— 326 —

Powerset axiom

For any set, there is a set consisting of all its subsets.

P(U)

∀X. X ∈ P(U) ⇐⇒ X ⊆ U .

— 327 —

NB: The powerset construction can be iterated. In particular,

F ∈ P
�

P(U)
�

⇐⇒ F ⊆ P(U) ;

that is, F is a set of subsets of U, sometimes referred to as a family.

Example: The family E ⊆ P
�

[5]
�

consisting of the non-empty sub-

sets of [5] = { 0, 1, 2, 3, 4 } whose elements are even is

E =
�
{0} , {2} , {4} , {0, 2} , {0, 4} , {2, 4} , {0, 2, 4}

	
.

— 328 —

Hasse diagrams

— 329 —

Proposition 104 For all finite sets U,

#P(U) = 2#U .

PROOF IDEA :

— 330 —

Venn diagramsa

aFrom http://en.wikipedia.org/wiki/Intersection_(set_theory) .

— 331 —

Union Intersection

Complement

— 332 —

The powerset Boolean algebra

(P(U) , ∅ , U , ∪ , ∩ , (·)c)

For all A,B ∈ P(U),

A ∪ B = { x ∈ U | x ∈ A ∨ x ∈ B } ∈ P(U)

A ∩ B = { x ∈ U | x ∈ A ∧ x ∈ B } ∈ P(U)

Ac = { x ∈ U | ¬(x ∈ A) } ∈ P(U)

— 334 —

◮ The union operation ∪ and the intersection operation ∩ are

associative, commutative, and idempotent.

(A ∪ B) ∪ C = A ∪ (B ∪ C) , A ∪ B = B ∪A , A ∪A = A

(A ∩ B) ∩ C = A ∩ (B ∩ C) , A ∩ B = B ∩A , A ∩A = A

— 335 —

◮ The union operation ∪ and the intersection operation ∩ are

associative, commutative, and idempotent.

(A ∪ B) ∪ C = A ∪ (B ∪ C) , A ∪ B = B ∪A , A ∪A = A

(A ∩ B) ∩ C = A ∩ (B ∩ C) , A ∩ B = B ∩A , A ∩A = A

◮ The empty set ∅ is a neutral element for ∪ and the universal

set U is a neutral element for ∩.

∅ ∪A = A = U ∩A

— 335-a —

◮ The empty set ∅ is an annihilator for ∩ and the universal set U

is an annihilator for ∪.

∅ ∩A = ∅

U ∪A = U

— 336 —

◮ The empty set ∅ is an annihilator for ∩ and the universal set U

is an annihilator for ∪.

∅ ∩A = ∅

U ∪A = U

◮ With respect to each other, the union operation ∪ and the

intersection operation ∩ are distributive and absorptive.

A∩(B∪C) = (A∩B)∪(A∩C) , A∪(B∩C) = (A∪B)∩(A∪C)

A ∪ (A ∩ B) = A = A ∩ (A ∪ B)

— 336-a —

◮ The complement operation (·)c satisfies complementation laws.

A ∪Ac = U , A ∩Ac = ∅

— 337 —

Proposition 105 Let U be a set and let A,B ∈ P(U).

1. ∀X ∈ P(U). A ∪ B ⊆ X ⇐⇒
�

A ⊆ X ∧ B ⊆ X
�

.

2. ∀X ∈ P(U). X ⊆ A ∩ B ⇐⇒
�

X ⊆ A ∧ X ⊆ B
�

.

PROOF:

— 338 —

Corollary 106 Let U be a set and let A,B,C ∈ P(U).

1. C = A ∪ B

iff
�

A ⊆ C∧ B ⊆ C
�

∧
�

∀X ∈ P(U).
�

A ⊆ X ∧ B ⊆ X
�

=⇒ C ⊆ X
�

2. C = A ∩ B

iff
�

C ⊆ A∧ C ⊆ B
�

∧
�

∀X ∈ P(U).
�

X ⊆ A ∧ X ⊆ B
�

=⇒ X ⊆ C
�

— 341 —

Sets and logic

P(U)
�
false , true

	

∅ false

U true

∪ ∨

∩ ∧

(·)c ¬(·)

— 342 —

Pairing axiom

For every a and b, there is a set with a and b as its

only elements.

{a , b }

defined by

∀x. x ∈ {a, b} ⇐⇒ (x = a ∨ x = b)

NB The set {a, a} is abbreviated as {a }, and referred to as a singleton.

— 343 —

Examples:

◮ # { ∅ } = 1

◮ # { { ∅ } } = 1

◮ #{ ∅ , { ∅ } } = 2

— 345 —

Proposition 107 For all a, b, c, x, y,

1. { x, y } ⊆ {a } =⇒ x = y = a

2. { c, x } = { c, y } =⇒ x = y

PROOF:

— 346 —

Ordered pairing

Notation:

(a, b) or ha, bi

Fundamental property:

(a, b) = (x, y) =⇒ a = x ∧ b = y

— 348 —

A construction:

For every pair a and b,

ha, bi =
�
{a } , {a, b }

	

defines an ordered pairing of a and b.

— 349 —

Proposition 108 (Fundamental property of ordered pairing)

For all a, b, x, y,

ha, bi = hx, yi ⇐⇒
�

a = x ∧ b = y
�

.

PROOF:

— 350 —

Products

The product A× B of two sets A and B is the set

A× B =
�
x | ∃a ∈ A,b ∈ B. x = (a, b)

	

where

∀a1, a2 ∈ A,b1, b2 ∈ B.

(a1, b1) = (a2, b2) ⇐⇒ (a1 = a2 ∧ b1 = b2) .

Thus,

∀ x ∈ A× B.∃!a ∈ A.∃!b ∈ B. x = (a, b) .

— 352 —

Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal

components is formally

{ x ∈ A×A | ∃a1 ∈ A.∃a2 ∈ A. x = (a1, a2) ∧ a1 = a2 }

but often abbreviated using pattern-matching notation as

{ (a1, a2) ∈ A×A | a1 = a2 } .

— 354 —

Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal

components is formally

{ x ∈ A×A | ∃a1 ∈ A.∃a2 ∈ A. x = (a1, a2) ∧ a1 = a2 }

but often abbreviated using pattern-matching notation as

{ (a1, a2) ∈ A×A | a1 = a2 } .

Notation: For a property P(a, b) with a ranging over a set A and b

ranging over a set B,

{ (a, b) ∈ A× B | P(a, b) }

abbreviates

{ x ∈ A× B | ∃a ∈ A.∃b ∈ B. x = (a, b) ∧ P(a, b) } .
— 354-a —

Proposition 110 For all finite sets A and B,

(A× B) = #A ·#B .

PROOF IDEA :

— 355 —

Sets and logic

P(U)
�
false , true

	

∅ false

U true

∪ ∨

∩ ∧

(·)c ¬(·)
� ∃
� ∀

— 356 —

Big unions

Example:

◮ Consider the family of sets

T =




 T ⊆ [5]
the sum of the elements of

T is less than or equal 2






=
�
∅ , {0} , {1} , {2} , {0, 1} , {0, 2}

	

◮ The big union of the family T is the set
�

T given by the union of

the sets in T:

n ∈ �

T ⇐⇒ ∃ T ∈ T. n ∈ T .

Hence,
�

T = { 0, 1, 2 }.

— 357 —

Definition 111 Let U be a set. For a collection of sets F ∈ P(P(U)),

we let the big union (relative to U) be defined as

�

F =
�
x ∈ U | ∃A ∈ F. x ∈ A

	
∈ P(U) .

— 358 —

Proposition 112 For all F ∈ P(P(P(U))),

�
�
�

F
�

=
�

�

A ∈ P(U) A ∈ F

�
∈ P(U) .

PROOF:

— 361 —

Big intersections

Example:

◮ Consider the family of sets

S =

S ⊆ [5] the sum of the elements of S is 6

�

=
�
{ 2, 4 } , { 0, 2, 4 } , { 1, 2, 3 } , { 0, 1, 2, 3 }

	

◮ The big intersection of the family S is the set
�

S given by the

intersection of the sets in S:

n ∈ �

S ⇐⇒ ∀S ∈ S. n ∈ S .

Hence,
�

S = { 2 }.

— 364 —

Definition 113 Let U be a set. For a collection of sets F ⊆ P(U),

we let the big intersection (relative to U) be defined as

�

F =
�
x ∈ U | ∀A ∈ F. x ∈ A

	
.

— 365 —

Theorem 114 Let

F =

S ⊆ R (0 ∈ S) ∧
�

∀x ∈ R. x ∈ S =⇒ (x+ 1) ∈ S
�

�
.

Then, (i) N ∈ F and (ii) N ⊆ �

F. Hence,
�

F = N.

PROOF:

— 366 —

Proposition 115 Let U be a set and let F ⊆ P(U) be a family of

subsets of U.

1. For all S ∈ P(U),

S =
�

F

iff
�

∀A ∈ F. A ⊆ S
�

∧
�

∀X ∈ P(U). (∀A ∈ F. A ⊆ X) ⇒ S ⊆ X
�

2. For all T ∈ P(U),

T =
�

F

iff
�

∀A ∈ F. T ⊆ A
�

∧
�

∀Y ∈ P(U). (∀A ∈ F. Y ⊆ A) ⇒ Y ⊆ T
�

— 367 —

Union axiom

Every collection of sets has a union.

�

F

x ∈ �

F ⇐⇒ ∃X ∈ F. x ∈ X

— 369 —

For non-empty F we also have

�

F

defined by

∀x. x ∈ �

F ⇐⇒
�

∀X ∈ F. x ∈ X
�

.

— 370 —

Disjoint unions

Definition 116 The disjoint union A ⊎ B of two sets A and B is the

set

A ⊎ B =
�

{1}×A
�

∪
�

{2}× B
�

.

Thus,

∀ x. x ∈ (A ⊎ B) ⇐⇒
�

∃a ∈ A. x = (1, a)
�

∨
�

∃b ∈ B. x = (2, b)
�

.

— 372 —

Proposition 118 For all finite sets A and B,

A ∩ B = ∅ =⇒ # (A ∪ B) = #A+#B .

PROOF IDEA:

Corollary 119 For all finite sets A and B,

(A ⊎ B) = #A+#B .

— 374 —

Relations

Definition 121 A (binary) relation R from a set A to a set B

R : A−→p B or R ∈ Rel(A,B) ,

is

R ⊆ A× B or R ∈ P(A× B) .

Notation 122 One typically writes aRb for (a, b) ∈ R.

— 377 —

Informal examples:

◮ Computation.

◮ Typing.

◮ Program equivalence.

◮ Networks.

◮ Databases.

— 379 —

Examples:

◮ Empty relation.

∅ : A−→p B (a ∅ b ⇐⇒ false)

◮ Full relation.

(A× B) : A−→p B (a (A× B) b ⇐⇒ true)

◮ Identity (or equality) relation.

idA =
�
(a, a) | a ∈ A

	
: A−→p A (a idA a ′ ⇐⇒ a = a ′)

◮ Integer square root.

R2 =
�
(m,n) | m = n2

	
: N−→p Z (m R2 n ⇐⇒ m = n2)

— 380 —

Internal diagrams

Example:

R =
�
(0, 0), (0,−1), (0, 1), (1, 2), (1, 1), (2, 1)

	
: N−→p Z

S =
�
(1, 0), (1, 2), (2, 1), (2, 3)

	
: Z−→p Z

— 381 —

Relational extensionality

R = S : A−→p B

iff

∀a ∈ A.∀b ∈ B. aRb ⇐⇒ aSb

— 382 —

Relational composition

— 383 —

Theorem 124 Relational composition is associative and has the

identity relation as neutral element.

◮ Associativity.

For all R : A−→p B, S : B−→p C, and T : C−→p D,

(T ◦ S) ◦ R = T ◦ (S ◦ R)

◮ Neutral element.

For all R : A−→p B,

R ◦ idA = R = idB ◦ R .

— 384 —

Relations and matrices

Definition 125

1. For positive integers m and n, an (m× n)-matrix M over a

semiring
�

S, 0,⊕, 1,⊙
�

is given by entries Mi,j ∈ S for all

0 ≤ i < m and 0 ≤ j < n.

Theorem 126 Matrix multiplication is associative and has the

identity matrix as neutral element.
— 385 —

Relations from [m] to [n] and (m× n)-matrices over Booleans

provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .

— 391 —

Directed graphs

Definition 130 A directed graph (A,R) consists of a set A and a

relation R on A (i.e. a relation from A to A).

— 393 —

Corollary 132 For every set A, the structure

�

Rel(A) , idA , ◦)

is a monoid.

Definition 133 For R ∈ Rel(A) and n ∈ N, we let

R◦n = R ◦ · · · ◦ R| {z }
n times

∈ Rel(A)

be defined as idA for n = 0, and as R ◦ R◦m for n = m+ 1.

— 394 —

Paths

Proposition 135 Let (A,R) be a directed graph. For all n ∈ N and

s, t ∈ A, s R◦n t iff there exists a path of length n in R with source s

and target t.

PROOF:

— 395 —

Definition 136 For R ∈ Rel(A), let

R◦∗ =
�

�
R◦n ∈ Rel(A) | n ∈ N

	
=

�

n∈N R◦n .

Corollary 137 Let (A,R) be a directed graph. For all s, t ∈ A,

s R◦∗ t iff there exists a path with source s and target t in R.

— 397 —

The (n× n)-matrix M = mat(R) of a finite directed graph
�

[n], R
�

for n a positive integer is called its adjacency matrix .

The adjacency matrix M∗ = mat(R◦∗) can be computed by matrix

multiplication and addition as Mn where




M0 = In

Mk+1 = In +
�

M ·Mk

�

This gives an algorithm for establishing or refuting the existence of

paths in finite directed graphs.

— 398 —

Preorders

Definition 138 A preorder
�

P , ⊑
�

consists of a set P and a relation

⊑ on P (i.e. ⊑ ∈ P(P × P)) satisfying the following two axioms.

◮ Reflexivity.

∀ x ∈ P. x ⊑ x

◮ Transitivity.

∀ x, y, z ∈ P. (x ⊑ y ∧ y ⊑ z) =⇒ x ⊑ z

— 400 —

Examples:

◮ (R,≤) and (R,≥).

◮ (P(A),⊆) and (P(A),⊇).

◮ (Z , |).

— 401 —

Theorem 140 For R ⊆ A×A, let

FR =
�
Q ⊆ A×A | R ⊆ Q ∧ Q is a preorder

	
.

Then, (i) R◦∗ ∈ FR and (ii) R◦∗ ⊆ �

FR. Hence, R◦∗ =
�

FR.

PROOF:

— 402 —

Partial functions

Definition 141 A relation R : A −→p B is said to be functional, and

called a partial function, whenever it is such that

∀a ∈ A.∀b1, b2 ∈ B. aRb1 ∧ aRb2 =⇒ b1 = b2 .

— 404 —

Theorem 143 The identity relation is a partial function, and the

composition of partial functions yields a partial function.

NB

f = g : A ⇀ B

iff

∀a ∈ A.
�

f(a)↓ ⇐⇒ g(a)↓
�

∧ f(a) = g(a)

— 408 —

Example: The following are examples of partial functions.

◮ rational division ÷ : Q×Q ⇀ Q, with domain of definition�
(r, s) ∈ Q×Q | s 6= 0

	
;

◮ integer square root
√
− : Z ⇀ Z, with domain of definition�

m ∈ Z | ∃n ∈ Z.m = n2
	

;

◮ real square root
√
− : R ⇀ R, whose domain of definition is�

x ∈ R | x ≥ 0
	

.

— 411 —

Proposition 144 For all finite sets A and B,

(A⇀⇀B) = (#B+ 1)#A .

PROOF IDEA :

— 413 —

Functions (or maps)

Definition 145 A partial function is said to be total, and referred

to as a (total) function or map, whenever its domain of definition

coincides with its source.

Theorem 146 For all f ∈ Rel(A,B),

f ∈ (A ⇒ B) ⇐⇒ ∀a ∈ A.∃!b ∈ B. a f b .
— 414 —

Proposition 147 For all finite sets A and B,

(A ⇒ B) = #B#A .

PROOF IDEA :

— 416 —

Theorem 148 The identity partial function is a function, and the

composition of functions yields a function.

NB

1. f = g : A → B iff ∀a ∈ A. f(a) = g(a).

2. For all sets A, the identity function idA : A → A is given by the

rule

idA(a) = a

and, for all functions f : A → B and g : B → C, the composition

function g ◦ f : A → C is given by the rule
�

g ◦ f
�

(a) = g
�

f(a)
�

.

— 418 —

Inductive definitions

Examples:

◮ add : N2 → N



add(m,0) = m

add(m,n + 1) = add(m,n) + 1

◮ S : N → N 



S(0) = 0

S(n + 1) = add(n, S(n))

— 419 —

The function

ρa,f : N → A

inductively defined from




a ∈ A

f : N×A → A

is the unique such that




ρa,f(0) = a

ρa,f(n+ 1) = f
�

n,ρa,f(n)
�

— 420 —

Examples:

◮ add : N2 → N

add(m,n) = ρm,f(n) for f(x, y) = y+ 1

◮ S : N → N

S = ρ0,add

— 421 —

For a set A, consider a ∈ A and a function f : N×A → A.

Definition 149 Define R ⊆ N×A to be (a, f)-closed whenever

◮ 0Ra, and

◮ ∀n ∈ N.∀ x ∈ A.nRx =⇒ (n+ 1) R f(n, x).

Theorem 150 Let ρa,f =
�

{R ⊆ N×A | R is (a, f)-closed }.

1. The relation ρa,f : N−→p A is functional and total.

2. The function ρa,f : N → A is the unique such that ρa,f(0) = a

and ρa,f(n+ 1) = f
�

n,ρa,f(n)
�

for all n ∈ N.

— 422 —

Bijections

Definition 151 A function f : A → B is said to be bijective, or

a bijection, whenever there exists a (necessarily unique) function

g : B → A (referred to as the inverse of f) such that

1. g is a retraction (or left inverse) for f:

g ◦ f = idA ,

2. g is a section (or right inverse) for f:

f ◦ g = idB .

— 423 —

Proposition 153 For all finite sets A and B,

#Bij(A,B) =





0 , if #A 6= #B

n! , if #A = #B = n

PROOF IDEA :

— 425 —

Theorem 154 The identity function is a bijection, and the composi-

tion of bijections yields a bijection.

— 426 —

Definition 155 Two sets A and B are said to be isomorphic (and

to have the same cardinatity) whenever there is a bijection between

them; in which case we write

A ∼= B or #A = #B .

Examples:

1. {0, 1} ∼= {false, true}.

2. N ∼= N+ , N ∼= Z , N ∼= N× N , N ∼= Q .

— 427 —

Equivalence relations and set partitions

◮ Equivalence relations.

— 428 —

◮ Set partitions.

— 429 —

Theorem 158 For every set A,

EqRel(A) ∼= Part(A) .

PROOF:

— 431 —

Calculus of bijections

◮ A ∼= A , A ∼= B =⇒ B ∼= A , (A ∼= B ∧ B ∼= C) =⇒ A ∼= C

◮ If A ∼= X and B ∼= Y then

P(A) ∼= P(X) , A× B ∼= X× Y , A ⊎ B ∼= X ⊎ Y ,

Rel(A,B) ∼= Rel(X, Y) , (A⇀⇀B) ∼= (X⇀⇀Y) ,

(A ⇒ B) ∼= (X ⇒ Y) , Bij(A,B) ∼= Bij(X, Y)

— 433 —

◮ A ∼= [1]×A , (A× B)× C ∼= A× (B× C) , A× B ∼= B×A

◮ [0] ⊎A ∼= A , (A ⊎ B) ⊎ C ∼= A ⊎ (B ⊎ C) , A ⊎ B ∼= B ⊎A

◮ [0]×A ∼= [0] , (A ⊎ B)× C ∼= (A× C) ⊎ (B× C)

◮

�

A ⇒ [1]
�

∼= [1] ,
�

A ⇒ (B× C)
�

∼= (A ⇒ B)× (A ⇒ C)

◮

�

[0] ⇒ A
�

∼= [1] ,
�

(A ⊎ B) ⇒ C
�

∼= (A ⇒ C)× (B ⇒ C)

◮ ([1] ⇒ A) ∼= A ,
�

(A× B) ⇒ C) ∼=
�

A ⇒ (B ⇒ C)
�

◮ (A⇀⇀B) ∼=
�

A ⇒ (B ⊎ [1])
�

◮ P(A) ∼=
�

A ⇒ [2]
�

— 434 —

Characteristic (or indicator) functions

P(A) ∼=
�

A ⇒ [2]
�

— 435 —

Finite cardinality

Definition 160 A set A is said to be finite whenever A ∼= [n] for

some n ∈ N, in which case we write #A = n.

— 437 —

Theorem 161 For all m,n ∈ N,

1. P
�

[n]
�

∼= [2n]

2. [m]× [n] ∼= [m · n]

3. [m] ⊎ [n] ∼= [m+ n]

4.
�

[m]⇀⇀[n]
�

∼=
�

(n+ 1)m
�

5.
�

[m] ⇒ [n]
�

∼= [nm]

6. Bij
�

[n], [n]
�

∼= [n!]

— 438 —

Infinity axiom

There is an infinite set, containing ∅ and closed under successor.

— 439 —

Bijections

Proposition 162 For a function f : A → B, the following are

equivalent.

1. f is bijective.

2. ∀b ∈ B.∃!a ∈ A. f(a) = b.

3.
�

∀b ∈ B.∃a ∈ A. f(a) = b
�

∧
�

∀a1, a2 ∈ A. f(a1) = f(a2) =⇒ a1 = a2

�

— 440 —

Surjections

Definition 163 A function f : A → B is said to be surjective, or a

surjection, and indicated f : A ։ B whenever

∀b ∈ B.∃a ∈ A. f(a) = b .

— 441 —

Theorem 164 The identity function is a surjection, and the

composition of surjections yields a surjection.

The set of surjections from A to B is denoted

Sur(A,B)

and we thus have

Bij(A,B) ⊆ Sur(A,B) ⊆ Fun(A,B) ⊆ PFun(A,B) ⊆ Rel(A,B) .

— 443 —

Enumerability

Definition 166

1. A set A is said to be enumerable whenever there exists a

surjection N ։ A, referred to as an enumeration.

2. A countable set is one that is either empty or enumerable.

— 446 —

Examples:

1. A bijective enumeration of Z.

· · · −3 −2 −1 0 1 2 3 · · ·

— 447 —

2. A bijective enumeration of N× N.

0 1 2 3 4 5 · · ·
0

1

2

3

4
...

— 448 —

Proposition 167 Every non-empty subset of an enumerable set is

enumerable.

PROOF:

— 449 —

Countability

Proposition 168

1. N, Z, Q are countable sets.

2. The product and disjoint union of countable sets is countable.

3. Every finite set is countable.

4. Every subset of a countable set is countable.

— 451 —

Axiom of choice

Every surjection has a section.

— 452 —

Injections

Definition 169 A function f : A → B is said to be injective, or an

injection, and indicated f : A ֌ B whenever

∀a1, a2 ∈ A.
�

f(a1) = f(a2)
�

=⇒ a1 = a2 .

— 453 —

Theorem 170 The identity function is an injection, and the compo-

sition of injections yields an injection.

The set of injections from A to B is denoted

Inj(A,B)

and we thus have

Sur(A,B)⊆

Bij(A,B)
⊆
⊆ Fun(A,B) ⊆ PFun(A,B) ⊆ Rel(A,B)

Inj(A,B)
⊆

with

Bij(A,B) = Sur(A,B) ∩ Inj(A,B) .
— 455 —

Proposition 171 For all finite sets A and B,

#Inj(A,B) =






�

#B
#A

�

· (#A)! , if #A ≤ #B

0 , otherwise

PROOF IDEA:

— 456 —

Relational images

Definition 174 Let R : A−→p B be a relation.

◮ The direct image of X ⊆ A under R is the set
−→
R (X) ⊆ B, defined

as

−→
R (X) = {b ∈ B | ∃ x ∈ X. xRb } .

NB This construction yields a function
−→
R : P(A) → P(B).

— 459 —

◮ The inverse image of Y ⊆ B under R is the set
←−
R (Y) ⊆ A,

defined as

←−
R (Y) = {a ∈ A | ∀b ∈ B.aRb =⇒ b ∈ Y }

NB This construction yields a function
←−
R : P(B) → P(A).

— 460 —

Replacement axiom

The direct image of every definable functional property

on a set is a set.

— 463 —

Set-indexed constructions

For every mapping associating a set Ai to each element of a set I,

we have the set

�

i∈I Ai =
�

�
Ai | i ∈ I

	
=

�
a | ∃ i ∈ I. a ∈ Ai

	
.

Examples:

1. Indexed disjoint unions:
�

i∈I Ai =
�

i∈I {i}×Ai

2. Finite sequences on a set A:

A∗ =
�

n∈NA
n

— 464 —

3. Finite partial functions from a set A to a set B:

(A⇀⇀fin B) =
�

S∈Pfin(A) (S ⇒ B)

where

Pfin(A) =
�
S ⊆ A | S is finite

	

4. Non-empty indexed intersections: for I 6= ∅,
�

i∈I Ai =
�
x ∈ �

i∈I Ai | ∀ i ∈ I. x ∈ Ai

	

5. Indexed products:
Q

i∈I Ai =

α ∈
�

I ⇒
�

i∈I Ai

�

∀ i ∈ I.α(i) ∈ Ai

�

— 465 —

Proposition 177 An enumerable indexed disjoint union of

enumerable sets is enumerable.

PROOF:

Corollary 179 If X and A are countable sets then so are A∗,

Pfin(A), and (X⇀⇀finA).
— 466 —

THEOREM OF THE DAY
Cantor’s Uncountability Theorem There are uncountably many infinite 0-1 sequences.

Proof: Suppose you could count the sequences. Label them in order: S 1, S 2, S 3, . . . , and denote by S i(j) the j-th entry of sequence S i. Now

define a new sequence, S , whose i-th entry is S i(i)+1 (mod 2). So S is S 1(1)+1, S 2(2)+1, S 3(3)+1, S 4(4)+1, . . . , with all entries remaindered

modulo 2. S is certainly an infinite sequence of 0s and 1s. So it must appear in our list: it is, say, S k, so its k-th entry is S k(k). But this is, by

definition, S k(k) + 1 (mod 2) � S k(k). So we have contradicted the possibility of forming our enumeration. QED.

The theorem establishes that the real numbers are uncountable — that is, they cannot be enumerated in a list indexed by the positive integers

(1, 2, 3, . . .). To see this informally, consider the infinite sequences of 0s and 1s to be the binary expansions of fractions (e.g. 0.010011 . . . =

0/2 + 1/4 + 0/8 + 0/16 + 1/32 + 1/64 + . . .). More generally, it says that the set of subsets of a countably infinite set is uncountable, and to see

that, imagine every 0-1 sequence being a different recipe for building a subset: the i-th entry tells you whether to include the i-th element (1) or

exclude it (0).

Georg Cantor (1845–1918) discovered this theorem in 1874 but it apparently took another twenty years of thought about what
were then new and controversial concepts: ‘sets’, ‘cardinalities’, ‘orders of infinity’, to invent the important proof given here,
using the so-called diagonalisation method.

Web link: www.math.hawaii.edu/∼dale/godel/godel.html. There is an interesting discussion on mathoverflow.net about the history of diagonalisation:

type ‘earliest diagonal’ into their search box.

Further reading: Mathematics: the Loss of Certainty by Morris Kline, Oxford University Press, New York, 1980.

Created by Robin Whitty for www.theoremoftheday.org

— 471 —

Unbounded cardinality

Theorem 180 (Cantor’s diagonalisation argument) For every

set A, no surjection from A to P(A) exists.

PROOF:

— 472 —

Definition 181 A fixed-point of a function f : X → X is an element

x ∈ X such that f(x) = x.

Theorem 182 (Lawvere’s fixed-point argument) For sets A and

X, if there exists a surjection A ։ (A ⇒ X) then every function

X → X has a fixed-point; and hence X is a singleton.

PROOF:

— 474 —

Corollary 183 The sets

P(N) ∼=
�

N ⇒ [2]
�

∼= [0, 1] ∼= R

are not enumerable.

Corollary 184 There are non-computable infinite sequences of

bits.

— 476 —

Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of ∈-Induction .

— 479 —

