Proposition 104 For all finite sets U,

4P = 2#U
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Venn diagrams?

*From http://en.wikipedia.org/wiki/Intersection_(set_theory) .
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Union Intersection

Complement
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= gzé a @{% /{A/g’wd&m’v

The powerset Boolean algebra W’“j"y

( ‘P(U) ) (Z) ) ) M ) ()C )

Forall A,B € P(U f&é; (7 DG{WJ‘“W o

o

AUB {XEU XEA\/XEB} c P(U)

ANB = {xelU|xeA AxeB} €PU)

A = {xelU|—-(xe A)} c P(U)
%:{q:Uxﬂﬁ_M%
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Fuolefn: AMUAUAU--UVA, MO0 .- N A
%

}v‘ﬁwe union operation U and the intersection operation N are
associative, commutative, and idempotent.

(AUBJUC=AU(BUC), AUB=BUA, AUA=A

(ANB)NC=AN(BNC), ANB=BNA, ANA=A
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» The union operation U and the intersection operation N are
associative, commutative, and idempotent.

(AUBJUC=AU(BUC), AUB=BUA, AUA=A

(ANB)NC=AN(BNC), ANB=BNA, ANA=A

» The empty set () is a neutral element for U and the universal
set U is a neutral element for N.

PUA =A =UNA
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» The empty set () is an annihilator for N and the universal set U
IS an annihilator for U.

DNA=10

UUA=U

» With respect to each other, the union operation U and the
intersection operation N are distributive and absorptive.

AN(BUC)=(ANnBJ)U(ANC), AU(BNC)=(AUB)Nn(AUC)

AU(ANB) = A = AN(AUB)
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» The complement operation ()¢ satisfies complementation laws.

AUA=U, ANA°={(
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Proposition 105 Let U be a setand let A,B € P(U).
1. VXePU). AUBCX & (ACX A BCX).
2.¥VXePU). XCANB & (XCA N XCB).

PROOF:

(7 Let Xé?@t Mok 10, XEU .

((JAUBS X = ACX ABCX
A%?MMOAUB L¥X eefw\ Eceszch') =) CEX

kr? Alx 7 R C x?
Z?MV/& a.éA;?)ﬂ\W .- S\%W,_.
&
A%k £7a & 61

(LTP: d&X o~
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Corollary 106 Let U be a setand let A,B,C € P(U).

1 C=AUB W@CW«‘A&&

iff o - :
e da Gt
ACCABCC] | .
/\
VXePU). (ACXABCX) = CCX]

2 C=ANB <
iff o A8 = e suklant s

CCA/\CCB’&M ot weckudis A ond B
A © ANR bﬁ%‘yj} s nclndid o A
VX ePU). (XCAAXCB) = XCC| l\AACé,B
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Sets and logic

P(U) { false, true }
false

true
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Pairing axiom

For every a and b, there is a set with a and b as its
only elements.

{a,b} = g b,azg
defined by

Vx.x €{a,b} &< (x=a V x =Db)

NB Theset{a, a}is abbreviated as{ a}, andreferred to as a singleton.
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Examples:

> #{0}=1

> #{{0}}=1

> #H 0, {0}}=2
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T X

Proposition 107 For all a,b, c,x,y,
rex = 1&Y

1. {xy}C{a} = x=y=a -

2. {C>X}:{C>y} — X =Yy

PROOF: L?/t a . b ¢, 2 12(&(\7\,,4\&(2 '
(1) AwentC§ g3 esal
@),‘ 7_:(}___.& [')C.::‘)/\ 7:0&.3
ZJ.Q_ "fl/é'\r( 'xéfl;q\- Se\ '”a@/ zéfqz "%\

L=4 -
I ¢ et je Q%a%- Sj\'f;"\)@/"léga‘\'%;

124 .

— 346 —



(2) $¢, za..Sc?z = 2=y [ (40

AgRnt gcxl ¢ ¢

ﬂch L=y

SWL %€ Q6xd = SC,\)Z = Lx Y Z—D]
Sth i 7e$cv)l (e, x| = [vl_,c\(vj xj

Ot 1=y
) y .






Ordered pairing

Notation:

(a,b) or (a,b)

Fundamental property:

(a>b):(x>y) — a=x /N b:U

— 348 —



A construction:

For every pair a and b,

<Cl,b> — {{a}> {a>b}}

defines an ordered pairing of a and b.
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Proposition 108 (Fundamental property of ordered pairing)
For all a, b, x,y,

(a,b) = (x,y) &= (a=x N b=y)

PROOF:
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Products

The product A x B of two sets A and B is the set

AxB={x|JaeAbeB.x=(a,b)}
where

V(l],CleA,b],szB.
(a1,b1) = (az,b2) & (a1 =a; A b; =by)

Thus,

Vx e AxB.dlae A.dlbe B.x=(a,b)
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Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal
components is formally

{(xeAXA | daeA.da, e A x=(aq,a;) N ag=aqa;}
but often abbreviated using pattern-matching notation as

{lay,a) EAXAlar=at .
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Pattern-matching notation

Example: The subset of ordered pairs from a set A with equal
components is formally

{(xeAXA | daeA.da, e A x=(aq,a;) N ag=aqa;}
but often abbreviated using pattern-matching notation as
tlana) EAXAlag=a} .

Notation: For a property P(a,b) with a ranging over a set A and b
ranging over a set B,

{(a,b) € AxB|P(a,b)}
abbreviates

{(xeAxB|daeA.dbeB.x=(a,b) A\ P(a,b)} .
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Proposition 110 For all finite sets A and B,

# (A XB) = #A-#B

PROOF IDEA:
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Sets and logic

P(U) { false, true }

0 false

u true

U \V4

N /\
(+)° —(+)

U =

M %
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Big unions

Example:

» Consider the family of sets

4 N\
the sum of the elements of
T = { TCI5]

\ T is less than or equal 2 )

= {0,{0}, (1}, {23, {0,13,{0,2} }

» The big union of the family T is the set [ J T given by the union of
the sets in T
nelJT &< dTeT.neT .

Hence, | JT ={0,1,2}.
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Definition 111 Let U be a set. For a collection of sets F € P(P(U)),
we let the big union (relative to U) be defined as

JF ={xeU|3AecF.xeA} €P(U)
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Proposition 112 For allJ € P(P(P(U))),

J(UT) = U{UA c P(U) \Aeff} cPU) .

PROOF:
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Big intersections

Example:
» Consider the family of sets

S = { S C [5] ‘ the sum of the elements of S is 6 }

— {{2,4},{0,2,4},{1,2,3},{0,1,2,3}}

» The big intersection of the family 8 is the set ()8 given by the
iIntersection of the sets In S:
ne()s & vSed.neSs

Hence, (1S ={2}.
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Definition 113 Let U be a set. For a collection of sets & C P(U),
we let the big intersection (relative to U ) be defined as

NF = {xeU|VAeTF.xecA} .
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Theorem 114 Let
F={SCR[(0€S) A (xeRxeS = (x+1)€S) |
Then, (i) N e Fand (ii) N C (F. Hence, (\F = N.

PROOF:
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Proposition 115 Let U be a set and let ¥ C P(U) be a family of
subsets of U.

1. Forall S € P(U),
S=U7F
iff
WAEﬁAgS}
A VX ePU).(VAeTF.ACX)=SCX]

2. Forall T € P(U),
T=NF
iff
VAETF.TCA]
/\ [VYeCP(U).(VAe&".YgA)éYgT]
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Union axiom

Every collection of sets has a union.

UK

xelJTF & IXeTF.xeX
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For non-empty F we also have

ok

defined by

. xeNTF & (VXeT.xeX)
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D1isjoint unions

Definition 116 The disjoint union A W B of two sets A and B is the
set

AWB = ({1} x A)U ({2} x B)

Thus,
Vx.x € (AWB) < (Ja€A.x=(1,a)) V (FIbeB.x=(2,b)).
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Proposition 118 For all finite sets A and B,
ANB=0 = #(AUB) = #A+ #B

PROOF IDEA:

Corollary 119 For all finite sets A and B,
#(AWB) = #A + #B
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Relations

Definition 121 A (binary) relation R from a set A to a set B

R:A—+—B or ReRelA,B) ,
IS

RCAxB or RePA xB)

Notation 122 One typically writes aRb for (a,b) € R.
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Informal examples:

» Computation.

» Typing.

» Program equivalence.
» Networks.

» Databases.
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Examples:

>

Empty relation.

D:A—+B (a )b < false)
Full relation.
(AxXxB):A—B (a (A xXB)b & true)

Identity (or equality) relation.
idA:{(a,a)IaEA}:A—HA (aidy @’ &< a=a’)

Integer square root.
R={(mn)|m=n*}:N-+2Z (MRn & m=n?
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Internal diagrams

Example:
R=1{1(0,0),(0,—1),(0,1),(1,2),(1,1),(2,1) } :N—=Z
S=1{1(1,0),(1,2),(2,1),(2,3) } : Z—+>Z
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Relational extensionality
R=§:A—+—B

|ff
Vae A.VYbeB. aRb & aSb
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Relational composition
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Theorem 124 Relational composition is associative and has the
identity relation as neutral element.

» Associativity.
ForallR:A—+—B,S:B—+—C,andT:C—+—D,

(ToS)oR = To(SoR)

» Neutral element.
ForallR : A —+ B,

ROidA — R = idBOR
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Relations and matrices

Definition 125

1. For positive integers m andn, an (m x n)-matrix M over a
semiring (S,0,®,1,®) is given by entries M,; € S for all
0<i<mandl <j<n.

Theorem 126 Matrix multiplication is associative and has the

identity matrix as neutral element.
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Relations from [m] to [n] and (m x n)-matrices over Booleans
provide two alternative views of the same structure.

This carries over to identities and to composition/multiplication .
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D1irected graphs

Definition 130 A directed graph (A, R) consists of a set A and a
relation R on A (i.e. a relation from A to A).
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Corollary 132 For every set A, the structure
(Rel(A), ida ,o )

IS a monoid.

Definition 133 ForR € Rel(A) andn € N, we let

R™ = Ro---oR € Rel(A)

Vs

n times

be defined asid, forn =0, andasRoR°™ forn =m + 1.
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Paths

Proposition 135 Let (A, R) be a directed graph. For alln € N and
s,t € A, s R°™" t Iff there exists a path of length n. in R with source s
and target t.

PROOF:
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Definition 136 ForR € Rel(A), let

R* = J{R™€Rel(A) [ neN} = [,y R

neN

Corollary 137 Let (A,R) be a directed graph. For all s,t € A,
s R°* t iff there exists a path with source s and targett in R.
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The (n x n)-matrix M = mat(R) of a finite directed graph ([n], R)
for n a positive integer is called its adjacency matrix.

The adjacency matrix M* = mat(R°*) can be computed by matrix
multiplication and addition as M,, where

y

M, = I,
\ My = In—l—(M'Mk)

This gives an algorithm for establishing or refuting the existence of
paths in finite directed graphs.
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Preorders

Definition 138 Apreorder ( P, C ) consists of a set P and a relation
C onP (i.e. C € P(P x P)) satisfying the following two axioms.

» Reflexivity.
Vx e P. xCx
» Iransitivity.

Vx,y,ze P. ( xCy NyCz) = xCz
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Examples:
> (R,<)and (R, >).
> (P(A),C) and (P(A), 2).

> (Z, |).
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Theorem 140 ForR C A x A, let
Jr = {QCAXA | RCQ A Qisapreorder} .
Then, (i) R°* € Fk and (ii) R°* C () Fr. Hence, R°* = (1 k.

PROOF:
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Partial functions

Definition 141 A relation R : A —— B is said to be functional, and
called a partial function, whenever it is such that

\V/GEA.\V/b],bzéB. aRb; A aRb, =— b; =0y
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Theorem 143 The identity relation is a partial function, and the
composition of partial functions yields a partial function.

NB
f=g:A—B
Iff
Vae A.(f(a)]l & gla)l ) A f(a) =g(a)
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Example: The following are examples of partial functions.

» rational division —: Q x Q — Q, with domain of definition

{rys) €QxQJs#0};

» integer square root /—: Z — Z, with domain of definition
{meZ|IeZm=n};

» real square root /—: R — R, whose domain of definition is
{x e R|x>0}.
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Proposition 144 For all finite sets A and B,
#(A=B) = (#B+1)™

PROOF IDEA:
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Functions (or maps)

Definition 145 A partial function is said to be total, and referred
fo as a (total) function or map, whenever its domain of definition
coincides with its source.

Theorem 146 For all f € Rel(A, B),

fe(A=B) & Vaec A.dlbeB. afb
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Proposition 147 For all finite sets A and B,
#(A=B) = #B™

PROOF IDEA:
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Theorem 148 The identity partial function is a function, and the
composition of functions yields a function.

NB
1. f=g:A—=Biff Vae A.f(a) = g(a).

2. For all sets A, the identity function id, : A — A is given by the
rule
ida(a) = a

and, for all functions f: A — B and g : B — C, the composition
function go f: A — C is given by the rule

(gof)(a) =g(f(a))
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Inductive definitions

Examples:
» add:N? - N
( add(m,0) = m
<\ add(m,n+1) = add(m,n)+1
» S:N—= N

S(0) = 0
S(n+1) add(n,S(n))

\
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The function

P N—A

)

inductively defined from

,
acA

\ f:-NxA—A

IS the unique such that

y

pa,f(o) — a
pa,f(n+1) — f(n)paf(n))

\
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Examples:

» add:N? 5 N
add(m,n) = p,,(n) for f(x,y) =y + 1

» S: N — N

SES Po,add
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For a set A, consider a € A and a function f: N x A — A.
Definition 149 Define R C N x A to be (a, f)-closed whenever
» ORa, and
» VneN.Vxe A nRx — (n+1) R f(n,x).
Theorem 150 Letp,; = [|{RCE N x A |R s (a,f)-closed }.
1. The relation p : N —— A Is functional and total.

2. The function p,; : N — A is the unique such that p,((0) = a
and p,(n+1) =f(n,p.(n)) foralin e N.
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Bijections

Definition 151 A function f : A — B is said to be bijective, or
a bijection, whenever there exists a (necessarily unique) function
g: B — A (referred to as the inverse of f) such that

1. g is aretraction (or left inverse) for f:

gOf:idA ,

2. g Is asection (orright inverse) for f:

ng:idB
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Proposition 153 For all finite sets A and B,

’

0 ,Iif#A # #B
n! L, If#A=#B =n

\

PROOF IDEA:
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Theorem 154 The identity function is a bijection, and the composi-
tion of bijections yields a bijection.
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Definition 155 Two sets A and B are said to be isomorphic (and
to have the same cardinatity) whenever there is a bijection between
them: in which case we write

A=B or #A=4+#DB

Examples:
1. {0, 1} = {false, true}.

2. N=N" |, N=Z , N=NxN, N=Q.
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Equivalence relations and set partitions

» Equivalence relations.
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» Set partitions.
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Theorem 158 For every set A,
EqRel(A) = Part(A)

PROOF:

— 431 —



Calculus of bijections

» A=A ,A=B — B=A,(A=BAB=C) = A=C
» IfA=Xand B = Y then
PA)=P(X) , AxB=XXY , AWB=XWY ,
Rel(A,B) = Rel(X,Y) , (A=B)=(X=2Y) |,
(A=B)=(X=Y) , Bij(A,B)=BijX,Y)
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A=Z[1lxA , (AxB)xC=Ax(BxC), AxB=BxA

OJWA=A, AYBWC=2AW(BWC), AUB=BUWA

0] xA=[0] , (AWB)x C=(AxC)w (B xC)
A=0)=[1, (A= (BxC)=(A=B)x(A=C)
(l0=A)=[1], (A¥gB)=C)=(A=C)x (B=C)
(M=A)=A, (AxB)=C)= (A= (B= ()
(A=B)= (A= (Bwl]))

P(A) = (A= [2])
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Characteristic (or indicator) functions
PA) = (A =[2])
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Finite cardinality

Definition 160 A set A is said to be finite whenever A = [n] for
somen € N, in which case we write #A = n.
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Theorem 161 For all m,n € N,

1. P([n]) = [2"]

> o AN W N
3 2
L
2
|12
E)
_|_
_:
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Infinity axiom

There is an infinite set, containing () and closed under successor.
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Bijections
Proposition 162 For a function f : A — B, the following are
equivalent.
1. f Is bijective.

2. VbeB.dlae A.f(a) =b.

3. (VbEB.HaEA.f(a):b)
A\
(Va1,az cA.fla;) =flay) = a; = az)

— 440 —



Surjections

Definition 163 A function f : A — B is said to be surjective, or a
surjection, and indicated f : A — B whenever

YbeB.3acA.fla)=b
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Theorem 164 The identity function is a surjection, and the
composition of surjections yields a surjection.

The set of surjections from A to B is denoted
Sur(A, B)
and we thus have

Bij(A,B) C Sur(A,B) € Fun(A,B) € PFun(A,B) C Rel(A,B) .
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Enumerability

Definition 166

1. A set A is said to be enumerable whenever there exists a
surjection N — A, referred to as an enumeration.

2. A countable set is one that is either empty or enumerable.

— 446 —



Examples:

1. A bijective enumeration of Z.

—3|—2|—1
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2. A bijective enumeration of N x N.

=~ W DN

— 448 —




Proposition 167 Every non-empty subset of an enumerable set is
enumerable.

PROOF:
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Countability

Proposition 168
1. N, Z, Q are countable sets.
2. The product and disjoint union of countable sets is countable.
3. Every finite set is countable.

4. Every subset of a countable set is countable.
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Axiom of choice

Every surjection has a section.
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Injections

Definition 169 A function f : A — B is said to be injective, or an
Injection, and indicated f : A — B whenever

Va,a € A (fla)) = flay)) = a1 =,

— 453 —



Theorem 170 The identity function is an injection, and the compo-
sition of injections yields an injection.

The set of injections from A to B is denoted

Inj(A, B)
and we thus have

Sur(A, B)

¢ N

Z

Bij(A, B) Fun(A,B) € PFun(A,B) C Rel(A,B)

S
A &

Inj(A, B)

with

Bij(A,B) = Sur(A,B)NInj(A,B)
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Proposition 171 For all finite sets A and B,

’

(A5) - (#A) , if#A < #B

0 , otherwise

\

PROOF IDEA:
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Relational images

Definition 174 LetR : A —+— B be a relation.

» Thedirectimage of X C A under R is the set?(X) C B, defined
as

R(X) = {beB|3xecX.xRb} .

NB This construction yields a function ? : P(A) — P(B).
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. . . —
» Theinverse image of Y C B underR is the set R(Y) C A,

defined as

R(Y) = {acA|VbeEB.aRb = beY)

NB This construction yields a function R : P(B) — P(A).
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Replacement axiom

The direct image of every definable functional property
on a set is a set.

— 463 —




Set-indexed constructions

For every mapping associating a set A; to each element of a set I,
we have the set

Uit Ai = U{Ailiel} = {al3ielae A} .
Examples:

1. Indexed disjoint unions:
L"jiel Ay = Uiel 1) x A4

2. Finite sequences on a set A:

A" = wnEN A"
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3. Finite partial functions from a set A to a set B:
(A —fin B) — @sgfpﬁn(;\) (S = B)
where

Pan(A) = {S C A Sis finite }

4. Non-empty indexed intersections: for I = (),

Niar Av = {xelUAilVielLxe A}

5. Indexed products:

[TaA = { ae (1= UgA) | YieLad ea )
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Proposition 177 An enumerable indexed disjoint union of
enumerable sets is enumerable.

PROOF:

Corollary 179 If X and A are countable sets then so are A*,

:Pﬁn(A)J and (X iﬁn A)
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=

THEOREM OF THE DAY

Cantor’s Uncountability Theorem There are uncountably many infinite 0-1 sequences.

Proof: Suppose you could count the sequences. Label them in order: S, S5, S3,..., and denote by S;(j) the j-th entry of sequence S;. Now
define a new sequence, S, whose i-th entry is S;(/)+ 1 (mod 2). So S is S 1(1)+1,5,(2)+1,53(3)+1,S44)+1,..., with all entries remaindered
modulo 2. S is certainly an infinite sequence of Os and 1s. So it must appear in our list: it is, say, S, so its k-th entry is (k). But this is, by
definition, S (k) + 1 (mod 2) # S (k). So we have contradicted the possibility of forming our enumeration. QED.

The theorem establishes that the real numbers are uncountable — that is, they cannot be enumerated in a list indexed by the positive integers
(1, 2, 3,...). To see this informally, consider the infinite sequences of Os and 1s to be the binary expansions of fractions (e.g. 0.010011... =
0/2+1/4+0/8+0/16+1/32+1/64 +...). More generally, it says that the set of subsets of a countably infinite set is uncountable, and to see
that, imagine every 0-1 sequence being a different recipe for building a subset: the i-th entry tells you whether to include the i-th element (1) or
exclude it (0).

Georg Cantor (1845-1918) discovered this theorem in 1874 but it apparently took another twenty years of thought about what
were then new and controversial concepts: ‘sets’, ‘cardinalities’, ‘orders of infinity’, to invent the important proof given here,
using the so-called diagonalisation method.

Web link: www.math.hawaii.edu/~dale/godel/godel.html. There is an interesting discussion on mathoverflow.net about the history of diagonalisation:
type ‘earliest diagonal’ into their search box.

Further reading: Mathematics: the Loss of Certainty by Morris Kline, Oxford University Press, New York, 1980.

Created by Robin Whitty for www.theoremoftheday.org .

— 471 —



Unbounded cardinality

Theorem 180 (Cantor’s diagonalisation argument) For every
set A, no surjection from A to P(A) exists.

PROOF:
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Definition 181 A fixed-point of a function f : X — X is an element
x € X such that f(x) = x.

Theorem 182 (Lawvere’s fixed-point argument) For sets A and
X, if there exists a surjection A — (A = X) then every function
X — X has a fixed-point; and hence X is a singleton.

PROOF:
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Corollary 183 The sets
PN) = (N=[2]) = [0,1] = R

are not enumerable.

Corollary 184 There are non-computable infinite sequences of
bits.
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Foundation axiom

The membership relation is well-founded.

Thereby, providing a

Principle of e-Induction .
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