Digital Electronics

Dr. I. J. Wassell

Digital Electronics

Introduction

23/07/2025

Aims

» To familiarise students with

— Combinational logic circuits
— Sequential logic circuits

— How digital logic gates are built using
transistors

— Simple processor architectures

— The design, build and testing of digital logic
systems

Course Structure

12 Lectures

Hardware Labs
— 4 Workshops
— Each Workshop lasts 2.5/3 h

—In Intel Lab. (SW11), William Gates
Building (WGB)

— Done individually

— Lab. Sessions begin in week 3 of M Term
and run throughout the L Term

23/07/2025

Obijectives

At the end of the course you should

— Be able to design, build and test simple
digital electronic systems

— Be able to understand and apply Boolean
logic and algebra — a core competence in
Computer Science

— Be able to understand and design finite
state machines

Books

* Lots of books on digital electronics, e.g.,

— D. M. Harris and S. L. Harris, ‘Digital Design
and Computer Architecture,” Morgan Kaufmann,
2007 (15t Ed.), 2012 (2" Ed.).

— R. H. Katz, ‘Contemporary Logic Design,’
Benjamin/Cummings, 1994.

—J. P. Hayes, ‘Introduction to Digital Logic
Design,” Addison-Wesley, 1993.

 Electronics in general (inc. digital)

— P. Horowitz and W. Hill, ‘The Art of Electronics,’
CUP, 19809.

23/07/2025

Simulation Software

» There are a number of packages available that
enable simulation of digital electronic circuits
using a graphical interface e.q.,

— National Instruments (NI) Multisim
— Yenka Electronics (Technology Package)
* The former is much more powerful (and

expensive), but the latter is cheap and
relatively straightforward to use

* If you download Yenka, you can use the Dept.
activation key to unlock it

Other Points

This course is a prerequisite for

— Introduction to Computer Architecture, ECAD
and Architecture Practical Classes (Part IB)

— Advanced Computer Architecture (Part II)

— Advanced Topics in Computer Architecture
(MPhil/Part I1I)

Keep up with lab work and get it ticked.

Have a go at supervision questions plus
any others your supervisor sets.

Remember to attempt questions from past
papers

23/07/2025

23/07/2025

The Bigger Picture

« As you may be aware, probably the
most significant application of digital
logic is to implement microprocessors
and microprocessor based computer
systems.

» However, digital logic is also employed
to build a wide variety of other electronic
systems that are not microprocessor
based.

Managing Complexity

Modern digital systems e.g., miCroprocessors,
are typically built from millions of transistors.

It would be impossible for a human to design
such a system by for example, writing
equations describing the movement of electrons
in each transistor and then attempting to solve
these equations simultaneously.

Consequently, we have to manage complexity
so that we are not swamped in a mass of detail.

To do this we employ abstraction.

Abstraction

Abstraction, i.e., hiding details when they are
not important.

Indeed a system can be viewed from many
different levels of abstraction.

For example, for an electronic computing
system, we can consider levels of abstraction
from pure physics (electrons) at the bottom
level through to application software (programs)
at the top level.

In this course we will address topics in the
shaded boxes in the following figure.

Application Programs — Application software uses facilities
Software provided by OS to solve a problem for the user

Device drivers — Handles low-level details such as

Operating Systems accessing a hard drive or managing memory

Instructions, Registers —e.g., Intel-1A32 defined

Architecture by aset of instructions and registers

Data paths, Controllers — Combines logic elements

MR EIEEHlE to execute instructions defined by the architecture

Adders, Memories, etc. — Complex structures put

e together from digital circuits

Gates, e.g., AND, NOT — Devices assembled to

Digital Circuits create ‘digital’ components

Transistors — well defined 1/V characteristics

oyl between input/output terminals

Electrons — quantum mechanics, Maxwell’s

Physics equations

23/07/2025

23/07/2025

Abstraction

« S0, you can browse the web without any regard
guantum theory or the organisation of memory
in the computer.

« That said, when working at a particular level of
abstraction, it is good to know something about
the levels of abstraction immediately above and
below where you are working, e.g.,

— A device designer needs to understand the circuits
in which it will be used,

— Code cannot be optimised without understanding
the architecture for which it is being written.

Course Structure

« We will begin by looking at so called
combinational logic and some basic logic
functions, e.g., NOT, OR, AND.

* We note that for a combinational logic function,
its current output depends only on its current
inputs.

* Then we consider Boolean algebra and apply it
and other approaches to simplify logic
functions, with the aim of reducing
implementation complexity.

Course Structure

« We will then see how we can design logic
functions to perform multi-bit arithmetic. The
trade-off between complexity and speed of
operation will be explored.

» Other effects of finite gate propagation delay
include the potential for undesirable changes in
the output of combinational logic circuits
(hazards). An approach to eliminate them with
the use of additional logic will be described.

Course Structure

» The final purely combinational logic topics that
we will address include more complex functions
such as multiplexers, demultiplexers and
programmable devices, e.g., PALSs.

« We will then move on to consider sequential
logic, where the current output not only
depends on the current inputs, but also on
previous inputs, i.e., we have introduced the
notion of memory.

23/07/2025

Course Structure

Initially, we will consider asynchronous devices
such as latches, before moving on the consider
synchronous devices, e.g., flip-flops, that will
only change output state under the control of a
global enabling (clock) signal.

We will then look in detail at the design of
synchronous finite state machines (FSMs)
using flip-flops.

We will then see how logic gates are
implemented using CMOS transistors.

Finally, we will briefly introduce microprocessor
architecture and design.

23/07/2025

Digital Electronics:
Combinational Logic

Logic Gates and Boolean
Algebra

Introduction to Logic Gates

» We will introduce Boolean algebra and
logic gates

» Logic gates are the building blocks of
digital circuits

23/07/2025

10

Logic Variables

« Different names for the same thing
— Logic variables
— Binary variables
— Boolean variables
« Can only take on 2 values, e.g.,
— TRUE or False
— ON or OFF
—1lor0O

Logic Variables

* In electronic circuits the two values can
be represented by e.q.,
— High voltage fora 1
— Low voltage fora 0

* Note that since only 2 voltage levels are
used, the circuits have greater immunity
to electrical noise

23/07/2025

11

Uses of Simple Logic

« Example — Heating Boiler
— If chimney is not blocked and the house is cold
and the pilot light is lit, then open the main fuel
valve to start boiler.
b = chimney blocked
¢ = house is cold
p = pilot light lit
v = open fuel valve
— So in terms of a logical (Boolean) expression
v =(NOT b) AND ¢ AND p

Logic Gates

Basic logic circuits with one or more
inputs and one output are known as
gates

» Gates are used as the building blocks in
the design of more complex digital logic
circuits

23/07/2025

12

Representing Logic Functions

* There are several ways of representing
logic functions:

— Symbols to represent the gates
— Truth tables

— Boolean algebra

» We will now describe commonly used
gates

NOT Gate

Symbol Truth-table Boolean

a y aly y=a
{>° 0|1
110

* A NOT gate is also called an ‘inverter’
« yisonly TRUE if ais FALSE

« Circle (or ‘bubble’) on the output of a gate
implies that it as an inverting (or
complemented) output

23/07/2025

13

« yisonly TRUE only ifais TRUE and b is

AND Gate

Truth-table
ab|y

R—,OO
RORFrO
ROOO

Boolean
y=ab

TRUE
* In Boolean algebra AND is represented by
a dot .
OR Gate
Symbol Truth-table Boolean
ably y=a+b
a Y
bj)—y 00]o0
011
101
111

* yis TRUE ifais TRUE or b is TRUE (or

both)

* In Boolean algebra OR is represented by

a plus sign +

23/07/2025

14

23/07/2025

EXCLUSIVE OR (XOR) Gate

Symbol Truth-table Boolean
ab|y y=a®b
a Y
D> oo
01]1
101
1110
 yis TRUE ifais TRUE or b is TRUE (but
not both)

* In Boolean algebra XOR is represented by
an @ sign

NOT AND (NAND) Gate

Symbol Truth-table Boolean
ably y=ab
a
D
011
10(1
111(0

* yis TRUE if ais FALSE or b is FALSE (or
both)

y is FALSE only if ais TRUE and b is
TRUE

15

NOT OR (NOR) Gate

Symbol Truth-table Boolean
ably y=a+b
a
b@wy 001
0110
1010
1110

» yis TRUE only if ais FALSE and b is
FALSE

» yis FALSE if ais TRUE or b is TRUE (or
both)

Boiler Example

* If chimney is not blocked and the house is
cold and the pilot light is lit, then open the
main fuel valve to start boiler.

b = chimney blocked ¢ = house is cold
p = pilot light lit v = open fuel valve

C—8—— v=b..
s Jvober

23/07/2025

16

23/07/2025

Boolean Algebra

In this section we will introduce the laws
of Boolean Algebra

We will then see how it can be used to
design combinational logic circuits

Combinational logic circuits do not have
an internal stored state, i.e., they have
no memory. Consequently the output is
solely a function of the current inputs.

Later, we will study circuits having a
stored internal state, i.e., sequential
logic circuits.

Boolean Algebra

OR AND
a+0=a a.0=0
a+a=a aa=a
a+l=1 al=a
a+a=1 aa=0

« AND takes precedence over OR, e.g.,
ab+c.d=(ab)+(c.d)

17

Boolean Algebra

Commutation

a+b=b+a

ab=ba

Assaociation
a+b)+c=a+(b+c)
ab).c=a.(b.c)

Distribution

a(b+c+..)= (a.bg+(a.c§+...
a+(bc...)=(a+b).(a+c).... NEW

Absorption

a+(ac)=a NEW
a(a+c)=a NEW

Boolean Algebra

Consensus theorem
a.b+a.c+b.c=ab+a.c

(a+b).(@+c).(b+c)=(a+b).(a+c)

Note that this theorem can be used to add or
eliminate terms when simplifying a Boolean

expression

23/07/2025

18

Boolean Algebra - Examples

Show
a(a+b)=ab
a(a+b)=aa+ab=0+ab=ab

Show
a+(ab)=a+b
a+(ab)=(a+a).(a+b)=1.(a+b)=a+b

Boolean Algebra

» A useful technique is to expand each
term until it includes one instance of each
variable (or its compliment). It may be
possible to simplify the expression by
cancelling terms in this expanded form
e.g., to prove the absorption rule:

a+ab=a

=

ab+ab+ah=ab+ab=a(+b)=al=a

23/07/2025

19

Boolean Algebra - Example
Simplify

XY+ VY.Z+XZ+XY.Z
XY.Z+XYZ+XY.Z+XY.Z+XY.Z+XY.Z+X.Y.Z
X.Y.Z+X.Y.Z+XYy.Z+X.y.Z
XY.(Z+2)+y.2.(X+X)

Xy.l+y.zl

X.y+Vy.z

Boolean Algebra - Example

Prove consensus theorem
a.b+a.c+b.c=ab+a.c
a.b+a.c+b.c =

ab+ac+ab.c+ab.c=
a.b+a.c

23/07/2025

20

Boolean Algebra - Example

Using consensus theorem

a.b+a'c+b.c+b.c+ab=

~

Eliminating consensus terms gives

a.b+a.c+b.c

DeMorgan’s Theorem

a+b+c+...=abc. ...
abc. ...=a+b+c+ ...

* In a simple expression like a+b+c (or ab.c)
simply change all operators from OR to
AND (or vice versa), complement each
term (put a bar over it) and then
complement the whole expression, i.e.,
a+b+c+ ...=abwc. ...

abc. ...=a+b+c+ ...

23/07/2025

21

DeMorgan’s Theorem

« For Zi\/ariablies we can show a+b=ab
and ab=a+b using a truth table.

aba+b ab ab ab a+b

00 1 1 11 1 1

1 0 1 10 0 1

0O 0 1 01 0 1
11 0 0 00 O O

» Extending to more variables by induction

a+b+c=(a+b)c=(ab)c=ab.c

DeMorgan’s Examples

« Simplify ab +a.(b+c)+b.(b+c)

=ab +ab.c+bb.c (DeMorgan)
=ab+ab.c (b.b=0)
=ab (absorbtion)

23/07/2025

22

DeMorgan’s Examples

 Simplify (ab.(c+b.d)+ab).cd
=(ab.(c+b+d)+a+b)cd (DeMorgan)
=(abc+abb+abd+a+b)cd (distribute)
=(abc+abd+a+b)cd (abb=0)
=abcd+abd.cd+acd+b.cd (distribute)
=abcd+acd+b.cd (abd.cd=0)
=(ab+a+b).cd (distribute)
=(ab+ab)cd (DeMorgan)

=cd (ab+ab=1)

DeMorgan’s in Gates

« To implement the function f =ab+cd we
can use AND and OR gates

a
b

c
d

* However, sometimes we only wish to
use NAND or NOR gates, since they
are usually simpler and faster

23/07/2025

23

DeMorgan’s in Gates

» To do this we can use ‘bubble’ logic

Two consecutive ‘bubble’ (or

a X, ——)
complement) operations cancel,

b i.e., no effect on logic function

c g
d y What about this gate? .
~ DeMorgan says X + Y = X.Y
See AND gates are

now NAND gates Which is a NOT
AND (NAND) gate

So j>— is equivalent to:D

DeMorgan’s in Gates

» So the previous function can be built
using 3 NAND gates

Dy gy
b b

f f
C c
; e

f =ab+cd

f =(ab).(cd)

23/07/2025

24

DeMorgan’s in Gates

 Similarly, applying ‘bubbles’ to the input
of an AND gate yields

X
@f
y Which is a NOT OR

What about this gate? /(NOR) gate
DeMorgan says X.y = X4V y

j:)— is equivalent to §>w

 Useful if trying to build using NOR gates

23/07/2025

25

Digital Electronics:
Combinational Logic

Logic Minimisation

Introduction

» Any Boolean function can be implemented
directly using combinational logic (gates)

» However, simplifying the Boolean function will
enable the number of gates required to be
reduced. Techniques available include:

— Algebraic manipulation (as seen in examples)

— Karnaugh (K) mapping (a visual approach)

— Tabular approaches (usually implemented by
computer, e.g., Quine-McCluskey)

« K mapping is the preferred technique for up to
about 5 variables

23/07/2025

26

Truth Tables
 f is defined by the following truth table
* A minterm must contain

Xy z|f| minterms all variables (in either
000|1| XYz complement or
00111 27 uncomplemented form)
011f1| XYy<Z * Note variables in a
100]|0 minterm are ANDed

% (1) (1) 8 together (conjunction)
111111 XVy.z * One minterm for each

term of f thatis TRUE
* SO x.y.z IS a minterm but y.z is not

Disjunctive Normal Form

« A Boolean function expressed as the
disjunction (ORing) of its minterms is said
to be in the Disjunctive Normal Form (DNF)

f =X.y.Z4+XY.Z+X.Y.Z+X.Y.Z+X.Y.Z

« A Boolean function expressed as the
ORing of ANDed variables (not necessarily
minterms) is often said to be in Sum of
Products (SOP) form, e.g.,
f =x+y.z Note functions have the same truth table

23/07/2025

27

23/07/2025

Maxterms

« A maxterm of n Boolean variables is the
disjunction (ORing) of all the variables either
in complemented or uncomplemented form.

— Referring back to the truth table for f, we can
write,
f=Xy.Z+Xy.Z+XYy.Z

Applying De Morgan (and complementing) gives
f=(X+y+2).(X+y+2).(X+y+2)
So it can be seen that the maxterms of f are

effectively the minterms of f with each variable
complemented

Conjunctive Normal Form

» A Boolean function expressed as the
conjunction (ANDing) of its maxterms is said
to be in the Conjunctive Normal Form (CNF)

f=(X+y+2).(X+y+2).(X+y+2)

» A Boolean function expressed as the ANDing
of ORed variables (not necessarily maxterms)
is often said to be in Product of Sums (POS)
form, e.g.,

f=(x+Yy).(x+2)

28

23/07/2025

Logic Simplification

» As we have seen previously, Boolean
algebra can be used to simplify logical
expressions. This results in easier
implementation
Note: The DNF and CNF forms are not

simplified.

* However, it is often easier to use a
technique known as Karnaugh mapping

Karnaugh Maps

« Karnaugh Maps (or K-maps) are a
powerful visual tool for carrying out
simplification and manipulation of logical
expressions having up to 5 variables

* The K-map is a rectangular array of
cells

— Each possible state of the input variables
corresponds uniquely to one of the cells

— The corresponding output state is written in
each cell

29

23/07/2025

K-maps example

* From truth table to K-map

xyz|f o
000(1 XN\00 01 11 10

001(1 of1]1f1(1

010(1 1 1

0111 d

100]0 y

% 2 é 8 Note that the logical state of the
11111 variables follows a Gray code, i.e.,

only one of them changes at a time

The exact assignment of variables in
terms of their position on the map is
not important

K-maps example
» Having plotted the minterms, how do we

use the map to give a simplified

ion?
expression? . oo terms

, * Having size equal to a power of

yz 2,e.0.,2,4,8, etc.
XN\.00 01 11 10 _
0 /1) » Large groups best since they
x| 1 1) contain fewer variables

* Groups can wrap around edges
and corners

X y.Z y
So, the simplified func. is,
f =x+vy.z asbefore

30

K-maps — 4 variables

« K maps from Boolean expressions

—Plot f=ab+bcd .

000 01 11 10
00
o1|1]1]1]1
11
10

d
« See in a 4 variable map:
— 1 variable term occupies 8 cells
— 2 variable terms occupy 4 cells
— 3 variable terms occupy 2 cells, etc.

K-maps — 4 variables

» For example, plot

f=D f=bd
C q C
cd c
ab\ 00 01 11 10 ab\ 00 01 11 10
ool1l1]1]1 00 1 1
01 ‘b 01
o 11 o 11
wol1l1]2]1 101 1
d d

23/07/2025

31

K-maps — 4 variables

« Simplify, f =ab.d +b.cd+ab.c.d+cd
c

cd
ab\ 00 01 11 10

00 A\
01 11T A
11 1
10 \1/
A] cd

So, the simplified func. is,
f=ab+cd

POS Simplification

* Note that the previous examples have
yielded simplified expressions in the
SOP form
— Suitable for implementations using AND

followed by OR gates, or only NAND gates
(using DeMorgans to transform the result —
see previous Bubble logic slides)

* However, sometimes we may wish to
get a simplified expression in POS form

— Suitable for implementations using OR
followed by AND gates, or only NOR gates

23/07/2025

32

POS Simplification

» To do this we group the zeros in the map
—i.e., we simplify the complement of the function

» Then we apply DeMorgans and
complement

« Use ‘bubble’ logic if NOR only
implementation is required

c
ab
00
01
11
10

POS Example

« Simplify f =ab+bcd into POS form.

C C
00 01 11 10 0% 00 01 11 10,
00f\olololo
1[1]1 Group 1111

b zeros b
o 12 [1}0

}/0 0
_ \
b ad d ac

f=b+ac+ad

23/07/2025

33

POS Example

« Applying DeMorgans to
f=b+ac+ad
gives,

o o

a

f =b.(a+c).(a+d) q

f =b.(a+c).(a+d) .

a a

C ¢ c

a a

d d
b

o

Expression in POS form

» Apply DeMorgans and take

complement, i.e., f is now in SOP form
« Fill in zeros in table, i.e., plot f
« Fill remaining cells with ones, i.e., plot
« Simplify in usual way by grouping ones
to simplify f

—

23/07/2025

34

Don’t Care Conditions

* Sometimes we do not care about the
output value of a combinational logic
circuit, i.e., if certain input combinations
can never occur, then these are known
as don't care conditions.

* In any simplification they may be treated
as 0 or 1, depending upon which gives
the simplest result.

— For example, in a K-map they are entered
as Xs

Don’t Care Conditions - Example

« Simplify the function f =ab.d +a.c.d +acd
With don’t care conditions,ab.cd,ab.cd,abcd

C

cd
ab\ 00 01 11 10

00

1

/ 1

01

X1

11

!
|1

10

ab

d

‘b

cd

f=ab+cd or,

See only need to include
Xs if they assist in making
a bigger group, otherwise
can ignore.

f=ad+cd

23/07/2025

35

Some Definitions

Cover — A term is said to cover a minterm if that
minterm is part of that term

Prime Implicant — a term that cannot be further
combined

Essential Prime Implicant — a prime implicant
that covers a minterm that no other prime
implicant covers

Covering Set — a minimum set of prime
implicants which includes all essential terms plus
any other prime implicants required to cover all
minterms

Some Definitions - Example

C
00 01 11 10

cd

ab
00

» Prime implicants

‘ , Essential prime

01

" |mpI|cants

Q Covering set

11 |
10

23/07/2025

36

Tabular Simplification

« Except in special cases or for sparse truth
tables, the K-map method is not practical
beyond 6 variables

» A systematic approach known as the Quine-
McCluskey (Q-M) Method finds the minimised
representation of any Boolean expression

* Itis a tabular method that ensures all the
prime implicants are found and can be
automated for use on a computer

Q-M Method

* The Q-M Method has 2 steps:

— First a table, known as the QM implication table, is
used to find all the prime implicants;

— Next the minimum cover set is found using the
prime implicant chart.
» We will use a 4 variable example to show the
method in operation:
— Minterms are: 4,5,6,8,9,10,13
— Don't cares are: 0,7,15.

23/07/2025

37

Q-M Method

» The first step is to list all the minterms and
don’t cares in terms of their minterm indices
represented as a binary number

— Note the entries are grouped according to the
number of 1s in the binary representation

— The 15t column contains the minterms

— After applying the method, the 2" column will

contain 3 variable terms. Similarly for subsequent
columns.

Q-M Method

* The method begins by listing groups of
minterms and don’t cares in groups
containing ascending numbers of 1s with a
blank line between the groups

— Thus the first group has zero ones, the second
group has a single 1 and the third has two 1s and
so on

* We next apply the so called uniting theorem
iteratively as follows

23/07/2025

38

Q-M Method — Uniting Theorem

— Compare elements in the 15t group (no 1s) with all
elements in the 2" group. If they differ by a single
bit, it means the terms are adjacent (think K-map)

— Adjacent terms are placed in the 2" column with
the single bit that differs replaced by a dash (-).
Terms in the 1st column that contribute to a term in
the second are ticked, i.e., they are not prime
implicants.

— Now compare elements in the 2"d group with those
in the 3" group. Once again, terms that differ by a
single bit are moved to the 2" column and have
that bit replaced by a dash (-).

Q-M Method — Uniting Theorem

— Continue the previous procedure until element
comparisons between all adjacent groups in the
1st column have been done.

— Mark any unticked elements in the 15t column with
an asterix (*). This means that they are prime
implicants.

— Now repeat previous procedure for the groups in
the 2" column

— As before groups must differ only by a single bit
but they must also have a — in the same position

— Groups in 2" column that do not contribute to the
3" column are marked with an asterix (*), i.e., they
are prime implicants

23/07/2025

39

Q-M Method — Uniting Theorem

— Now repeat previous procedure for the groups in
the 3" column

— Note we need to find elements that differ in 1 bit
position, but also have 2 dashes in the same
positions.

— In this case, we have no terms that satisfy this
condition, so we terminate the procedure and
mark any unticked terms with asterisks to indicate
that they are prime implicants.

Q-M — Implication Table

— Minterms are: 4,5,6,8,9,10,13
— Don’t cares are: 0,7,15.

Column 1 Column 2 Column 3

oooov 0-00* 01--*
_ *

01007 000 1.1+

1000V 010-\;

v 01-0

01987 100 -

10017 32‘2/

1010 1 01v

0111v 011-v

1101V 1-01*

1111V -111v
11-1v

23/07/2025

40

K-map view of Q-M example

ab . Col. 2 adjacent
00 |[Ax ~ minterms

Col. 2 * adjacent

b > minterms, i.e.,

prime implicants

Col. 3 prime
implicants

Q-M — Finding Min Cover

— The second step is to find the lowest number of
prime implicants that cover the function — this is
achieved using the prime implicant chart

— This chart is organised as follows:

+ Label columns with the minterm indices (don'’t include
don’t cares)

+ Label rows with minterms covered by a given prime
implicant. To do this dashes (-) in a prime implicant are
replaced by all combinations of Os and 1s

* Place an X in the (row, column) location if the minterm
represented by the column index is covered by the prime
implicant associated with the row

* The next slide shows the initial prime implicant chart

23/07/2025

41

Q-M — Prime Implicant Chart

456891013

0,4(0-00)|X \

. 0,8(-000) X Minterms (exc.
:Telr_mi_'n 8,9(100 -) X X don’t cares)
mplication
Table 8,10(10-0) X X
9,13(1-01) X X
4,5,6,7(01- -)|X X X
5,7,13,15(- 1-1)| X X

Now we look for the essential prime implicants —
These are indicated when there is only a single X in
any column, i.e., This means there is a minterm
covered by only one prime implicant

Q-M — Prime Implicant Chart

* The essential terms must be included in the final cover

— Draw lines in the column and row that have a X associated with
an essential prime implicant and draw a box around the prime

— Minterms intersected by lines are also covered by the essential

primes
4568091013
0,4(0-00)|X
0,8(-000) X
8,9(100 -) X X
[8,10(10-0) X ()
9,13(1-01) X i X
[45,6,7(01- Jx-XX
57,13,15(- 1-1)| X X

23/07/2025

42

23/07/2025

Q-M — Prime Implicant Chart

* The essential prime implicants usually cover additional
minterms.

— We must also cross out any columns that have an X in a row
associated with an essential prime since these minterms are
already covered by the essential primes

456891013

0,4(0-00)
0,8(-000)
8,9(100 -)

[8,10(10-0)
9,13(1-01)
14,5,6,7(01- -)1x-
5,7,13,15(- 1-1)

K= >¢ D¢ - - 1
X

5
(5

X
X

X

___x;____..______x_
x*____-________
&

Q-M — Prime Implicant Chart

* We see 2 minterms are still uncovered (cols. 9 and 13)

— The final step is to find as few primes as possible to cover the
remaining minterms

— We see the single prime implicant 1-01 covers both of them
— The boxed terms show the final covering set

456891013
04(0-00)x 1 it
08(-000)(! 1 i x ! i !
8,9(100-)! | i XX i !

R

[8.10(10- 04t

[91301t X+ -

[4,5,6,7(01-]D:():(Q@EI -
57,13,15(-1-1)[+ X i 1 | | X

43

Final K-Map view of Q-M Example

C

cd
0 01 10
ab N\ Y tt
00 [AXx PN Essential prime
01 o implicant

11 Selected prime
@xEwy implicant to
- complete covering
set

23/07/2025

44

23/07/2025

Digital Electronics:
Combinational Logic

Binary Adders

Introduction

» We will now look at how binary addition
may be implemented using combinational
logic circuits. We will consider:

— Half adder
— Full adder
— Ripple carry adder

45

23/07/2025

Half Adder

» Adds together two, single bit binary
numbers a and b (note: no carry input)

» Has the following truth table:

ab|c, sum

out a sum
00|10 O — —
01(0 1 b c
10[(0 1 — ——out
1111 O

* By inspection:
sum=ab+ab=a®b
Cout = ab

Full Adder

« Adds together two, single bit binary
numbers a and b (note: with a carry input)

a sum

b C

Cin
« Has the following truth table:

out

46

Full Adder

0
=1

Cout SUM

sum =¢;,.ab+c;,.ab +c,ab +c;.ab
sum=c;,.(ab+ab)+c,.(ab+ab)

From DeMorgan

ab+ab=(a+b).(a+b)
=(aa+ab +ba+bb)
=(ab +b.a)
So, _ —
sum=c¢;,.(ab+ab)+c,,.(ab+ab)
sum = Gj;.X+C;,.X =C;, ®X=C;, @adb

PRPRFRPPRPOOOO
PRPOORFRLPOO|D
RPORPORLPRORO|T
PFRPFRPORFRLOOO
RPOORORrLRFrO

Full Adder

Cout =Cip-ab+cj.ab+c,.ab +¢,.ab

0
=1

Cout SUM

Cout = ab.(Gi, +Cjy) +Ci-ab+¢.ab
Cout =ab+cab+c,ab
Cout =a-(b+cib)+cj.ab

PRRROOOO
RPROORROO|D
RPOFRPROPRFRPORFRLO|T
PRPRPOROOO
RPOORORRO

Cout =a-(b+¢i,).(b+b)+¢.ab

Cout =b.(a+¢j.@) +ac, =b.(a+c,).(a+a)+ac,
Cout =b.a+b.c, +ac,
Cout =b.a+cy,.(b+a)

23/07/2025

47

23/07/2025

Full Adder
* Alternatively,
Cip,a b | cyy SUM
000|0 0O Cu=Cpab+c,ab+c,ab+c,.ab
001|0 1 -
0100 1 Cout=_Cin(@b+ab)+ab.(c,+Cp)
0111 O
100lo 1 Cou=Cin-(@®b)+ab
101(1 O
110(1 ©
111(1 1

* Which is similar to previous expression
except with the OR replaced by XOR

Ripple Carry Adder

* We have seen how we can implement a
logic to add two, one bit binary numbers
(inc. carry-in).

* However, in general we need to add
together two, n bit binary numbers.

* One possible solution is known as the
Ripple Carry Adder

— This is simply n, full adders cascaded
together

48

Ripple Carry Adder
« Example, 4 bit adder

C, 8, by a; b, a, b, a; b,

‘ a b a b a b a b
Cin Cout Cin Cout Cin Cout Cin Cout
sum sum sum sum

So S, S, Sy Cy

* Note: If we complement a and set c, to
one we have implemented s=b-a

To Speed up Ripple Carry Adder

« Abandon compositional approach to the adder
design, i.e., do not build the design up from
full-adders, but instead design the adder as a
block of 2-level combinational logic with 2n
inputs (+1 for carry in) and n outputs (+1 for
carry out).

* Features
— Low delay (2 gate delays)

— Need some gates with large numbers of inputs
(which are not available)

— Very complex to design and implement (imagine
the truth table!

23/07/2025

49

To Speed up Ripple Carry Adder

» Clearly the 2-level approach is not
feasible

* One possible approach is to make use
of the full-adder blocks, but to generate
the carry signals independently, using
fast carry generation logic

* Now we do not have to wait for the carry
signals to ripple from full-adder to full-
adder before output becomes valid

Fast Carry Generation

C, 8, by a; by a, b, a; by

[1 [1 [| [|
a b a b a b a b Conventional

Cin Cout Cin Cout Cin Cout Cin Cout | RCA

sum sum sum sum

I's, I's, I's, I's, C,
Co a, by a; by a, b, a; by
| [| [| [| [|
) Fast Carry
Fast Carry Generation Adder

| | | |
a b a b a b a b
c Cin Cout c Cin Cout c Cin Cout c Cin Cout

sum | | sum sum | °| sum
I's, I's, I's, I's, C,

23/07/2025

50

Fast Carry Generation

» We will now determine the Boolean
equations required to generate the fast

carry signals

» To do this we will consider the carry out
signal, c,,, generated by a full-adder
stage (say i), which conventionally gives
rise to the carry in (c;,) to the next stage,

l.e., Ciyq.

Fast Carry Generation

Carry out always zero.

Call this carry Kkill

Carry out same as carry in.

Call this carry propagate

Carry out generated
independently of carry in.

Call this carry generate

kl :ai'al
pi =23 ®h
g; =a;.b

Also (from before), S; = & @b D ¢

23/07/2025

51

Fast Carry Generation

» Also from before we have,
Ci1=a.b +C.(a +I) oralternatively,
Ci1=8.b+c.(a Db)
Using previous expressions gives,
Cin=0i +G.b
So,
Cit2 = Git1 T Cipa1-Pia
Ciy2 = Qiva t Pise- (g| +Gj. p|)
Cir2 = Qis1 T Pia-Gi + Pisa-Pi G

Fast Carry Generation

Similarly,
Cir3 = 0Jis2 tCiy2-Pis2
|+3 g|+2 + p|+2 (g|+1+ p|+1 (gl +C p|))

Ci+3 = Uis2 + Pis2-(Qisa + Pis1-0i) + Pis2-Pisa-Pi €

and
Ciysa = Uiz3 +Ciy3-Pis3

|+4 g|+3 + p|+3 (g|+2 + p|+2 (g|+1+ p|+1 g)"‘ p|+2 p|+1 pl Cj)
Cira = 0iz3 1 Piys- (g|+2 + Pis2- (g|+1+ Pis1-Gi))+ Pi+3-Pit2-Pis1-Pi-C

23/07/2025

52

Fast Carry Generation

» So for example to generate c,, i.e., i =0,
C4 = U3+ P3.(92 + P2.(91 + P1.90)) + P3.P2-Pr-Po-Co
¢, =G+ Pc
where,

G =03+ P3.(92 + P2-(91 + P1-Yo))
P = p3.P,.P1-Po
» See it is quick to evaluate this function

Fast Carry Generation

« We could generate all the carrys within an
adder block using the previous equations

* However, in order to reduce complexity, a
suitable approach is to implement say 4-bit
adder blocks with only c, generated using
fast generation.

— This is used as the carry-in to the next 4-bit
adder block

— Within each 4-bit adder block, conventional RCA
is used

23/07/2025

53

Fast Carry Generation

Co a, by a; b, a, b, a; b,

|_II I I [|

Fast Carry Generation

| | | |

a b a b a b a b
Cin Cout cin cout Cin Cout cin cout
sum sum sum sum

ISO ISl ISZ |33 C4

Fast Carry Generation

€ a, by a, b, a, b a; by ag by as bs ag bg a; by
L] 1] | 1. 1 1 1 1 I} 1].] I]
| | | fd i | |
T Fast Carry Generation Fast Carry Generation [
[1 [1 1 1 1 1 1 1
a b a b a b a b a b a b a b a b
CD CHF C()!H CIH CU(H CH? Ctlhi CH? CIIM \':4 Cfi) C(i!d C!H C(HEF Cfi) C(i!d C!H C(HEF
sunm sim sum sum sum sum sum
T T T T T T T
KR r; TRy t; T U T3

» Conventional ripple carry within 4-bit blocks
» Fast carry generation between 4-bit blocks
» Trade-off between complexity and speed

Cy

23/07/2025

54

23/07/2025

Digital Electronics:
Combinational Logic

Multilevel Logic and Hazards

Multilevel Logic

* We have seen previously how we can
minimise Boolean expressions to yield
so called 2-level’ logic implementations,
l.e., SOP (ANDed terms ORed together)
or POS (ORed terms ANDed together)

» Note also we have also seen an
example of ‘multilevel’ logic, i.e., full
adders cascaded to form a ripple carry
adder — see we have more than 2 gates
in cascade in the carry chain

55

23/07/2025

Multilevel Logic

« Why use multilevel logic?

— Commercially available logic gates usually
only available with a restricted number of
inputs, typically, 2 or 3.

— System composition from sub-systems

reduces design complexity, e.g., a ripple
adder made from full adders

— Allows Boolean optimisation across multiple
outputs, e.g., common sub-expression
elimination

Building Larger Gates

 Building a 6-input OR gate

56

Common Expression Elimination

« Consider the following minimised SOP
expression:

z=ad.f +aef +bd.f +be.f +cd.f +cef+g
* Requires:
 Six, 3 input AND gates, one 7-input
OR gate — total 7 gates, 2-levels

* 19 literals (the total number of times
all variables appear)

Common Expression Elimination

» We can recursively factor out common literals
z=ad.f +ae.f +bd.f +be.f +cd.f +cef +g

z=(ad+ae+bd+be+cd+ce).f+g
z=((@a+b+c)d+(a+b+c)e).f +g
z=(a+b+c).(d+e).f +g
* Now express z as a number of equations in 2-
level form:
Xx=a+b+c y=d+e z=xy.f+g
» 4 gates, 9 literals, 3-levels

23/07/2025

57

Gate Propagation Delay

« So, multilevel logic can produce reductions
in implementation complexity. What is the
downside?

« We need to remember that the logic gates
are implemented using electronic
components (essentially transistors) which
have a finite switching speed.

« Consequently, there will be a finite delay
before the output of a gate responds to a
change in its inputs — propagation delay

Gate Propagation Delay

* The cumulative delay owing to a number of
gates in cascade can increase the time
before the output of a combinational logic
circuit becomes valid

« For example, in the Ripple Carry Adder, the
sum at its output will not be valid until any
carry has ‘rippled’ through possibly every full
adder in the chain — clearly the MSB will
experience the greatest potential delay

23/07/2025

58

23/07/2025

Gate Propagation Delay

* As well as slowing down the operation of
combinational logic circuits, gate delay can
also give rise to so called ‘Hazards’ at the
output

* These Hazards manifest themselves as
unwanted brief logic level changes (or
glitches) at the output in response to
changing inputs

» We will now describe how we can address
these problems

Hazards

» Hazards are classified into two types,
namely, static and dynamic

 Static Hazard — The output undergoes a
momentary transition when one input
changes when it is supposed to remain
unchanged

* Dynamic Hazard — The output changes
more than once when it is supposed to
change just once

59

Timing Diagrams

» To visually represent Hazards we will use the
so called ‘timing diagram’

» This shows the logical value of a signal as a
function of time, for example the following
timing diagram shows a transition from 0 to 1
and then back again

Logic ‘1’

Logic ‘0’

Time

Timing Diagrams

* Note that the timing diagram makes a number
simplifying assumptions (to aid clarity)
compared with a diagram which accurately
shows the actual voltage against time
— The signal only has 2 levels. In reality the signal
may well look more ‘wobbly’ owing to electrical
noise pick-up etc.

— The transitions between logic levels takes place
instantaneously, in reality this will take a finite
time.

23/07/2025

60

Logic ‘1’

Logic °

Logic ‘1’

Logic ‘0’

Static Hazard

“ Static 1 hazard
Time

H Static 0 hazard
Time

Logic ‘1’

Logic ‘0’

Logic ‘1’

Logic ‘0’

Dynamic Hazard

‘ ‘ Dynamic hazard
‘ ‘ ‘ ‘ Dynamic hazard

Time

23/07/2025

61

Static 1 Hazard

X u y
y w
t
t

\" u
— V
This circuit implements,

W=XYy+2y W J

Consider the output when Z = X =1

and Y changes from 1 to 0

Hazard Removal

 To remove a 1 hazard, draw the K-map
of the output concerned. Add another
term which overlaps the essential terms

* To remove a 0 hazard, draw the K-map
of the complement of the output
concerned. Add another term which
overlaps the essential terms
(representing the complement)

* To remove dynamic hazards — not
covered in this course!

23/07/2025

62

23/07/2025

Removing the static 1 hazard

W=XYy+Z2y
z

yz
XN\.00 01 11 10
0 (1) y w
« 1o -
y |
Extra term added to remove
hazard, consequently,

W=X.Y+2Y+XZ

63

Digital Electronics:
Combinational Logic

Beyond Simple Logic Gates

Multiplexer

* Multiplexer (Mux)/selector — chooses
1 of many inputs to steer to its single
output under the direction of control
inputs, e.g., if the input to a circuit can
come from several places a Mux is one
way to funnel the multiple sources
selectively to the single output.

23/07/2025

64

Multiplexer

* The hazard example is actually a 2-to-1 (2:1)
Mux, i.e., it can select either input x or z to
appear at output w under control of y

X—

y W Xzylw
000/0
010|1
100(0

— 110(1

y y 0010

— 0110

I W
S Mu—w 1011
| 111(1
y y
Multiplexer

» Clearly an n-to-1 (n:1) Mux is also possible.

For example, an 8-to-1 (8:1) Mux will need
3 control inputs.

« A Mux can also be used to implement
combinational logic functions. For example,
an 8 input Mux can be used to implement
functions having 3 variables expressed as
a sum of minterms, i.e., DNF.

f =XV.Z+XY.Z+XY.Z+X.Yy.Z+X.Y.Z

23/07/2025

65

Multiplexer
f =XY.Z+XYy.Z+XY.Z+XY.Z

1 —l,
0 —I,
1 —1
8_:2 Fl—of
0 —Is
1—ls
1—1175,5S,

1]

« The control inputs are used to select the
minterms required at the output. The Mux is
sometimes called a hardware look-up table.

Multiplexer

* In this example, if we use one of the logic
variables as input to the multiplexer, then we
can get away with a 4-to-1 (4:1) Mux

23/07/2025

66

Multiplexer

» We see it can also be designed via a truth
table based approach, e.g.,

Xyz|f

RS R

0010(1] | 7

00:1fo! 0 7 —10

01,01 s 7 —I

o1i1lol =2 o— T
1000 _ —k ss
10010l 1270 mi
110111 153=1 l l
1111 Xy

Demultiplexer

» A demultiplexer is the opposite of a Mukx,
l.e., a single input is directed to exactly
one of its outputs

» The truth table for a 1-to-2 (1:2) Demukx,
l.e., 1 control input and 2 outputs is:

23/07/2025

67

Demultiplexer
» Clearly a larger Demux are also possible.
For example, a 3-t0-8 (3:8) Demux has 3
control inputs and 8 outputs.

A related function is a Decoder. In this
case the input g is permanently connected
to a logic 1. This yields a 1-of-2 decoder
(also known as a 1:2 decoder)

Decoder

» Clearly an 1-of-n Decoder is possible. For
example, a 1-of-8 Decoder (i.e., a 3:8
demux) has 3 control inputs and 8 outputs.

A typical application would be to ‘Enable
(EN)’ 1 out-of-n logic sub-systems.

82 _|_|— EN System 0 . SO’ |ett|ng
;_ :j 8§: EN System 1 le’ y:Z:O
z s, 8;: will enable
Og— System 1
O EN System 7

23/07/2025

68

23/07/2025

Decoder

* We can see that a 1-of-n Decoder will
generate all the possible minterms having
n variables.

» Consequently, a logical expression having
DNF form can be implemented by ORing
together the required minterms at the
decoder output.

» Multiple output logic blocks can be created
by using multiple OR gates at the decoder
output, i.e., one for each output.

Decoder

« Decoder implementation of a 3 variable, 2
output combinational logic block.

0, I) fo=Z.yX+Z.yX+2yX

0,
X So 0, ! Additional OR gates
y S, 83 i to give rT}ore "
z S, O: i outputs If require

o.—
Oj_@_ f) = Z.y.X+2.y.X

69

Even More Ways to Implement
Combinational Logic

* We have seen how combinational logic
can be implemented using logic gates
(e.g., AND, OR), Mux and Demux.

* However, it is also possible to generate
combinational logic functions using
memory devices, e.g., Read Only
Memories (ROMSs)

ROM Overview

« A ROM is a data storage device:
— Usually written into once (either at manufacture or
using a programmer)
— Read at will
— Essentially is a look-up table, where a group of
input lines (say n) is used to specify the address
of locations holding m-bit data words

— For example, if n = 4, then the ROM has 24 = 16
possible locations. If m = 4, then each location
can store a 4-bit word

— So, the total number of bits stored is mx2" | i.e.,
64 in the example (very smalll) ROM

23/07/2025

70

ROM Example
address data Design amounts to putting
Z A Do minterms in the appropriate
y A, 64bit p, address location
X——(A, ROM p,——
'0'—A, D,[— No logic simplification
; required
t
giifﬁ) xyz|f D3DazaDlD0 UsefL_JI if multiple Boolean
0 000111 XXX 1 functlons are to be o
1 0011l xXxx1 implemented, e.g., in this
2 0101l XXX 1 case we can easily do up to
3 O11f1| XXX 1 4, i.e., 1 for each output line
4 100|0(XXXDO
5 101|0| XXX O Reasonably efficient if lots of
6 110(0)XXXDO0 minterms need to be
7 11111 XXX 1 generated

ROM Implementation

« Can be quite inefficient, i.e., become large in
size with only a few non-zero entries, if the
number of minterms in the function to be
implemented is quite small

» Devices which can overcome these problems
are known as programmable logic array (PLA)

* In PLAS, only the required minterms are
generated using a separate AND plane. The
outputs from this plane are ORed together in
a separate OR plane to produce the final
output

23/07/2025

71

Basic PLA Structure

e
e
e

N
e R
e
o

ANID
NLD pPidlie

\‘ 4, \‘ 4, \‘ 4,

\\ fO
Progrgmmed by _ OR plane]
selectively removing
connections in the AND \ f)
and OR planes —]
controlled by fuses or
memory bits \ f,

Other PLA Style Structures

* In PLAS, only the required minterms are
generated using a separate AND plane.
Output from this plane are available to all OR
gates to give the final output

» A modified structure known as Programmable
Array Logic (PAL) does not have a
programmable OR array and so outputs from
the AND array can not be shared among the
OR gates to give the final outputs.

» This simplifies the structure, but at the cost of
lower efficiency

23/07/2025

72

Basic PAL Structure

AND
plane

OR
plane

i

Other Memory Devices

» Non-volatile storage is offered by ROMs (and
some other memory technologies, e.g.,
FLASH), i.e., the data remains intact, even

when the power supply is removed

 Volatile storage is offered by Static Random
Access Memory (SRAM) technology

— Data can be written into and read out of the
SRAM, but is lost once power is removed

23/07/2025

73

Memory Application

Memory devices are often used in computer
systems

The central processing unit (CPU) often
makes use of busses (a bunch of wires in
parallel) to access external memory devices

The address bus is used to specify the
memory location that is being read or written
and the data bus conveys the data too and
from that location

So, more than one memory device will often
be connected to the same data bus

Bus Contention

In this case, if the output from the data pin of
one memory was a 0 and the output from the
corresponding data pin of another memory
was a 1, the data on that line of the data bus
would be invalid

So, how do we arrange for the data from
multiple memories to be connected to the
same bus wires?

23/07/2025

74

Bus Contention

* The answer is:
— Tristate buffers (or drivers)
— Control signals

« A tristate buffer is used on the data output of
the memory devices

— In contrast to a normal buffer which is either 1
or O at its output, a tristate buffer can be
electrically disconnected from the bus wire, i.e.,
it will have no effect on any other data currently
on the bus — known as the ‘high impedance’

condition
Tristate Buffer
Symbol _ Functional Bus line
Bus line analogy us hi
OE=1

o

Output Enable

(OE)=1 OiEJ
‘/(4[>.._
OE=0

23/07/2025

75

Control Signals

* We have already seen that the memory
devices have an additional control input (OE)
that determines whether the output buffers are
enabled.

» Other control inputs are also provided:

— Write enable (WE). Determines whether data is
written or read (clearly not needed on a ROM)

— Chip select (CS) — determines if the chip is
activated
» Note that these signals can be active low,
depending upon the particular device

23/07/2025

76

23/07/2025

Digital Electronics:
Sequential Logic

Introduction, Latches and Flip-
Flops

Introduction

» The logic circuits discussed previously
are known as combinational, in that the
output depends only on the condition of
the latest inputs

» However, we will now introduce a type
of logic where the output depends not
only on the latest inputs, but also on the
condition of earlier inputs. These circuits
are known as sequential, and implicitly
they contain memory elements

77

A memory stores data — usually one bit per

element

A snapshot of the memory is called the state
A one bit memory is often called a bistable,

Memory Elements

I.e., it has 2 stable internal states

Flip-flops and latches are particular
Implementations of bistables

* An RS

RS Latch

latch is a memory element with 2

inputs: Reset (R) and Set (S) and 2

outputs: Qand Q.

R o SR Q" Q'| comment
00|QQ | hod
o1l0 1 reset
10|10 | set

s Q 11(00 illegal

Where Q' is the next state
and Q is the current state

23/07/2025

78

RS Latch - Operation

R Q NOR truth table
ably

é | b complemented

Q

==|=x=]
RO RO

S 8 | always 0

e R=1andS=0
— Gate 1 output in ‘always 0’ condition, @ =0
— Gate 2 in ‘complement’ condition, so Q=1
« This is the (R)eset condition

RS Latch - Operation

R Q NOR truth table
ably
01 | b complemented
B 10
S Q 2 8 | always 0

e S=0andRto 0
— Gate 2 remains in ‘complement’ condition, Q=1
— Gate 1 into ‘complement’ condition, Q=0

* This is the hold condition

23/07/2025

79

RS Latch - Operation

R Q NOR truth table
ably

é | b complemented

Q

==|=x=]
RO RO

S 8 | always 0

«S=l1landR=0
— Gate 1 into ‘complement’ condition, Q =1
— Gate 2 in ‘always 0’ condition, Q =0

» This is the (S)et condition

RS Latch - Operation

R Q NOR truth table
ably
01 | b complemented
B 10
S Q 2 8 | always 0

e S=l1landR=1

» This is the illegal condition

23/07/2025

80

RS Latch — State Transition Table

» A state transition table is an alternative
way of viewing its operation

QsR|Q" | comment
000(0O hold
oo1lo0 reset
010(1 set
01110 ilegal
100|1 hold
1010 reset
110(1 set
11110 illegal

* A state transition table can also be
expressed in the form of a state diagram

RS Latch — State Diagram

A state diagram in this case has 2
states, i.e., Q=0 and Q=1

» The state diagram shows the input
conditions required to transition
between states. In this case we see that
there are 4 possible transitions

» We will consider them in turn

23/07/2025

81

RS Latch — State Diagram

Q=0 Q=0
QsR |Q | comment From the table we can see:
000|O hold SR+SR+SR=
8 2% g ;ee?et S(R+R)+S.R=S+SR=
011]0 llegal (S+S).(S+R)=S +R
100]|1 hold
101!l o0 reset =1 =1
1101 set Q Q _
11110 illegal From the table we can see:
SR+SR=R.(S+9)=
R
RS Latch — State Diagram

, Q=1 Q=0
C? ?) 5 % Corr;r;llznt From the table we can see:
001 0 reset §R+SR:

set S

01215 | ilega R(S+3)=R
1001 hold
10110 reset Q=0 Q'=1
110]|1 set From the table we can see:
11110 illegal SR

23/07/2025

82

RS Latch — State Diagram

» Which gives the following state diagram:

S.R
Nez izl

R
« A similar diagram can be constructed for the

Q output
» We will see later that state diagrams are a
useful tool for designing sequential systems

Clocks and Synchronous Circuits

» For the RS latch we have just described, we
can see that the output state changes occur
directly in response to changes in the inputs.
This is called asynchronous operation

« However, virtually all sequential circuits
currently employ the notion of synchronous
operation, that is, the output of a sequential
circuit is constrained to change only at a time
specified by a global enabling signal. This
signal is generally known as the system clock

23/07/2025

83

Clocks and Synchronous Circuits

 The Clock: What is it and what is it for?

— Typically it is a square wave signal at a
particular frequency

— It imposes order on the state changes
— Allows lots of states to appear to update
simultaneously
« How can we modify an asynchronous
circuit to act synchronously, i.e., in
synchronism with a clock signal?

Transparent D Latch

« We now modify the RS Latch such that its
output state is only permitted to change when
a valid enable signal (which could be the
system clock) is present

« This is achieved by introducing a couple of
AND gates in cascade with the R and S inputs
that are controlled by an additional input
known as the enable (EN) input.

23/07/2025

84

Transparent D Latch

R Symbol
Q
—b ol—
-
EN S Q
D EN
« See from the AND truth table: AND truth table
— if one of the inputs, say ais 0, the output = b |y
is always O 0010
— Output follows b input if a is 1 8 é 8
* The complement function ensures 1111

that R and S can never be 1 at the
same time, i.e., illegal avoided

Transparent D Latch

R
Q
EN S Q
D N
D EN| Q" Q'|comment
X 0 |QQ | RShold
0 1101 RS reset
1 1|10 RS set

+ See Q follows D input provided EN=1.
If EN=0, Q maintains previous state

23/07/2025

85

23/07/2025

Master-Slave Flip-Flops

» The transparent D latch is so called ‘level’
triggered. We can see it exhibits transparent
behaviour if EN=1. It is often more simple to
design sequential circuits if the outputs
change only on the either rising (positive
going) or falling (negative going) ‘edges’ of
the clock (i.e., enable) signal

* We can achieve this kind of operation by
combining 2 transparent D latches in a so
called Master-Slave configuration

Master-Slave D Flip-Flop

Master Slave Symbol

D D Q Qim D Q _Q D Q

1 1 A

« To see how this works, we will use a timing diagram

 Note that both latch inputs are effectively connected
to the clock signal (admittedly one is a complement
of the other)

86

23/07/2025

Master-Slave D Flip-Flop

Master Slave
D D Q Qint D Q —Q
- [See Q changes on rising
CLKADQ—~‘>OJ edge of CLK
CLK
CLK

Note propagation delays
D have been neglected in
the timing diagram
Qint

Q

D Flip-Flops

» The Master-Slave configuration has
now been superseded by new F-F
circuits which are easier to implement
and have better performance

» When designing synchronous circuits it
Is best to use truly edge triggered F-F
devices

» We will not consider the design of such
F-Fs on this course

87

Other Types of Flip-Flops

« Historically, other types of Flip-Flops
have been important, e.qg., J-K Flip-
Flops and T-Flip-Flops

However, J-K FFs are a lot more
complex to build than D-types and so
have fallen out of favour in modern
designs, e.q., for field programmable
gate arrays (FPGAs) and VLSI chips

Other Types of Flip-Flops

Consequently we will only consider
synchronous circuit design using D-type
FFs

However for completeness we will
briefly look at the truth table for J-K and
T type FFs

23/07/2025

88

J-K Flip-Flop

* The J-K FF is similar in function to a
clocked RS FF, but with the illegal state
replaced with a new ‘toggle’ state

JK | Q" Q'|comment Symbol

00[QQ | hold —1y Q—

0110 1 reset

10|10 | set K Q
~ A

11]|1Q Q| toggle

Where Q' is the next state
and Q is the current state

T Flip-Flop

» This is essentially a J-K FF with its J
and K inputs connected together and
renamed as the T input

__, Symbol
T | Q" Q'lcomment o
0[QQ | hold 1
1]QQ toggle QI

Where Q' is the next state
and Q isthe current state

23/07/2025

89

Asynchronous Inputs

It is common for the FF types we have mentioned
to also have additional so called ‘asynchronous’
inputs

They are called asynchronous since they take
effect independently of any clock or enable inputs
Reset/Clear — force Qto O

Preset/Set — force Qto 1

Often used to force a synchronous circuit into a
known state, say at start-up.

Timing

 Various timings must be satisfied if a FF

IS to operate properly:

— Setup time: Is the minimum duration that
the data must be stable at the input before
the clock edge

— Hold time: Is the minimum duration that the
data must remain stable on the FF input
after the clock edge

23/07/2025

90

Timing

CLK

t, Set-up time
t, Hold time
t, Propagation delay

23/07/2025

91

23/07/2025

Digital Electronics:
Sequential Logic

Flip-Flop Applications and
Timing Considerations

Counters

» A clocked sequential circuit that goes through a
predetermined sequence of states

« A commonly used counter is an n-bit binary counter.
This has n FFs and 2" states which are passed
through in the order 0, 1, 2,2"-1, 0, 1, .

» Uses include:
— Counting
— Producing delays of a particular duration
— Sequencers for control logic in a processor

— Divide by m counter (a divider), as used in a
digital watch

92

Memories

» For example,

— Shift register
 Parallel loading shift register : can be used for
parallel to serial conversion in serial data
communication
« Serial in, parallel out shift register: can be used
for serial to parallel conversion in a serial data
communication system.

Counters

* In most books you will see 2 basic types
of counters, namely ripple counters and
synchronous counters

* In this course we are concerned with
synchronous design principles. Ripple
counters do not follow these principles
and should generally be avoided if at all
possible. We will now look at the
problems with ripple counters

23/07/2025

93

q°

Ripple Counters

» Aripple counter can be made be cascading
together negative edge triggered T-type FFs
operating in toggle’ mode, i.e., T =1

Qo

|———T

AQ

CLK —T

q°

Ql_Q |_Q

Q Q

ok I

« See that the FFs are not clocked using the
same clock, i.e., this is not a synchronous
design. This gives some problems....

Ripple Counters

« We will now draw a timing diagram

CLK_|
Qo
Q
Q,
0 1 2
* Problems:

3 4 5 6 7

]

0

See outputs do not change at the same time, i.e., synchronously.
So hard to know when count output is actually valid.

Propagation delay builds up from stage to stage, limiting
maximum clock speed before miscounting occurs.

23/07/2025

94

23/07/2025

Ripple Counters

* |f you observe the frequency of the counter
output signals you will note that each has half
the frequency, i.e., double the repetition
period of the previous one. This is why
counters are often known as dividers

« Often we wish to have a count which is not a
power of 2, e.g., for a BCD counter (0 to 9).To
do this:

— use FFs having a Reset/Clear input

— Use an AND gate to detect the count of 10 and
use its output to Reset the FFs

Synchronous Counters

» Owing to the problems identified with ripple
counters, they should not usually be used to
implement counter functions

* Itis recommended that synchronous counter
designs be used

* In a synchronous design

— all the FF clock inputs are directly connected to the clock
signal and so all FF outputs change at the same time, i.e.,
synchronously

— more complex combinational logic is now needed to
generate the appropriate FF input signals (which will be
different depending upon the type of FF chosen)

95

23/07/2025

Synchronous Counters

» We will now investigate the design of
synchronous counters

* We will consider the use of D-type FFs
only, although the technique can be
extended to cover other FF types.

» As an example, we will considera 0 to 7
up-counter

Synchronous Counters

» To assist in the design of the counter we will make
use of a modified state transition table. This table
has additional columns that define the required FF
inputs (or excitation as it is known)

— Note we have used a state transition table previously
when determining the state diagram for an RS latch

« We will also make use of the so called ‘excitation
table’ for a D-type FF

 First however, we will investigate the so called
characteristic table and characteristic equation for a
D-type FF

96

Characteristic Table

 In general, a characteristic table for a FF
gives the next state of the output, i.e.,Q"in
terms of its current state Q and current inputs

Q D|Q Which gives the characteristic equation,
0 0]o0 Q'=D
(1) (1) é i.e., the next output state is equal to the
1 1|1 current input value

Since Q' is independent of Q D |Q

the characteristic table can 0O

be rewritten as 111

Excitation Table

» The characteristic table can be modified to
give the excitation table. This table tells us
the required FF input value required to
achieve a particular next state from a given
current state

’ As with the characteristic table it can
Q QD be seen that Q', does not depend
upon, Q , however this is not
generally true for other FF types, in

which case, the excitation table is
more useful. Clearly for a D-FF,

D=Q'

Rk OO
RO RO
RO RO

23/07/2025

97

Characteristic and Excitation
Tables

* Characteristic and excitation tables can
be determined for other FF types.

* These should be used in the design
process if D-type FFs are not used

* For example, for a J-K FF the following
tables are appropriate:

Characteristic and Excitation

Tables
J K|Q Q QlJ K
o o0o|Q 0 0|0 x
0 1] 0 0 1] 1 x
1 0|1 1 0| x 1
1 11]Q 1 1(x O
Truth table Excitation table

» We will now determine the modified
state transition table for the example O
to 7 up-counter

23/07/2025

98

Modified State Transition

Table

 In addition to columns representing the
current and desired next states (as in a
conventional state transition table), the
modified table has additional columns
representing the required FF inputs to
achieve the next desired FF states

Modified State Transition Table

« Fora Oto 7 counter, 3 D-type FFs are needed

Current Next FF The procedure is to:

state state ~ inputs Write down the desired
QQ1Q | QQQy| D,D1Dy count sequence in the
000|001l 001 current state columns
8 2 (1) 8 % (i) 8 % 8 Write down the required
011l100 1 100 next states in the next
100l1011101 state columns
101l110!l110 Fill in the FF'inputs
1101111111 required to give the
111/000|l000 defined next state
Note: Since Q'=D (or D =Q") for a D-FF, the

required FF inputs are identical to the Next state

23/07/2025

99

Synchronous Counter Example

If using J-K FFs for example, we need J and K
input columns for each FF

Also note that if we are using D-type FFs, it is not
necessary to explicitly write out the FF input
columns, since we know they are identical to
those for the next state

To complete the design we now have to
determine appropriate combinational logic circuits
which will generate the required FF inputs from
the current states

We can do this from inspection, using Boolean
algebra or using K-maps.

Synchronous Counter Example

Current Next FF By inspection’

state state inputs e

Q0| B[DDy LN
2x1<0f ~2x1<0) #27170 Note: FF, is toggling
000|001 001 _
001l010|010 AsoD=Q®Q
010(011 (011 UseaK-mapforD,,
011100 100 Q0 Qo
100|101 101 Q2\\00 01 11 10
101110 110 0 @
110111 111 Qﬂ 1 B /
111({000 00O

Fo

Q2 QQ Q. Q,

23/07/2025

100

Synchronous Counter Example

_Q
1~0
Q2\.00 01 11 10 So
0 @) R . o
Q 1D D]/ Dy =Qp-Q2 +Q1.Q + Q. Q1.Q

- /T D, = Q,.(Qp-+ Q) +Q.Q.Q,
QQ §.Q, QQ,

Q Q
0 1 Qo Qz
Qo
) 0 Q1 Combinati- QJ
onal logic
AQ AR Q; A2

CLK

Synchronous Counter

« A similar procedure can be used to design
counters having an arbitrary count sequence
— Write down the state transition table
— Determine the FF excitation (easy for D-types)

— Determine the combinational logic necessary to
generate the required FF excitation from the
current states — Note: remember to take into
account any unused counts since these can be
used as don’t care states when determining the
combinational logic circuits

23/07/2025

101

Shift Register

« A shift register can be implemented
using a chain of D-type FFs

0 Q Q.

Q Q Q
Din_ D D b

/\6 /\(j

CLK

« Has a serial input, D;, and parallel
output Q,, Q; and Q,.

Shift Register

CLK

D.

In

Q|
Q

Q,

« See data moves one position to the
right on application of each clock edge

23/07/2025

102

Shift Register

« Asynchronous Preset and Clear inputs
on the FFs can be utilised to provide a
parallel data input feature

« Data can then be clocked out through
Q, in a serial fashion, i.e., we now have
a parallel in, serial out arrangement

» This along with the previous serial in,
parallel out shift register arrangement
can be used as the basis for a serial
data link

Serial Data Link

Qo Ql Q2 Qo Ql QZ

Parallel in | Serial Data | gerig] in
serial out parallel out

CLK

* One data bit at a time is sent across the serial
data link

« See fewer wires are required than for a
parallel data link

23/07/2025

103

System Timing

» The clock period, T, is the time between the
rising edges of a repetitive clock signal

» The clock frequency, f., is the reciprocal of
the clock period, i.e., f, = 1/T,

* Note the unit of frequency is Hz, though
typical modern processors can operate up to
several GHz

« All things being equal, increasing the clock
frequency increases the ‘work’ that a digital
system can accomplish per unit time

Set-up Time Constraint

* Previously, we saw the timing constraints that apply
for correct operation of an edge triggered D-FF

* We will now see how these constraints affect system

clock speed.
CLK

D

Q

toc

t,, Set-uptime t;, Holdtime

CLK-to-Q Propagation
delay

23/07/2025

104

23/07/2025

Set-up Time Constraint
Qo Q

Q QF—

Do | | Combinational | Pt
~ Logic (CL) b
AQ AQ

CLK — CLK —

* The above diagram shows a generic path in a
synchronous sequential circuit

* On the rising edge of CLK , FFO gives output Q,
(after delay t,.).

» This signal enters a block of combinational logic (CL)
producing D, (after a delay of t4 from Q, changing),
which is the input to FF1

+ To satisfy the setup time for FF1, D, must settle no
later than the setup time before the next CLK edge

Set-up Time Constraint

CLK \

QO J(

D, X
tpC tpd tsu

* The diagram shows the maximum propagation
delay t,, that will enable the worst case setup
time to be satisfied (assuming worst case t,.),

l.e., the minimum clock period is given by,
Tc = tpc T tpa T tsu

105

23/07/2025

Set-up Time Constraint

» Note that the clock period of a system (i.e., the
clock speed) is often set by the marketing dept!

 Since the worst case (i.e., maximum) values of
t,c and ty, are specified by the chip
manufacturer, we can rearrange the previous
equation to solve for the maximum propagation
delay through the combinational logic, which is
usually the only variable under the control of
the system designer,

tpd = TC - (tpc + tsu)

« If this cannot be achieved by redesigning the
combinational logic, the clock period has to be
increased to ensure correct operation

Hold Time Constraint

CLK N

QO J(

D, X
tpc tq Ly

thold

* The diagram shows that D; must not change
in a time shorter than t, ;4 (the min FF hold
time). Thus the min value of t+t,; must be
greater than t, 4, i.€.,

(tpe + tpa)min = tpog

106

Hold Time Constraint
We would expect 2 FFs to be able to be directly
cascaded i.e., with no combinational logic
between them, without any timing issues. In this
case, t;=0, so

(tpc)min = tyeiq

So, a reliable FF must have a minimum hold
time less than the min propagation delay time

Often FFs are designed with t, ;= 0, hence the
above condition is always satisfied

Note that hold time violations cannot be
overcome by adjusting the clock period.
Consequently, they can be hard to fix and have
to be taken seriously

Propagation Delay - Note

In some books, e.qg., Harris and Harris, the
minimum propagation delay of a FF or of some
combinational logic is called the contamination
delay, i.e., (t,c)min and (t,4)min are the clock-to-Q
and combinational contamination delay
respectively

As we have seen, the maximum propagation
delay is usually our main concern, since this
limits the maximum clock rate. However, we
have also seen that contamination delay must
be considered regarding the hold time
constraint

23/07/2025

107

Clock Skew

* In the previous slides, we have assumed that
the system clock reaches all the FFs at the
same time

» Owing to the physical layout of the clock wiring
giving rise to different wire lengths and hence
different propagation delays, in reality, the clock
edges will not arrive at the FFs at the same
time. This variation is known as clock skew.

* In the following case, the clock to FF1 (CLK,) is
in advance (by t,,, seconds) of the clock to
FFO (CLK,)

Clock Skew — Set-up Time

CLK, N —

QO J(

D, xm%f
CLK, / \ T

tpc t d tsu tskevv
* The diagram shows the max propagation delay
t,¢ that will enable the worst case setup time to
be satisfied (with worst case t;), I.e., the min
clock period is given by, Tc = t,. + tpg + tey + tsgew

23/07/2025

108

23/07/2025

Clock Skew — Set-up Time

» So the max propagation delay through the
combinational logic is

tpd < TC - (tpc +toy + tskew)

* Thus in this case the clock skew has the effect
of reducing the allowable propagation delay
through the combinational logic

« Equivalently, for a fixed value of combinational
logic propagation delay, the clock period T,
must be increased, i.e., the clock frequency
decreased

Clock Skew — Hold Time

CLK, NI

QO J’<

D, ARARR)

CLK, N\ a

t t

| o
—

skew

skew “pc pd 1:su

1:hold

109

Clock Skew — Hold Time

* The diagram shows that D; must not change
in a time shorter than t, 4 (the min FF hold
time). Thus tg,, plus the min value of t,+t,
must be greater than t,,4, i.€.,

tskew + (tpc + tpd)min = thold

* We see that in this case, the presence of
clock skew makes it easier to satisfy the hold
time constraint, i.e., in effect, the availability of
hold time is increased.

Metastability

* Itis not always possible to control when a FF input
changes in relation to the clock edge

» For example, this can occur when the input signal
comes from an external user input, e.g., a button

« Consider the following example when the D input
change violates the dynamic requirements

to T « This causes the
output Q to be
CLK undefined

* Momentarily it can
take on a voltage

"0 o _betV\(een O_and_VDD ,

Q - i.e., in the invalid

range

D

23/07/2025

110

Metastability

This is known as metastability and one way to
visualise it is to consider a ball on the summit of a hill
between 2 valleys

metastable
* The 2 valleys are stable states,
l.e., 0 or 1, and the ball will remain
stable stable_ there as long as it is not disturbed

The hill top is called metastable, because the ball
would remain there if it were perfectly balanced

Since nothing is perfect, the ball will eventually roll
one side or the other to reach a stable state

How long this takes depends upon how well balanced
the ball was in the first place

Metastability

Eventually, the FF output will resolve to a stable valid
0 or 1 voltage level

In theory, the resolution time is unbounded, however,
we can model the probability of the resolution time, t,
exceeding some arbitrary time t

Ty _t

P(tyes >t)=—et

Te
where T, is the clock period, and T, and r are
characteristics of the FF.

We can view T,/ T, as the probability that the input
changes at a ‘bad’ time since we see it decreases
with increasing T, , and 7 is a time constant indicating
how fast the FF will exit the metastable state

23/07/2025

111

23/07/2025

Metastability

« We will not go in to the derivation of this model, but
the key point is that this probability decreases
exponentially as t increases, i.e., the longer we walit,
the lower is the probability of the output being in a
metastable state

* Metastability gives rise to severe system problems
and we must minimise the probability of it occurring

« One way to do this is to use a ‘synchroniser’

consisting of cascaded FFs, often one more in
addition to the original input FF.

Metastability

« To minimise the probability of metastablity we use a
synchroniser. In its simplest form it uses 1 more FF.
Q

Dg_D Q_l D, Q—

D

a2 AQ
CLK — T CLK —
C
CLK N\
D, ____f

Q
tres tSU tpc

112

Metastability

CLK \

Q
tI’ES tSU tpc

The output from FFO, D,, will resolve to a valid level
with high probability if T, is long enough

FF1 now has valid input that satisfies both its setup
and hold times and yields a valid output Q

Metastability

To reduce the probability of an invalid output from the
synchroniser, we need to wait a longer time for the
metastable condition at D, to resolve, i.e., we need to
increase time t

So to satisfy the setup time t,, for FF1, we need to
increase the clock period T, i.e., slow the clock rate

We say that the synchroniser fails if output Q
becomes metastable

This may happen if D, has not resolved to a valid
level before it needs to satisfy the setup condition on
FF1, thatis, if t > T.- t,

23/07/2025

113

Metastability

So the probability of failure for a single input change is
TO _Tc_tsu
Prai = Fce T
If input D, changes once per second, the probability of
failure per second is just Py

However, if D,changes N times per second, the
probability of failure per second is N times greater

Prair/s = NPgqy

Metastability

System reliability is usually measured as the mean
time between failures (MTBF)

This is just the reciprocal of the probability that a
system will fail in any given second

Tc_tsu
T.e

Prait/s NT,

MTBF =

23/07/2025

114

Metastability - Example

« The FFs in the example synchroniser have the
following characteristics: 7= 200 ps, T,= 150 ps and

t,, = 500 ps. The input data changes 0.2 times per
second on average

* How long must be the synchroniser clock period be for
the MTBF to exceed 1 year?

» Solution —
— So, 1year ~ 31.5x 10°s
and using the previous equation,

Tc=500x10~12
31.5x 10 = T.e 200x10~ 12
| ~ (0.2)150 x 1012

This equation has no closed form solution, but by trial and
error we can get T.=3.04 ns

Metastability

« If T, becomes excessive to achieve a specified MTBF,
it is possible to cascade additional FFs. So for a
synchroniser with a total of K additional FFs,

_ K

Prait k = (Prail)

Hence, Pray /S = N Prai ik = N(Prai)”
Yielding,

MTBF = ———

N (Prain)¥

— For this to work well for a reasonable number FFs,
the probability of metastability at the output of each
FF has to be much lower than 1

23/07/2025

115

23/07/2025

Digital Electronics:
Sequential Logic

Synchronous State Machines 1

Introduction

* We have seen how we can use FFs (D-types
in particular) to design synchronous counters

« We will now investigate how these principles
can be extended to the design of synchronous
state machines (of which counters are a
subset)

« We will begin with some definitions and then
introduce two popular types of machines

116

Definitions

Finite State Machine (FSM) — a deterministic
machine (circuit) that produces outputs which
depend on its internal state and external inputs

States — the set of internal memorised values,
shown as circles on the state diagram

Inputs — External stimuli, labelled as arcs on the
state diagram

Outputs — Results from the FSM

Types of State Machines

» Two types of state machines are in
general use, namely Moore machines
and Mealy machines

» We will see that the state diagrams (and
associated state tables) corresponding
with the 2 types of machine are slightly
different

23/07/2025

117

Machine Schematics

Moo_re Current state
Machine
Next state Q Optional o
- ;) —_— utputs
Inputs ——f—{ combinational —Hp #H combinational [—
n logic m QIm logic
A
CLK
Mealy c ¢ stat
. urrent state
Machine
Next state Q .
combinational | Outputs

logic

Inputs ———| combinational —Hp /
n logic m A(j ml_

CLK

Moore vs. Mealy Machines

« Outputs from Mealy Machines depend upon
the timing of the inputs

+ Outputs from Moore machines come directly
from clocked FFs so:
— They have guaranteed timing characteristics
— They are glitch free

« Any Mealy machine can be converted to a
Moore machine and vice versa, though their
timing properties will be different

23/07/2025

118

Moore Machine State Diagram

+ Example FSM has 3 states (A, B and C), inputs e and r, and
output s

FF labels
[s1 50

In this case the
output s is given
by s,, i.e., s=5;

« See inputs only appear on transitions between states, i.e.,
next state is given by current state and current inputs

» Outputs determined from current state via combinational
logic (if required)

Mealy Machine State Diagram

« Example FSM has 3 states (A, B and C), inputs x and y, and
output s ' y/s

FF labels:
[s1 Sol

Transition labels:

Inputs/Output

* Inputs and outputs appear on transitions between states,
I.e., next state is given by current state and current inputs

* Output determined from current state and inputs via
combinational logic

23/07/2025

119

Moore Machine - Example

We will design a Moore Machine to implement

a traffic light controller

In order to visualise the problem it is often
helpful to draw the state transition diagram

This is used to generate the state transition

table

The state transition table is used to generate
— The next state combinational logic
— The output combinational logic (if required)

Example — Traffic Light Controller

:

See we have 4 states

So in theory we could
use a minimum of 2 FFs

(

we will see that we do not
need to use any output

> However, by using 3 FFs
combinational logic

So, we will only use 4 of
the 8 possible states

In general, state assignment is a
difficult problem and the optimum
choice is not always obvious

23/07/2025

120

23/07/2025

Example — Traffic Light Controller

State By using 3 FFs (we will use
100 R D-types), we can assign one
to each of the required
outputs (R, A, G), eliminating

Scfi‘ée the need for output logic

State We now need to write down
110 the state transition table

We will label the FF outputs
R,Aand G

Remember we do not need to

G explicitly include columns for FF
State excitation since if we use D-types
ool these are identical to the next state

Example — Traffic Light Controller

Current Next
state state

RAG|RAG

State
100 R

State
010

oRrpR
or o
OO
OOoOPRr
RPOR
OoOr o

State 010|100

110
Unused states, 000, 011, 101 and
111. Since these states will never
occur, we don’t care what output
the next state combinational logic
G gives for these inputs. These don’t
State care conditions can be used to
001 simplify the required next state
combinational logic

121

Example — Traffic Light Controller

Current Next We now need to determine the next
state state state combinational logic
RAG|RAG For the R FF, we need to determine Dy
100110 To do this we will use a K-map
110[(001
001|010 A —C
o10l100 RN\ 00 01 11 10

o x| |X[D
Unused states, 000, R| 1[@ [®] X RA
011, 101 and 111.

R.A A

Dy =RA+RA=R®A

Example — Traffic Light Controller

Current Next By inspection we can also see:
state state —
1 1 1 D :A
RAG|RAG A
100110 and,
110|001 _
001f(010 Ds =RA
010|100

Unused states, 000,
011, 101 and 111.

23/07/2025

122

23/07/2025

Example — Traffic Light Controller

R A G

5}>%D Q DAD Q DGD Q
A(j A(j A(j

CLK

FSM Problems

» Consider what could happen on power-up

» The state of the FFs could by chance be in
one of the unused states
— This could potentially cause the machine to

become stuck in some unanticipated sequence of
states which never goes back to a used state

123

FSM Problems

« What can be done?

— Check to see if the FSM can eventually
enter a known state from any of the
unused states

— If not, add additional logic to do this, i.e.,
include unused states in the state transition
table along with a valid next state

— Alternatively use asynchronous Clear and
Preset FF inputs to set a known (used)
state at power up

Example — Traffic Light Controller

* Does the example FSM self-start?

« Check what the next state logic outputs
if we begin in any of the unused states

 Turns out:

Start Next state
state logic output

000 010 _ _
011 100 Which are all So it does

101 110 valid states self start
111 001

23/07/2025

124

Example 2

» We extend Example 1 so that the traffic
signals spend extra time for the R and G

lights

» Essentially, we need 2 additional states, i.e.,

6 in total.

* In theory, the 3 FF machine gives us the

potential for sufficient states

* However, to make the machine combinational
logic easier, it is more convenient to add
another FF (labelled S), making 4 in total

Example 2

State State

1000 R 1001, R
State

0101

FF labels State
RAGS 1100

I

State State
0010 0011

See that new FF
toggles which
makes the next
state logic easier

As before, the first
step is to write
down the state
transition table

23/07/2025

125

State
1000

State
0101

)

State

labels
RAGS

State

010
e Clearly a lot of unused states.

Example 2

Current Next

0017 [(R state state
RAGS|RAGS

FF

S
1000|2001
StateR 1001|2100
1100 1100(0011
0011|0010
0010|0101
111 000

state When plotting k-maps to determine

0010 0011 the next state logic it is probably
easier to plot Os and 1s in the map
and then mark the unused states

Example 2

Current Next
state state e will now use k-maps to determine
R AG S| RAGS the nextstate combinational logic
1000100 1 FortheR FF, we need to determine Dy
100111100
1100/0011 R AN 00 01 11 10
0011(0010 00 TxTxToTo
0101({1000 o xx x e

"l 1o FOLIXxl. RA

RA

23/07/2025

126

Example 2

Current Next
state state
RAGS|RAGS
1000(1 001
10011100
1100(0011
00110010
0010|0101
0101112000

We can plot k-maps for D, and Dg
to give:

Dy=RS+G.S or
D,=RS+RS=R®S

De =R.A+GS or

By inspection we can also see:
DS - §

23/07/2025

127

Digital Electronics:
Sequential Logic

Synchronous State Machines 2

State Assignment

« As we have mentioned previously, state
assignment is not necessarily obvious or
straightforward

— Depends what we are trying to optimise, e.g.,

» Complexity (which also depends on the
implementation technology, e.g., FPGA, 74 series
logic chips).

— FF implementation may take less chip area than you may
think given their gate level representation

— Wiring complexity can be as big an issue as gate complexity
» Speed
— Algorithms do exist for selecting the ‘optimising’
state assignment, but are not suitable for manual
execution

23/07/2025

128

23/07/2025

State Assignment

- If we have m states, we need at least log, m
FFs (or more informally, bits) to encode the
states, e.g., for 8 states we need a min of 3
FFs

« We will now present an example giving
various potential state assignments, some
using more FFs than the minimum

Example Problem

» We wish to investigate some state
assignment options to implement a divide by
5 counter which gives a 1 output for 2 clock
edges and is O for 3 clock edges

CLK

Output

129

Sequential State Assignment

» Here we simply assign the states in an
increasing natural binary count

* As usual we need to write down the
state transition table. In this case we
need 5 states, i.e., a minimum of 3 FFs
(or state bits). We will designate the 3
FF outputs as c, b, and a

» We can then determine the necessary
next state logic and any output logic.

Sequential State Assignment

Current Next By inspection we can see:

state S,tzt,e , The required output is from FF b
cbalcba Plot k-maps to determine the
000|001 nextstate logic:
001|010
010|011 ForFFa:
011|100 ba —2 ac
100|000 €\, 00 01 11 10
0| 1

Unused states, 101, |1 XXX
110 and 111. b

D,=ac

23/07/2025

130

Sequential State Assighment

For FF b:
Current Next Cba ab
state state) 00 ?]:-L\ 11 :/LR/
coajoba oY
000001 ab”
001|010 - b
010|011 D,=ab+ab=a®b
011|100 ForFFc:
100[000 b _a
C\\00 01 11 10 b
Unused states, 101, 0 M1
110 and 111. c| 1 x [\ x
b
D.=ab

Sliding State Assignment

Current Next By inspection we can see that
state state we can use any of the FF

cbalchbha Outputsasthe wanted output

000|001 Plot k-maps to determine the

001|011 nextstatelogic:

01112110

110]l100 For FF a:

1 00(000O0 ba bc
CN\\.00 01 11 10—
ol D [X

Unused states, 010,
101, and 111.

el [[x]x

23/07/2025

131

23/07/2025

Sliding State Assignment

Current Next By inspection we can see that:
state state For FF b:
! ! !
cbajcba p=j
000|001 .
001l0 11 For FF c:
011|110 D, =Db
110100
100[({0O00O

Unused states, 010,
101, and 111.

Shift Register Assignment

» As the name implies, the FFs are connected
together to form a shift register. In addition,
the output from the final shift register in the
chain is connected to the input of the first
FF:

— Consequently the data continuously cycles
through the register

132

Shift Register Assignment

Current Next

State State
edchaledcba
00011|00110
00110|01100
01100/|11000
1100010001
1000100011

Unused states. Lots!

Because of the shift register
configuration and also from the
state table we can see that:

D,=e

Db =a

D, =b

Dd =C

D, =d
By inspection we can see that
we can use any of the FF
outputs as the wanted output

See needs 2 more FFs, but no logic and simple wiring

One Hot State Encoding

This is a shift register design style where only
one FF at atime holdsa 1

Consequently we have 1 FF per state,

compared with log, m for sequential assignment

However, can result in simple fast state

machines

Outputs are generated by ORing together
appropriate FF outputs

23/07/2025

133

23/07/2025

One Hot - Example

» We will return to the traffic signal example,
which recall has 4 states

?é For 1 hot, we need 1 FF for

each state, i.e., 4 in this case

The FFs are connected to form

= a shift register as in the
previous shift register example,
however in 1 hot, only 1 FF

holds a 1 at any time
§ We can write down the state
G

transition table as follows

One Hot - Example

= Current Next
§ state state
rragalrraga
R 1 000(0 1 00
01 00|00 10
0 0010|0001
0O 001|121 000
Unused states. Lots!
S Because of the shift register configuration

and also from the state table we can see

that: D, =g Dg =ra D,=r D,=a

To generate the R, A and G outputs we do the following ORIng:
R=r+ra A=ra+a G=g¢

134

23/07/2025

One Hot - Example
D.=9 Dg:ra Da=r D, =a
R=r+ra A=ra+a G=¢

r ra g a
D Q D Q D, Q D Q
D D D D
) N A2 A9
CLK
R |A G

Tripos Example

» The state diagram for a synchroniser is shown.
It has 3 states and 2 inputs, namely e and r.
The states are mapped using sequential
assignment as shown.

r FF labels
[s1 sl

An output, s should be
true if in Sync state

135

Tripos Example

Unused state 11

From inspection, S=§;

Current Input Next
state state

L
S

o |«
wn
o

X|PRORFRO|IXX]| ®
X|POX[FPOX|RrO| T
X|lroRrjlroo|loo
X OO OIOOR|F—LO

RRPRPROOO|O
RPIOOO|FRrRFR,EFL OO

Tripos Example

Current Input Next

State State
S So| € Tl Sy
00[X olloo
00/|X 1]lo1
0110 XJ||IO 1
01111 0}l o0
0111 11 0
10]0 X[[1ToO
1 0|1 OO0 O
101 11 0
1T 1|X X|[[X X

Plot k-maps to determine the

next state logic

For FF 1:

e

er

s 590N 00 01 11 10 _sper
00
01 (1
11 X | X
10 NL

So

1

S r S.f

D, =S.6 +S.r +sp.er

23/07/2025

136

Tripos Example

Current Input Next Plot k-maps to determine the
state state next state logic
S So| € TS For FF 0:
0 01X 0100 er000111610
O0(X 10 1 51 50 —S5,.50.F
0 1|0 X|[0 1 00 |
01|1 oo o0 o1L)1 |1 50
0111 1)1 0 X | X
1 0[]0 X[[1T0 5 13 P
101 0}Jl0O
101 1)1 0 So-€ -
1 1| X X||X X

Tripos Example

« We will now re-implement the synchroniser
using a 1 hot approach

* |n this case we will need 3 FFs

r FF labels
[s2 51 S0l

An output, s should be
true if in Sync state

From inspection, S =S,

23/07/2025

137

23/07/2025

Tripos Example

Current Input Next
state state

SR

w
N
Mg
%)
o

RPRORRFRO|IXX]| ®
RPOXFOX|RrO|T

PPRPPROOOIOO
oloie] i ol o feNe)
ololo] ololel i
RPORIFOO|IOO0O
CQOOI0ORr|IFrO
ol o] el ol el

Remember when interpreting this table, because of the 1-
hot shift structure, only 1 FF is 1 at a time, consequently it
is straightforward to write down the next state equations

Tripos Example

For FF 2:
Current Input Next D, =g er+s,e+s,er

state Sl gimplification is possible since:
S S;+8+5 =1

so, S; = S; + S5, hence,

D, =5y.e.r +55.€

For FF1: Dy =sp.r+s.e

For FF O:

Dy =Sp.r +S.er +S,er

DO = Sor + Sg.€.7

Dy =7.(sg + 5g). (5o + €)
Dy=7.(sg+e)=t.sq+7.e

N7
w
o
wn
N
%
wn
()

RPRORROIXX]| @
RPOXFOoOX|FkRO|T

R Rrooco|oo
ococollrr|loo
ocooolpoo|rkr
RORjkoo|oo
ocoocoloor|ro
oroloro|lor

138

23/07/2025

Tripos Example

Note that it is not strictly
necessary to write down the
state table, since the next state
equations can be obtained from
the state diagram

It can be seen that for each
state variable, the required
eqguation is given by terms
representing the incoming arcs
on the graph

For example, for FF 2: D, =S;.e.r +S,.€ +S,.e.r

Tripos Example

» So in this example, the 1 hot is easier to
design, but it results in slightly more
hardware compared with the sequential
state assignment design

139

23/07/2025

Digital Electronics:
Sequential Logic

Further Considerations

Elimination of Redundant
States

« Sometimes, when designing state
machines it is possible that
unnecessary states may be introduced

 In general, reducing the number of
states may reduce the number of FFs
required and may also reduce the
complexity of the next state logic owing
to the presence of more unused states
(don'’t cares)

140

implementation

Elimination of Redundant

States - Example

» Consider the following State Table that
corresponds with a Mealy Machine

» This is so, since the inputs and outputs from
the machine are on the transitions (arcs)

between states

» The following state table is drawn in a
compact form by incorporating the 2 possible
input values as parallel columns within both
the next state and output columns of the table

Example

Output (Y) * From the table, we see
X=0X=1 that there is no way of

telling states H and | apart,

so we can replace | with H

when it appears in the
Next State portion of the
table

Next
Current| State
State |X=0 X=1
A B C|l10 O
B D E| O O
C F _ G| 0 O
D H | 0O O
E J K| 0O O
F L M| O O
G N P] O O
H A A| 0 O
I A A| 0 O
J A A[O0 1
K A A| 0 O
L A A[0 1
M A Al 0 O
N A A| 0 O
P A A| 0 O

23/07/2025

141

Example
Next .
Current| State [Output (Y) * We also see that there is
State [X=0 X=1[X=0 X=1 now no way to get to state
g‘ g g 8 8 | so we can remove row |
C E clo 0 from the table
[E) JH E 8 8 Similarly, rows K, M, N and
F L M|lo o P have the same next
G N P] O O state and output as H and
H 1A A0 D can be replaced by H
J A AlO0 1
K A Al 0 O
L A AlO0 1
M A A|lO0 O
N A Al 0 O
P A Al 0 O
Example
Next o _

Current| State |Output (Y) * Similarly, there is now no
State [X=0 X=1/X=0X=1 way to get to states K, M,
g‘ [B) (E3 8 8 N and P and so we can
C F G|l o o0 remove these rows from

D H H| O O the table

E H 0

= i H 8 0 Also, the next state and

G H H] O O outputs are identical for

H oA A0 O rows J and L, thus L can

A Alo 1 be replaced by J and row L

eliminated from the table

L A AlO0 1

23/07/2025

142

Example
Next
Current| State [Output (Y) * Now rows D and G are
State [X=0 X=1[X=0 X=1 identical, as are rows E
A 1B C10 0 and F.
B D E[O0 O
C F G|O © Consequently, G can be
[E) JH E 8 8 replaced by D, and row G
F J Hlo o eliminated. Also, F can be
G H H|O O replaced by E and row F
H A A0 O eliminated from the table
J A A|lO0 1
Example
Next
Current| State [Output (Y) * The procedure employed
State |X=0 X=1[X=0 X=1 to find equivalent states in
A 1B CLO 0 this example is known as
B D E[O0 O .
C E D|o 0 row matching.
D H HI 0 0 However, we note row
E J H|[O O T .
matching is not sufficient to
find all the equivalent
H A A0 0 states except for certain
J A 0o 1 special cases

23/07/2025

143

23/07/2025

Elimination of Redundant

States — State Equivalence

* The previous row matching approach only
works in certain cases.

« We will now consider a more general
approach that identifies state equivalence to
help eliminate states

» Two states, say p and g, can be considered
equivalent, i.e., p = q, if from each of these
states, a finite state machine generates the
same output sequence in response to any
input bit sequence.

State Equivalence
* In practice, 2 states p and g can be considered
to be equivalent if for any input bit sequence,
the corresponding outputs y, and y,, are
identical, i.e., y, =y, and the next states S;
and S, are equivalent,i.e., S, =S,
Next » Regardless if starting from
Present| State (OUIPUL o460 ¢ or E, the machine goes

=0 x=1| (Y : :
State 1x=0x=11 (V) through identical next states
and yields the same output.
« States C and E are equivalent

and so state E can be
eliminated from the table

mooOow>
>>>> >
QooOw
orooo

144

State Equivalence

* Thus the reduced state table is,
Next
Present| State [Output
State |[X=0 X=1| (Y)

A A B O
B A C| O
C A D|O
D A DI 1

 Actually, in this example we have the special
case where the next states are identical and
not just equivalent, i.e., this is row matching
that we saw previously

« What we need is a method to identify
equivalent and not just identical next states

State Equivalence
» We can rewrite the previous theorem as,

Alp,x) = A(q,x) and 6(p,x) = 8(q,x)

where, A(p, x) is the output given the present
state p and input x and,
6 (p, x) is the next state given the
present state p and input x

* We will now use this theorem to find all the
equivalent states in a state table

23/07/2025

145

23/07/2025

Determination of State Equivalence
using an Implication Table

* The procedure will be described via an example

* We need to perform a pairwise comparison
between all possible pairs of states to see if we
can discover equivalent state pairs.

« The Implication Table facilitates this procedure
— It has a cell for every possible pair of states

— Note cells above the diagonal are omitted (since
they already exist below the diagonal)

— Diagonal cells are also omitted since they
correspond to same state pairs

Example — Implication Table

B
Next
Present| State [Output ~
State [X=0 X=1| (Y)
A D C|O D
B F H 0
C E D 1
D A E 0 E
E C A 1
F F B 1 =
G B H 0
H C GJ|1
G
H

146

Implication Table

So we perform a pairwise comparison
between all possible pairs of states to see if
we can discover equivalent state pairs.

So in each pairwise comparison, i.e., a cell in
the table, we will indicate any ‘implied’
equivalent state pairs (if any).

A cell will not contain any ‘implied’ state pairs
if the outputs are different, since this does not
satisfy our earlier equivalence theorem

The ultimate objective is to identify which of
the implied state pairs are actually equivalent
state pairs

Implication Table

* To fill in 18t column
— Compare row A with each of the other rows

— We see that the output for row A is different to the
output for row C, so we place an X in this cell to
indicate that A+ C

— Similarly we place an X in cells A-E, A-F and A-H
to indicate that A # E, A # F and A # H because of
the output differences

— State A and B have the same outputs, hence from
the theorem, A=BifD=Fand C =H.

— To indicate this we write the ‘implied pairs’ D-F
and C-H in the A-B cell

23/07/2025

147

Implication Table

— Similarly, since State A and D have the same
outputs, we write the ‘implied pairs’ A-D and C-E
in the A-D cell to indicate that, A=D if A =D and
C=E

— The entries B-D and C-H in the A-G cell indicate
that A=GifB=DandC=H

— Next row B of the state table is compared pairwise
with the remaining rows in the table and so column
B is filled-in

— Similarly the remaining columns in the implication
table are filled-in

— Note that ‘self implied’ pairs are removed from the
table, e.g., inthe A-D cellwe have A=DIifA=D

Example
D-F
Next ®lcH
g N S D Dt
6 | a0 RS
T-E
Iy s B 45 B
B 0 ep | < at
C G|1
olan|BF < En K<
H| D S5 D<A g8 <
A B D

C E F G

23/07/2025

148

Implication Table

— At this stage the cells in the implication table are
filled-in either with implied pairs or an X

— We now check each implied pair

— If one of the pairs in say cell i-] is not equivalent,
theni# j

— So, looking at cell A-B, we see it has 2 implied
pairs D-F and C-H. Since D # F (see the D-F cell
has an X in it), A # B and we place an X in the A-B
cell as shown in the following updated table

— Continuing with the 15t column we see cell A-D
contains implied pair C-E. Since cell C-E does not
contain an X, we cannot determine at this stage
whether A = D or not

— Similarly with cell A-G

Example

— We can place an X in cells B-D and B-G
sinceA+FandB+#F

— Similarly we can check the
remaining columns and place an X

(| incells C-F, D-G, E-F and F-H
— In going from the original to

@]
m

RS

CE >< the updated table, note that

XX

A-D we found several additional
% X non-equivalent state pairs
- - — So we must go

O
0o

if the added Xs
C-E

D-G A-G % >< make any other

D SRS R DS

X
>< K >< >< through again to see
X

>><-

C £ ¢ Pairs non-equivalent

23/07/2025

149

Example

— Rechecking col. A we can place an X in
cell A-G since cell B-D has an X

— Similarly with cells C-H and E-H

— Since we added some more Xs
we must go through again to
see if the added Xs make any

>< other pairs non-equivalent

i — No more Xs are
X added, so all cells
with non equivalent
>< states have now

>< been Xed
%%X een Xed out

F G

(@)
m

2[4

DK P[RR
o[B8

[T

X
b
X

Example
» The ‘coordinates’ of the remaining cells
correspond to the equivalent state pairs, i.e.,
cell A-D and cell C-E so,
— A=DandC=E

* So in the state table we can replace D with A
and E with C and then eliminate rows D and E

Next
Present| State [Output

State |X=0 X=1| (Y)

TOTMmO®>
OwTmoOm>»
QOQIW>PITO
R OR RPOO

23/07/2025

150

23/07/2025

Implementation of FSMs

» We saw previously that programmable logic
can be used to implement combinational logic
circuits, i.e., using PLA devices

» PAL style devices have been modified to
include D-type FFs to permit FSMs to be
implemented using programmable logic

* One particular style is known as Generic
Logic Array (GLA)

GLA Devices

* They are similar in concept to PLAS, but
have the option to make use of a D-type flip-
flops in the OR plane (one following each OR
gate). In addition, the outputs from the D-
types are also made available to the AND
plane (in addition to the usual inputs)

— Consequently it becomes possible to build
programmable sequential logic circuits

151

23/07/2025

OR plane J>'D o
GLA A

Device

GLA Devices

« A modified form of a GLA known as a
Generic Array Logic (GAL) is used in the
Hardware Laboratory classes to implement
various FSMs.

152

GAL Devices

plane

@
|
o
—>
QO
D_h

CLK

FPGA

» Field Programmable Gate Arrays (FPGAS) are
the latest type of programmable logic

« Are an array of configurable logic blocks (CLBS)
surrounded by Input Output Blocks (IOBs):
— programmable routing channels permit CLBs to be
connected to other CLBs and to IOBs
— CLBs contain look up tables (LUTs), multiplexers
(MUXs) and D-type FFs

— The FPGA is configured by specifying the contents
of the LUTs and select signals for the MUXs

23/07/2025

153

FPGA — Xilinx Spartan

[o]
@
s}

8
Sw
z

CLB CLB CLB CLB
(==
CLB CLB CLB CLB
[EDx
Routing Cl
CLB CcLB CcLB cLB
(=
CLB cLe CLB CLB
[T
7 17 1
BE B8 BB B [E
VersaRing Routing Channels
DS060_01_081100

Figure 1: Basic FPGA Block Diagram

FPGA — Xilinx Spartan

« Simplified schematic showing CLBs and
programmable routing channels, i.e., wires
plus programmable switch matrices (SMs)

[i08] [icB] [io8] [10B]
B
M
M

||
[e]

Programmable

Switch Matrix E

ool defedefefefedes

[10B]

32

23/07/2025

154

23/07/2025

Br N
G-LUT I |
I
G4 —| G4 T : SR
Logic 1 | D aF— va
53 ——G3Function I [
of G : —CK
G2 G2 G1-G4 —— I | !
i 1 I - | —EC
61 —|G1 T }L H-LUT | - :
| I
1
SR : : 6 Log : | Y
Funci L~
H1 T o LU !
| i FGHI I ~ !
DIN T | F I :
| I
F4 —|F4 | I : 3R
Logic I__ 1A I | D Q Xa
F3 ——F3 Function T [
of G[—* 1 CK
F2 —F2 F1F4 | — | |
I L : —EC
F1 —F1
LN
F-LUT I ! X
Multiplexer Controlled 1 = |
K B by Configuration Programy _ _ _ _ _ _ _ _!
EC

FPGA - Spartan CLB
Has 2, 4-input LUTs (F and G) and 1, 3 input
LUT (H)
Has to ‘combinational’ outputs (Y and X) and
2 ‘registered’ outputs (i.e., from D-FFs) YQ
and XQ
Depending on MUX configuration Y is given

by output of either G or H LUTs and X from
either F or H LUTs.

D-FF inputs come from DIN, or from F, G, or
HLUTs

155

23/07/2025

FPGA - Spartan CLB

* Thus each CLB can perform up to 2
combinational and/or 2 registered functions

« All functions can involve at least 4 input
variables (e.g., G1 to G4, and F1 to F4), but
can be up to 9 (owing to the possibility of
implementing 2-level combinational logic
functions), i.e., G1 to G4, F1 to F4, H1.

» Created using either a schematic (block)
diagram or more likely a Hardware
Description Language (HDL) of the design

FPGA - Spartan CLB

* The synthesis tool determines how the LUTS,
MUXs and routing channels are configured

« This configuration information is then
downloaded to the FPGA

« Xilinx devices store their configuration
information in static RAM (SRAM) so can be
easily reprogrammed

 The SRAM contents can be downloaded
either from a computer or from an EEPROM
device when the system is powered-up

156

23/07/2025

FPGA

* Other FPGA manufacturers are available,
e.g., Altera.

 Particular manufacturers have many different
product lines

« Main differences will be the no. of CLBs, the
structure of the CLBs, internal or external
ROM, additional features such as specialised
arithmetic blocks, user RAM etc.

157

Digital Electronics:
Electronics, Devices and
Circuits

Dr. I. J. Wassell

Digital Electronics:
Electronics, Devices and
Circuits

Underlying Concepts

23/07/2025

158

23/07/2025

Introduction

* In the coming lectures, ultimately we will
consider how logic gates can be built using
electronic circuits

* In the first part, basic concepts concerning
electrical concepts, electrical circuits,
materials and circuit theory (both linear and
non-linear) will be presented

* In the second part, we will consider transistor
operation and characteristics followed by gate
circuit design and characteristics

Basic Electricity

 An electric current is produced when charged
particles (e.g., electrons in metals, or
electrons and ions in a gas or liquid) move in
a definite direction

* In metals, the outer electrons are held loosely
by their atoms and are free to move around
the fixed positive metal ions

* This free electron motion is random, and so
there is no net flow of charge in any direction,
I.e., no current flow

159

Basic Electricity

If a metal wire is connected across the
terminals of a battery, the battery acts as an
‘electron pump’ and forces the free electrons
to drift toward the +ve terminal and in effect
flow through the battery

The drift speed of the free electrons is low,
e.g., <1 mm per second owing to frequent
collisions with the metal ions.

However, they all start drifting together as
soon as the battery is applied

Basic Electricity
The flow of electrons in one direction is known
as an electric current and reveals itself by
making the metal warmer and by deflecting a
nearby magnetic compass

Direction of
current flow ’[

Flow of electrons in
metal wire connected
across a battery

+

» Before electrons were discovered it was
imagined that the flow of current was due to
positively charged particles flowing out of +ve
toward —ve battery terminal

23/07/2025

160

Basic Electricity

» Note that ‘conventional’ current flow is still
defined as flowing from the +ve toward the —
ve battery terminal (i.e., the opposite way to
the flow of the electrons in the metal)!

« A huge number of charged particles
(electrons in the case of metals) drift past
each point in a circuit per second.

« The unit of charge is the Coulomb (C) and
one electron has a charge of 1.6-101°C

Basic Electricity

» Thus one C of charge is equivalent to
6.25+1018 electrons

 When one C of charge passes a pointin a
circuit per second, this is defined as a current
() of 1 Ampere (A), i.e., | = Q/t, where Q is
the charge (C) and t is time in seconds (5s),
l.e., current is the rate of flow of charge.

23/07/2025

161

23/07/2025

Basic Electricity

* In the circuit shown below, it is the battery that
supplies the electrical force and energy that
drives the electrons around the circuit.

Flow of current
—_—

+
Vg T T ®IVL Lamp

» The electromotive force (emf) Vg of a battery
Is defined to be 1 Volt (V) if it gives 1 Joule (J)
of electrical energy to each C of charge
passing through it.

Basic Electricity

* The lamp in the previous circuit changes most
of the electrical energy carried by the free
electrons into heat and light

» The potential difference (pd) V, across the
lamp is defined to be 1 Volt (V) if it changes 1
Joule (J) of electrical energy into other forms
of energy (e.g., heat and light) when 1 C of
charge passes through it, i.e., V,=E/Q, where
E is the energy dissipated (J) and Q is the
charge (C)

162

23/07/2025

Basic Electricity

* Note that pd and emf are usually called
voltages since both are measured in V

* What is the power dissipated (P,) in the lamp
in the previous circuit?

« P =E/t (J/s). Previously we have, E =QV/,
and so, P, = QV /t (W).

» Now substitute Q = It from before to give, P, =

ItV /t=1V_ (W), an expression that hopefully
is familiar

Basic Electricity

« So far, we have only considered metallic
conductors where the charge is carried by
‘free’ electrons in the metal lattice.

« We will now consider the electrical properties
of some other materials, specifically,
insulators and semiconductors

163

23/07/2025

Basic Materials

* The electrical properties of materials are
central to understanding the operation of
electronic devices

» Their functionality depends upon our ability to
control properties such as their current-
voltage characteristics

 Whether a material is a conductor or insulator
depends upon how strongly bound the outer
valence electrons are to their atomic cores

Insulators

« Consider a crystalline insulator, e.g., diamond

 Electrons are strongly bound and unable to
move

* When a voltage difference is applied, the
crystal will distort a bit, but no charge (i.e.,
electrons) will flow until breakdown occurs

V
e

6.0.0.9
0.0.0.0
0.6.0.
0.0.0.0

164

Conductors

» Consider a metal conductor, e.g., copper
 Electrons are weakly bound and free to move

* When a voltage difference is applied, the
crystal will distort a bit, but charge (i.e.,
electrons) will flow

<

0.0 006
OO0 00
0.0 0.0
GHGHONO)

Semiconductors

 Since there are many free electrons in a
metal, it is difficult to control its electrical
properties

« Consequently, what we need is a material
with a low free electron density, i.e., a
semiconductor, e.g., Silicon

By carefully controlling the free electron
density we can create a whole range of
electronic devices

23/07/2025

165

Semiconductors

« Silicon (Si, Group V) is a poor conductor of
electricity, i.e., a semiconductor

o4 4

e Si‘e Si‘e-Si‘e-

R

o Si‘e Si‘e Si‘e

N

o Si g SissSiy

ERRTNY

Si crystalline lattice — \ Shared
poor conductor at low valence

temperatures electrons

Si is tetravalent, i.e., it has 4 electrons in
its valance band

Si crystals held together by ‘covalent’
bonding

8 valence electrons yield a stable state
— each Si atom now appears to have 8
electrons, though in fact each atom only
has a half share in them. Note this is a
much more stable state than is the
exclusive possession of 4 valence
electrons

Semiconductors
« As temperature rises conductivity rises

RN

"o Si‘e Sie Sie-

R

o Si SiZe- Sie-
RN
“o_ Si Si Si o~
44 \4e

As temperature rises, thermal vibration
of the atoms causes bonds to break:
electrons are free to wander around the
crystal.

When an electron breaks free (i.e.,
moves into the ‘conduction band’ it
leaves behind a ‘hole’ or absence of
negative charge in the lattice

The hole can appear to move if it is
filled by an electron from an adjacent
atom

The availability of free electrons makes
Si a conductor (a poor one at room
temperature)

23/07/2025

166

n-type Si

* n-type silicon (Group 1V) is doped with arsenic
(Group V) that has an additional electron that is not
involved in the bonds to the neighbouring Si atoms

b

e Si‘e Si‘e_Si‘e-

R

- Sl_._AS S|_._

N

o SiZgSi Si‘e”

74 4

Free
electron

The additional electron needs only a
little energy to move into the conduction
band.

This electron is free to move around the
lattice

Owing to its negative charge carriers
(free electrons), the resulting
semiconductor is known as n-type

Arsenic is known as a donor since it
donates an electron

p-type Si

p-type silicon (Group 1V) is doped with boron (B,

Group 11)

RN

o Sie Si‘e Sie-

RN

o Sie B 9 Si‘e
RN
o Si_s Si Si o~
TRRTARY

The B atom has only 3 valence
electrons, it accepts an extra electron
from one of the adjacent Si atoms to
complete its covalent bonds

This leaves a hole (i.e., absence of a
valence electron) in the lattice

This hole is free to move in the lattice —
actually it is the electrons that do the
shifting, but the result is that the hole is
shuffled from atom to atom

Owing to its positive charge carriers (free
holes), the resulting semiconductor is
known as p-type

B is known as an acceptor

23/07/2025

167

23/07/2025

Semiconductors

* The Metal Oxide Semiconductor Field Effect
Transistor (MOSFET) devices that are used to
implement virtually all digital logic circuits are
fabricated from n and p type silicon

* Later on, we will see how MOSFETSs can be used to
implement digital logic circuits

Circuit Theory

 Electrical engineers have an alternative (but
essentially equivalent) view concerning pd.

« That is, conductors, to a greater or lesser
extent, oppose the flow of current. This
‘opposition’ is quantified in terms of resistance
(R). Thus the greater is the resistance, the
larger is the potential difference measured
across the conductor (for a given current).

168

Circuit Theory

The resistance (R) of a conductor is defined
as R=V/Il, where V is the pd across the
conductor and I is the current through the
conductor.

This is know as Ohms Law and is usually
expressed as V=IR, where resistance is
defined to be in Ohms (Q).

So for an ohmic (i.e., linear) conductor,
plotting | against V yields a straight line
through the origin

Circuit Theory
Conductors made to have a specific value of
resistance are known as resistors.
They have the following symbol in an
electrical circuit: RQ
Analogy:

» The flow of electric charges can be
compared with the flow of water in a pipe.

* A pressure (voltage) difference is needed
to make water (charges) flow in a pipe
(conductor).

23/07/2025

169

Circuit Theory

* Kirchhoff's Current Law — The sum of currents
entering a junction (or node) is zero, e.g.,

I1
|3
I

2
» That is, what goes into the junction is equal to
what comes out of the junction — Think water
pipe analogy again!

Circuit Theory

 Kirchhoff's Voltage Law — In any closed loop
of an electric circuit the sum of all the voltages
in that loop is zero, e.g.,

V, Vi V,
T
R R
+ a b \/ _\/ _\/ _ -
Vl] - Rc[] IV5 V-Vy-V3-Vy-Ve+Vg = 0
T +,
' L
V

6
* We will now analyse a simple 2 resistor circuit
known as a potential divider

23/07/2025

170

Potential Divider

« What is the voltage at point x relative to the
OV point?

V=V, +V,
Vi=IR, V,=IR,
V = IR + IR, = (R, +Ry)
| = V

(Ri+R;)

Note: circle represents \, _y/ _ v R, =V R,
an ideal voltage source, X~ 2 (Ri+Ry) 2 R +R,
I.e., a perfect battery

Solving Non-linear circuits

* Not all electronic devices have linear I-V
characteristics, importantly in our case this
includes the FETs used to build logic circuits

* Linear means that superposition applies:

— If an input x,(t) gives an output y,(t), and input x,(t)
gives an output y,(t), then input [x,(t)+x,(t)] gives an
output [y, (t)+y,(t)]

 For a circuit that includes a non-linear
component, we cannot use the algebraic
approach. As an introduction, we will now use

a graphical approach to solve the previous

(linear) potential divider circuit.

23/07/2025

171

Potential Divider

* From the previous potential divider
equation, we can get the analytical
solution as follows

| So if V =10V, R, = 1Q and R,= 2Q
R[] v,
viO x V,=V R, =1o(2j:6.7v
R +R, 1+2
R, IVZ
oV

« How can we do this graphically?

Potential Divider

'R Iv * First we can plot the
viO 't current/voltage curve for R,
R.[| v .e., straight line — Ohms
o
ov AW
Current
through
R, (2Q)
(Amps)
0 Voltage across R, i.e.,V, (\olts)

23/07/2025

172

Potential Divider

! « Then we can plot the

Rl TV, current/voltage curve for R
viO o /otag !

R[] v l.e., straight line — Ohms

* law
oV
Current
through
R, (1Q)
(Amps)
0 Voltage across R, i.e.,V; (\olts)

Potential Divider

* So, how is the voltage across R, , i.e., V;,
reflected in voltage V, ?

| * We see thatV,=V-V,,
R{||v. where V =10 Volts, so,
viO * V,=10-V,
2l v, i.e., as V, increases, V,
OV decreases

Current
through
R, (1)

(Amps)

0 V, (\Volts) 10

23/07/2025

173

Potential Divider
» Now plotting both curves simultaneously

RJIV: the current through both

v TC) " IX resistors is equal, i.e., where
? V2 the 2 curves intersect
oV
Current Current
through through
R, (2Q) Ry (1€3)
(Amps) (Amps)
0 X=6.7

V, (\Volts) 10

| » The solution for V, is when

Graphical Approach

Clearly this approach works for a linear
circuit.

How could we apply this if we have a non-
linear device, e.g., a transistor in place of
R,?

What we do is substitute the V-I
characteristic of the non-linear device in
place of the linear characteristic (a straight

line due to Ohm’s Law) used previously for
R2

23/07/2025

174

Graphical Approach

viO

Soif V=10V and R, = 1Q

Re| || v,

X The voltage at x is a Wolts as

shown in the graph
Device IVZ grap
L ov
Current
through
Device Device
(Amps) characteristic
0 X=a

10
V, (Volts)

Current
through
R, (1Q0)

(Amps)

23/07/2025

175

23/07/2025

Digital Electronics:
Electronics, Devices and
Circuits

Transistors and Gates

Introduction

» Basic introduction to the p-n junction

« Operation an characteristics of Metal Oxide
Semiconductor Field Effect Transistors
(MOSFETS)

n-MOS inverter, characteristics and problems

Complimentary MOS (CMOS) inverter and
other logic gates

Other logic families
Noise margin

176

p-type holes

OO (%60 o)
08 “0° o
QQOOUQQOO.go

pP-n Junction

» The key to building useful devices is combining p
and n type semiconductors to form a p-n junction

.
n-type electrons

Depletion region

= pa T~ R
SR
EEEACE T o o
i L .

=N+ 4414

BIEX T s
- l++ts

Electrons and holes diffuse across
junction due to large concentration
gradient

On n-side, diffusion out of
electrons leaves +ve charged
atoms

On p-side, diffusion out of holes
leaves -ve charged atoms

Leaves a space-charge (depletion)
region with no free charges

Space charge gives rise to electric
field that opposes diffusion

« Equilibrium is reached where no more charges move across junction

Biased p-n Junction

+ Reverse bias: By making n-type +ve, electrons are removed from
it increasing size of space charge region. Similarly holes are
removed from p-type region. Thus space charge region and its
associated field are increased.

* The current flow, known as the reverse saturation current is
of the order of nA, i.e., essentially zero.

* So when a p-n junction is ‘reverse biased’ no current flows.

23/07/2025

177

Biased p-n Junction

» With forward bias, on the p-side holes are pushed toward junction
where they neutralise some of the —ve space charge.

» Similarly on the n-side, electrons are pushed toward the junction and
neutralise some of the +ve space charge.

» So depletion region and associated field are reduced.

* This allows diffusion current to increase significantly

* Thus the p-n junction allows significant current flow in only one
direction

* So a significant current flows only when ‘forward’ biased

* Adevice with a single p-n junction is known as a diode

n-Channel MOSFET

« We will now briefly introduce the n-channel
MOSFET

» The charge carriers in this device are

electrons The current flow from D to S (Ip) is
controlled by the voltage applied
Drain between G and S (Vy), i.€., G has
(D) to be +ve wrt S for current 15 to flow
H (transistor On)
Gate s We will consider enhancement mode
(G) H devices in which no current flows
(Ips=0, i.e., the transistor is Off)
Source

(S) when V=0V

23/07/2025

178

OFF

n-Channel MOSFET

Silicon
dioxide

insulator

Reverse

biased
N
L~ p_n
junctions

Drain (and Source) diode
reverse biased, so no path for
current to flow from Sto D, i.e.,
the transistor is off

n-Channel MOSFET

Silicon
dioxide

insulator

n-type
layer:
‘inversion’

Consider the situation when the Gate (G)
voltage (V) is raised to a positive
voltage, say Vj

Electrons attracted to underside of the G,
so this region is ‘inverted’ and becomes
n-type. This region is known as the
channel

There is now a continuous path from n-
type S to n-type D, so electrons can flow
from S to D, i.e., the transistor is on

The G voltage (V) needed for this to
occur is known as the threshold voltage
(V). Typically 0.3 to 0.7 V.

23/07/2025

179

p-Channel MOSFET

 Similarly we have p-channel MOSFETSs where
the charge carriers are holes

Gate
G)

The current flow from S to D ()
Drain is controlled by the voltage applied
(D) between G and S (Vy), i.€., G has
to be -ve wrt S for current Igto

> flow (transistor On)

1 T T

We will be consider enhancement
Source Mode devices in which no current
(S) flows (I5s=0, i.e., the transistor is
Off) when Vg=0V

p-Channel MOSFET

» p-channel MOSFETSs have the opposite construction
to n-channel MOSFETS, i.e., n-type substrate and p-
type S and D regions

o Silicon
S-Ihcpn oV dioxide
dioxide _
insulator ov insulator
Reverse —‘7 D i Ip-typ_e
biased Gl :’:Iyer. o

C pn L inversion
junctions S
OFF ON

23/07/2025

180

DS

mA

N-MOSFET Characteristics

AL A T Plots V-I characteristics

ol P B T it of the device for various
8 e o R i Rl ¢ Gate voltages (Vgs)
:' ! Y T e \"(;\ =6v
S ‘7 e —————-V =4V
A e e I
i |2 4 .6 o B
— V, Volts
llv\ B - %]
Sk / At a constant value of Vg , we can
A i/ also see that I is a function of the

Gate voltage, Vg

/ The transistor begins to conduct
L when the Gate voltage, Vg, reaches
v,/ v vos— = the Threshold voltage: V

GS

DS “Resistor ____1v_ =10v
mA 10 ko EHaFaCTeTiSTiC
8 et ceeesieinnnt Voo = 8
6
4
0
0
- Vl)s Volts
10— -—
oV V. i ‘\\ } NO('[jeVVin:\\//GS
.) . an t=Vbs
We can use the graphical |) \ >
approach to determine the |
relationship between V;, 4
and Vg, 2 \
0< apil 4= 6 10

Nn-MQOS Inverter

I 12

23/07/2025

181

Nn-MOS Inverter

* Note it does not have the ‘ideal’ characteristic
that we would like from an ‘inverter’ function
Actual

10— ———

Ideal

xxxx

5 2 L 6 8 0
0< Wi 4T 6/s 8 90 DEEE . LR
n

However if we specify suitable voltage thresholds, we can
achieve a ‘binary’ action.

Nn-MOS Inverter

Actual
S T N So if we say:
8 S voltage > 9V is logic 1
i x voltage < 2V is logic 0
4
; *._| The gate will work as follows:
e A - Vi, > 9V thenV,, <2V and if
0= Wyl 4= 6V= 8 90

Vi, <2V then V,, > 9V

23/07/2025

182

n-MOS Logic

* It is possible (and was done in the early days)
to build other logic functions, e.g., NOR and
NAND using n-MOS transistors

« However, n-MOS logic has fundamental
problems:

— Power consumption

— Slow output transition times from low to high
voltage levels when connected to capacitive loads

n-MOS Logic
» For example the metal track used on circuit boards
to connect gate inputs and outputs has a finite
capacitance to ground, i.e., to the OV connection.

— We modify the circuit model to include this stray
capacitance C

\Y

inIVGS
ov
 This significantly increases the rise time of the
output signal, V,

23/07/2025

183

23/07/2025

n-MOS Logic
« When the transistor turns-off (open circuit), capacitor
C modelling the stray capacitance, charges through
R,. So the rise-time of V is controlled by R1. When
the transistor turns-on (short circuit), C discharges
through the transistor with on resistance Ryy. So the
fall-time of V is controlled by Ry

« Since R; > Ry, rise time > fall time for V,

n-MOS Logic
« Power consumption is also a problem

Transistor OFF

No problem since no current is
flowing through Ry, i.e., Vg, = 10V

Transistor ON

This is a problem since current is flowing
through R, . For example, if V= 1V
(corresponds with V;, =10V and I = 1=
9mA), the power dissipated in the
resistor is the product of voltage across it
and the current through it, i.e.,

Paisp = 1 xV; =9x10°x9=81mW

184

CMOS Logic

« To overcome these problems, complementary
MOS (CMOS) logic was developed

« As the name implies it uses p-channel as well
as n-channel MOS transistors

« Essentially, p-MOS transistors are n-MOS
transistors but with all the polarities reversed!

CMOS Inverter

Using the graphical approach
we can show that the

MFS switching characteristics are

Vout()IVSS: now much better than for the

) 10V n-MOS inverter

MOS [0

‘‘‘‘‘

=
o
=}

N- P-
Vin mMos Mos Vou
low off on high ‘
high on off low

i —
0 2 4 6 8., 10
4 =t \u\

23/07/2025

185

CMOS Inverter

* |t can be shown that the transistors only
dissipate power while they are switching.

40
Power
30

mW
20

. /’
¢

-

This is when both transistors
are on. When one or the other
Is off, the power dissipation is
Zero

CMOS is also better at driving
capacitive loads since it has a

0 DA TR 6T R SR T()
= p-MOS transistor (instead of a
resistor) controlling the rising
edge of the output signal
CMOS Gates

e CMOS can also be used to build NAND
and NOR gates

* They have similar electrical properties
to the CMOS inverter

23/07/2025

186

worth recapping the function of the transistors.

* For both n and p-type MOS transistors
— If there is no potential difference (pd) between

— If there is a sufficiently large pd between Gate and

CMOS Gates

« To ease analysis of the following circuits it is

Gate (G) and Source (S), the transistor is Off, i.e.,
an open circuit between Source (S) and Drain (D)

Source, the transistor is On, i.e., a short circuit
between Source (S) and Drain (D) — Note for n-
MOS G is more +ve than S and for p-MOS G is

more -ve than S

P —

CMOS NAND Gate

Vg = 10v
BIEE — e
Tl ’7‘/1\
“r> -
¥ 1l ‘ \
| T2, oVy
(
Va* .ﬁ
=
|-
R [

Vi
low
low
high
high

VB
low
high
low
high

T1
on
on
off
off

T2
on
off
on
off

T3
off
on
off
on

T4
off
off
on
on

high
high
high
low

23/07/2025

187

CMOS NOR Gate

V=10V

Va lg) Va Vg Ty T, T3 Ty Vo
(L; T low low off off on on high

4 .
low high on off off on low
high low off on on off low

)T high high on on off off low
3

|_
I
|_
|_
ii? B
T2 Tl

V

out

ov

Logic Families
« NMOS - compact, slow, cheap, obsolete

« CMOS - Older families slow (4000 series
about 60ns), but new ones (74AC) much
faster (3ns). 74HC series popular

« TTL — Uses bipolar transistors. Known as 74
series. Note that most 74 series devices are
now available in CMOS. Older versions slow
(LS about 16ns), newer ones faster (AS
about 2ns)

« ECL — High speed, but high power
consumption

23/07/2025

188

23/07/2025

Logic Families

« Best to stick with the particular family
which has the best performance, power
consumption cost trade-off for the
required purpose

* It is possible to mix logic families and
sub-families, but care is required
regarding the acceptable logic voltage
levels and gate current handling
capabilities

Meaning of Voltage Levels

» As we have seen, the relationship between
the input voltage to a gate and the output
voltage depends upon the particular
implementation technology

» Essentially, the signals between outputs and
inputs are ‘analogue’ and so are susceptible
to corruption by additive noise, e.g., due to
cross talk from signals in adjacent wires

« What we need is a method for quantifying the
tolerance of a particular logic to noise

189

23/07/2025

Noise Margin

» Tolerance to noise is quantified in terms of the
noise margin
supply voltage (Vpp)

Logic 1 - - worst case output voltage,V,(min)
(High) noise margin))
worst case input voltage,V,,(min)
undefined

] worst case input voltage,V, (max)
Logic O noise margin
(Low) worst case output voltage,V, (max)

ov

Logic 0 noise margin =V, (max) - Vg, (max)
Logic 1 noise margin = Vq,(min) - V,,(min)

Noise Margin

» For the 74 series High Speed CMOS
(HCMOQOS) used in the hardware labs (using
the values from the data sheet):

Logic 0 noise margin =V, (max) - Vo (max)
Logic 0 noise margin =1.35-0.1=1.25V

Logic 1 noise margin = Vg,(min) - V,,(min)
Logic 1 noise margin =4.4-3.15=125V

See the worst case noise margin = 1.25V, which is much
greater than the 0.4 V typical of TTL series devices.
Consequently HCMOS devices can tolerate more noise pick-
up before performance becomes compromised

190

