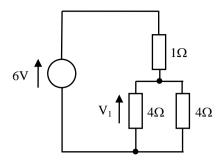
IA – Digital Electronics

Examples Paper 3 – FSMs, Electronics and Processor Architecture

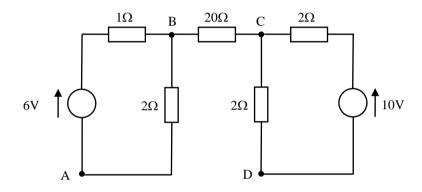
1. Eliminate the redundant states from the following state table using the Row Matching approach

Current State	Next State X=0 X=1		Output (Z) X=0 X=1		
A	Α	В	0	0	
B C	C A	D	0	0	
D E	E A	F F	0	1	
F	Ğ	F	0	1	
G	Α	F	0	1	


2. Eliminate the redundant states from the following state table using the State Equivalence/Implication Table approach

Current		ate	Outp	out (Z) X=1
State	X=0	X=1	X=0	X=1
S ₀ S ₁ S ₂ S ₃	S ₃ S ₂ S ₁ S ₀	S ₃ S ₂ S ₁ S ₂	1 1 1	1 0 1 0

3. Eliminate the redundant states from the following state table using the State Equivalence/Implication Table approach


Current		Output			
State	XY= 00	Stat 01	10	11	(Z)
S ₀	S ₀	S ₁	S ₂	S ₃	1
S ₀ 1 2 3 4 5 6 S S S S S 6	S_0 S_1	S_3 S_3	S_1 S_2	S_5 S_4	1
S_3^2	S ₁	S_0^3	S_4^2	S_5	0
S_4	S_0	S_1	S_2	S_5	1
S_5	S_1	S_4	S_0^-	S_5	0
S_6	S_4	S_1	S_2	S_3	1

4. For the following circuit:

- (a) What is the current through the 1Ω resistor?
- (b) What is voltage V_1 ?
- (c) What power is dissipated in each of the 4Ω resistors?

5. For the following circuit:

- (a) What is the current flowing through the 20Ω resistor?
- (b) Find the voltage at nodes B, C, and D with respect to node A, i.e., $V_{AB},\ V_{AC}$ and V_{AD} .
- 6. The n-MOS FET with the characteristics shown in Fig. 1(b) is used to implement the inverter circuit shown in Fig. 1(a).
 - (a) Draw a load line (i.e., resistor characteristic) on Fig. 1(b) and determine the output voltage V_0 , corresponding to input voltages V_i , of 0V and 10V.
 - (b) Calculate the power dissipated in the 500Ω resistor and the transistor for each input voltage.

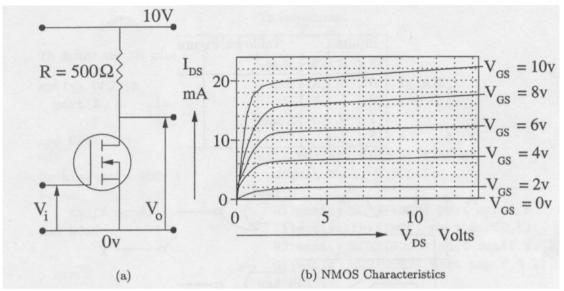


Figure 1:

- 7. (a) Explain the terms architecture and microarchitecture when applied to a processor.
 - (b) Show how the microarchitecture of a simple single cycle processor can be modified to permit data memory access.
 - (c) Show how the microarchitecture of a simple cycle processor can be modified to permit branching.
 - (d) What are the main advantages of a multicycle processor over a single cycle processor?
 - (e) How does a pipelined processor improve performance compared to a multicycle processor?

Relevant IA Paper 2 Tripos questions include: Q2-2023, Q2-2021, Q2-2019, Q2-2015, Q2-2012 (excluding rise and fall time calculations).

I. J. Wassell May 2024