Conjunctions

» How to prove them as goals.

» How to use them as assumptions.



Conjunctive statements are of the form

or, in other words,

or, in symbols,

Conjunction

P and Q

both P and also Q hold

P A Q

or

P& Q




The proof strategy for conjunction:

To prove a goal of the form
P AQ

first prove P and subsequently prove Q (or vice versa).



Proof pattern:
In order to prove

P A Q

1. Write: Firstly, we prove P. and provide a proof of P.

2. Write: Secondly, we prove Q. and provide a proof of Q.




Scratch work:

Before using the strategy
Assumptions Goal

PAQ

After using the strategy
Assumptions Goal Assumptions Goal

P Q
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The use of conjunctions:

To use an assumption of the form P A Q,
treat it as two separate assumptions: P and Q.
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P =4 (P=Q) A(0=P)

Theorem 19 For évery integer n, we have that 6 | n iff 2 | n and
3| n.
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Existential quantifications

» How to prove them as goals.

» How to use them as assumptions.



Existential quantification

Existential statements are of the form

there exists an individual x in the universe of
discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the
property P(x) holds

or, in symbols,

Tx. P(x)




Example: The Pigeonhole Principle.

Let n be a positive integer. If n + 1 letters are put in n
pigeonholes then there will be a pigeonhole with more than
one letter.



Theorem 20 (Intermediate value theorem) Let f be a real-valued
continuous function on an interval [a, b]. For everyy in between f(a)
and f(b), there exists v in between a and b such that f(v) = y.
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The main proof strategy for existential statements:

To prove a goal of the form
Fx. P(x)

find a witness for the existential statement; that is, a value
of x, say w, for which you think P(x) will be true, and show
that indeed P(w), i.e. the predicate P(x) instantiated with
the value w, holds.



Proof pattern:
In order to prove

Ix. P(x)

1. Write: Let w = ... (the witness you decided on).

2. Provide a proof of P(w).




Scratch work:

Before using the strategy
Assumptions Goal

Fx. P(x)

After using the strategy
Assumptions Goals

P(w)

w = ... (the withess you decided on)
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Proposition 21 For every positive integer k, there exist natural
numbers i andj such that 4 - k = i* —j°.
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The use of existential statements:

To use an assumption of the form Jx. P(x), introduce a_new
variable x, into the proof to stand for some individual for
which the property P(x) holds. This means that you can
now assume P(x,) true.
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Theorem 23 For all integers 1, m, n, ifl | m andm | n thenl|n.
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Unique existence

The notation
! x. P(x)
stands for

the unique existence of an x for which the property P(x) holds .

That is,

TIx.P(x) A (Vy.Vz. (P(y) /N P(z)) — :z)

— 100 —



Example: The congruence property modulo m uniquely charac-
terises the natural numbers from 0 to m — 1.

Proposition 24 Let m be a positive integer and let n be an integer.

Define
Pz) =[0<z<m A z=n(modm)] .

Then
Vx,y.P(x) AN Ply) = x=y .

PROOF:
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A proof strategy

To prove
Vx.3ly.P(x,y) ,

for an arbitrary x construct the unigue witness and name it,
say as f(x), showing that

and

hold.
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