23/07/2025

Digital Electronics:
Introduction to Processor
Architecture

Dr. I. J. Wassell

A simple computer

CPU
Instruction
decoder Memory
Registers Address >
o .
g .
(=3 / N g
=]
— Data 2
1

23/07/2025

A simple computer

* The example computer has a Central Processing Unit (CPU), memory
(RAM) and 2 busses (Address and Data) that connect them

* The CPU has a set of registers (usually < 100 but may be as few as 4),
that are often used to store local operands/variables/intermediate
results

* The Arithmetic Logic Unit (ALU) performs computations

* The CPU fetches instructions from the memory where the Instruction
Decoder in conjunction with the Control Unit are used to control the
elements within the CPU to execute the instructions

A simple computer

* A computer architecture is defined by its instruction set and architectural
state

* For example, for a ‘MIPS’ processor the architectural state comprises the
program counter (PC) and the 32 registers

* So, based on its current architectural state, the processor executes a
particular instruction with a particular set of data to yield a new
architectural state

* The microarchitecture is the specific arrangement of registers, ALUs, finite
state machines (FSMs), memories and other logic building blocks (e.g.,
multiplexers) needed to implement an architecture

* Note that a particular architecture can be implemented by many different
microarchitectures, each having different performance, complexity and
cost trade-offs

23/07/2025

Microarchitecture

e A microarchitecture can usually be divided in to 2 interacting parts:

— Datapath: Operates on words of data, e.g., 16-bit, 32-bit, and contains
structures such as memories, , registers, ALUs and multiplexers. Note that
the program counter can be viewed as a conventional register whose
output points to the current instruction and its input indicates the address
of the next instruction.

— Instruction Decoder/Control Unit: receives the current instruction from the
datapath and tells the datapath how to execute that instruction, i.e., the
control unit issues multiplexer select, register enable and memory write
signals to control the operation of the datapath.

Building a simple computer

* We will now look the design of a single-cycle processor, i.e., it
executes its instructions in a single clock cycle

* We gradually develop the datapath by adding new components to the
state elements. In doing so, we gradually increase the capability of
the computer

* The instruction decoder/control unit generates the control signals
(using combinational logic) that control the datapath so that the
required instructions can be executed

* We will assume that the computer is based on word addressable
memory, e.g., 32-bit words at each memory location (address)

23/07/2025

Building a simple computer — fetching instructions

P » Address supplied from PC to
®C) memory yields instruction to be
executed
Addr. mste. ° Thisinstruction is presented to the

Y

Memory ——» rest of the data path

* PCis then incremented by one
(utilising the Adder) to point to the
next instruction in the memory

* Can’t write very interesting
programs!
1 * No branching

Adder * No access to data in memory

Building a simple computer — branching enable

e * Including Mux enables PC to be
(PC) changed to an arbitrary value to

Mux permit branching — detail to follow
iD, A0 Memory %+ We will now introduce more of the
datapath
* Instruction decoder/control unit
* Registers (actually register file)

and ALU
1 * We will return to branching later!

Adder

Y

23/07/2025

Building a simple computer — register access

Example machine instruction format

rd

rsl

rs2

Program function
Counter
(PC)
010 op
= »rsl
Mux a
Addr. Instr.| 5 011
» Memory o > rs2
o
E (0L A
&

=y

A
Register
File

Adder

op — operation code

rs1 — ALU source register

rs2 — ALU source register

rd — ALU destination register

ADD R1, R2, R3

010

001 010011

; regl =reg2 +reg3

rs1is specified as R2, rs2 is specified as R3,
rd is specified as R1 and ALU function - ADD

Building a simple computer — memory access

Mux

Program
Counter
(PC)

Instr.
"| Memory

e

Adder

Addr. Instr,

function

L, XXX
»{rsl

~nsuj

1 2po2aJ

010
L

001
|

rs2
rd ALU

Register
File

Data
Memory

T

result from memory or ALU?

LOAD R1, [R2]

; regl=mem|[reg2]

23/07/2025

Building a simple computer — memory access

» Addition of Mux permits result to be stored in the Register File (at
destination rd specified as R1 (regl)) to come from ALU or from Data

Memory

* Data memory address specified by ALU output

* ALU input/output is content of source register rs2 specified as R2 (reg2)
* So Data Memory output is the content of the location pointed to by R2

(reg2)

* Thatis |LOAD R1, [R2]

; regl=mem|[reg2]

* Note source register rs1 is not required in this operation and so does not

need to be specified

Building a simple computer - branching

result was z

ero?

(PC)

Mux

Instr,
Memory

function

—
(-
branch?

) XXX

Instr,

AP0 "Isuf

Register

File

rsl

rs2

rd

Data
Memory

BEQZ R1, +10 ; if (R1=0) PC=PC+10

23/07/2025

Building a simple computer - branching

* ALU input/output is the contents of source register rs2 specified as R1
(regl)

* ALU also has a flag output indicating if the ALU output is zero

* |If a branch instruction is decoded (by the Instruction
decoder/controller) and the ALU zero flag is set, then the AND gate

output (which is the branch Mux control input) will become ‘1’ and
the input to the PC will now come from the output of the newly

inroduced ‘jump’ adder

* The jump adder takes the current PC value and adds to it the required
‘jump’ value (supplied by the Instruction decoder)

Building a simple computer - branching

* For example, for the branch if equal to zero instruction

BEQZ R1, +10 ; if (reg1=0) PC=PC+10

* When executed a jump of 10 instructions will occur (i.e., 10 is added to
the PC) if the contents of register specified as R1 (regl) is equal to zero

23/07/2025

Multicycle processor

* The single cycle processor described previously has 3 main weaknesses:
* Clock cycle needs to be long enough to cope with slowest instruction
* Needs 3 adders—1in ALU and 2 in the PC logic

» Separate instruction and data memory

* In a multicycle processor:

* Instructions are broken into multiple shorter (i.e., faster) steps

* More complex instructions take more steps than simple ones, so simple
instructions execute faster than complex ones

* Need only one adder since this can be reused for different tasks in different steps
* Only one memory is required since instruction is fetched in 1%t step and data may

be read or written in later steps

Multicycle processor

Short Medium Long
Inst. Inst. Inst.

Single Cycle processor

Long Short Medium
Inst. Inst. Inst.

Short
Inst.

Min clock period
single cycle

Multicycle processor

Long Short Medium Short
Inst. Inst. Inst. Inst.
>
Min clock period
multicycle

23/07/2025

Multicycle processor

* Design is more complex:
* Need to add non-architectural state elements (i.e., registers) to hold intermediate
results
* The controller is now a FSM rather than combinational logic since it has to
produce different outputs on different steps

* Advantages:
* ALU can now be reused several times
* Instructions and data can be stored in one shared memory (since memory
accesses are now separate)

Execution time

Time/program = instruction av. time to
count X execute an instruction

Time/instruction = clocks per instruction x clock period

How do we build a fast computer?

23/07/2025

Execution time

* |t turns out that it is difficult to exploit the fact that some computations
are faster than others unless the differences are large

* For example, register propagation delay and set-up times are incurred at every
step, not just once for the entire instruction

* That said, the multicycle processor is likely to be less expensive because it
eliminates 2 adders (as we have seen, fast multi-bit adders are complex) and now
only one memory is required. Even so, additional non-architectural registers and
multiplexers will be required.

* To improve processor performance, we can introduce ‘pipelining’

* Pipelining is a type of parallel processing known as ‘temporal’
parallelism. This is particularly attractive because it can speed up
processing without duplicating hardware, i.e., a particular function can
only be used once at a particular time in a pipeline, but can be shared
between multiple pipelines

Pipelined processor

* Consider the design of a pipelined processor
* What we will do is to subdivide the single cycle processor into 5 pipelined stages

* In a similar way to that used in a multicycle processor, instructions are broken up into
say, 5 smaller steps, i.e., fetch, decode, execute ALU, memory read/write, write
register

* Since each stage is less complex it will execute about 5 times faster

* In this case, dividing the single cycle processor in to 5 ‘pipelined’ stages means that 5
instructions can execute simultaneously, one in each stage, i.e., the throughput is
ideally 5 times greater compared with a conventional single cycle processor, i.e., a
fetch occurs every clock cycle in a pipelined processor compared with once every
instruction in a conventional single cycle processor

* Note that the cycle time for the pipeline processor has to be at least as long as the
slowest sub-instruction. Because the sub-instructions take different times to execute,
we have some inefficiency compared with implementing them all in a single cycle

10

23/07/2025

Pipelined processor

Single Cycle processor

Fetch Decode Execute Memory Wr Fetch Decode Exe
Instruction Read Reg. ALU Read/Write Rg Instruction Read Reg.
Pipelined processor
Fetch Decode Execute Memory Wr
Read/Write Read Reg. ALU Read/Write Rg
Fetch Decode Execute Memory Wr
Read/Write Read Reg. ALU Read/Write Rg
Fetch Decode Execute Memory Wr
Read/Write Read Reg. ALU Read/Write Rg
Fetch Decode Execute Merr
Read/Write Read Reg. ALU Read

Pipelined processor

* Note that the register file is written in the 15t part of a cycle and read in
the second part so that data can be written and read back within a single

cycle

* The central challenge is handling hazards, i.e., when the results from one
instruction are needed by a subsequent instruction before the former has

completed

* Actually, there are 2 kinds of hazards
* Data hazard — when an instruction tries to read a register that has not yet been
written back
* Control hazard — when the decision of what instruction to fetch next has not been
made by the time the fetch takes place

* These issues will be addressed in the Computer Architecture course!

11

23/07/2025

Pipelined processor

wsmotonFoun | VielonDecode | Bxte | amory Acsoss | it Sac
IF 1D EX MEM WB
— — — Next PC —
Next SEQ PC Next SEQ PC
RS1
——
RS2
—1 Reg}smr
| File
=
=
3 = Z Z
= 2 =
-] g s
@ Imm [~
H

e |

WB Data

12

