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INTERPRETING FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- Contexts are too weak: they do not distinguish enough programs?
- The model does not adequately capture PcF?
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Theorem
If we extend the semantics of PcF to PCF+por with

[por] = por

the resulting denotational semantics is fully abstract...

but is Pcr+por still a reasonable model of programming language?
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If you add effects (references, control flow...) to a language, you can
distinguish more programs

Full abstraction becomes different: somewhat easier...
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- Berry introduced dl-domains & stable functions

- removed por from the model
- still not fully abstract

- O'Hearn and Riecke used logical relations

- characterised the definable elements
- fully abstract but not as insightful

- Game semantics give another fully abstract model
- program execution — two-player game
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LOADER’S UNDECIDABILITY RESULT

Let PCF o1 De the restriction of PCF consisting of:

- variables, abstraction, application
- true, false, if
- a primitive divergent Q2 : bool

This is a very minimal language with semantics in finite domains. However...

Loader's Theorem
Definability and contextual equivalence in PCF o1 are undecidable.



OVERVIEW: WHERE TO GO FROM HERE?



TOWARDS FULL ABSTRACTION

Source of a very rich literature:

- linear logic

- logical relations

- game semantics

- bisimulation techniques
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CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)
2. how to construct this structure in particular examples (specific)

Example:

1. A-calculus — cartesian closed categories
2. domains and continuous functions are a CCC

Generally we interpret:

- atype 7 as an object in a category;

- a context I' as the product of its types;

-atermI' =t : rasanarrow [t] : [I] — [r].

- parallel substitutionI' = o : A as an arrow [o] : [I'T — [A]
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DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml's ADT:

type 'a tree =
| Leaf
| Node of 'a * 'a tree * 'a tree

Tree(A) = 1+ A x Tree(A) x Tree(A)

It is a fixed point equation! We can use domain theory to solve it.
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BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

def
Modelled as a monad T (example: T(A) = (A x State)St2te)
Denotation of a computation: [I'] — T([z])

And more: adjunctions, effect handlers...

1
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Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.
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