DENOTATIONAL SEMANTICS

loannis Markakis
Lectures for Part I CST 2025/2026



BEYOND FULL ABSTRACTION FAILURE



RECAP

We have related operational semantics and denotational semantics:



RECAP

We have related operational semantics and denotational semantics:

- Soundness: t |, v = [t] = [v] for every type T
- Adequacy: [t] =[v] = t |, vfort € {nat,bool}



RECAP

We have related operational semantics and denotational semantics:

- Soundness: t |, v = [t] = [v] for every type T
- Adequacy: [t] = [v] = t |, vfort € {nat,bool}

We have also related contextual with denotational equivalence:



RECAP

We have related operational semantics and denotational semantics:

- Soundness: t |, v = [t] = [v] for every type T
- Adequacy: [t] = [v] = t |, vfort € {nat,bool}

We have also related contextual with denotational equivalence:

- Compositionality: [t] = [t'] = [C[t]] = [c[t"]] for all terms and contexts
- Using the above gives [t] =[t'] = t =t : 7T



RECAP

We have related operational semantics and denotational semantics:

- Soundness: t |, v = [t] = [v] for every type T
- Adequacy: [t] = [v] = t |, vfort € {nat,bool}

We have also related contextual with denotational equivalence:
- Compositionality: [t] = [¢'] = [c[t]] = [C[t’]] for all terms and contexts
- Using the above gives [t] =[t'] = t =t : 7T
- Failure of full abstraction:

t=ux t' T > [t] = [t']



RECAP

We have related operational semantics and denotational semantics:

- Soundness: t |, v = [t] = [v] for every type T
- Adequacy: [t] = [v] = t |, vfort € {nat,bool}

We have also related contextual with denotational equivalence:
- Compositionality: [t] = [¢'] = [c[t]] = [C[t’]] for all terms and contexts
- Using the above gives [t] =[t'] = t =t : 7T
- Failure of full abstraction:

t=ux t' T > [t] = [t']



INTERPRETING FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- Contexts are too weak: they do not distinguish enough programs?
- The model does not adequately capture PcF?



I'-t;:bool TI'k+t:bool

POR
I' + por(t;,ty) : bool
ti,v
t1 Upoo1 true ts Upoo1 true
PoORL PORR
pOT(tLtz) Upoo1 true por(tl,tz) Upoo1 true

t; Upoor false ty lpoor false

PORF
por(ty, 1) Upoor false



FULL ABSTRACTION FOR PCF+por

Theorem
If we extend the semantics of PcF to PCF+por with

[por] = por

the resulting denotational semantics is fully abstract.



FULL ABSTRACTION FOR PCF+por

Theorem
If we extend the semantics of PcF to PCF+por with

[por] = por

the resulting denotational semantics is fully abstract...

but is Pcr+por still a reasonable model of programming language?



REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow...) to a language, you can
distinguish more programs



REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow...) to a language, you can
distinguish more programs

Full abstraction becomes different: somewhat easier...



TOWARDS FULLY ABSTRACT SEMANTICS FOR PCF

- Berry introduced dl-domains & stable functions

- removed por from the model
- still not fully abstract



TOWARDS FULLY ABSTRACT SEMANTICS FOR PCF

- Berry introduced dl-domains & stable functions

- removed por from the model
- still not fully abstract

- O'Hearn and Riecke used logical relations

- characterised the definable elements
- fully abstract but not as insightful



TOWARDS FULLY ABSTRACT SEMANTICS FOR PCF

- Berry introduced dl-domains & stable functions

- removed por from the model
- still not fully abstract

- O'Hearn and Riecke used logical relations

- characterised the definable elements
- fully abstract but not as insightful

- Game semantics give another fully abstract model
- program execution — two-player game



LOADER’S UNDECIDABILITY RESULT

Let PCF poo1 be the restriction of PCF consisting of:

- variables, abstraction, application
- true, false, if
- a primitive divergent Q : bool



LOADER’S UNDECIDABILITY RESULT

Let PCF o1 De the restriction of PCF consisting of:

- variables, abstraction, application
- true, false, if
- a primitive divergent Q2 : bool

This is a very minimal language with semantics in finite domains. However...

Loader's Theorem
Definability and contextual equivalence in PCF o1 are undecidable.



OVERVIEW: WHERE TO GO FROM HERE?



TOWARDS FULL ABSTRACTION

Source of a very rich literature:

- linear logic

- logical relations

- game semantics

- bisimulation techniques



CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)
2. how to construct this structure in particular examples (specific)



CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)
2. how to construct this structure in particular examples (specific)

Example:

1. A-calculus — cartesian closed categories
2. domains and continuous functions are a CCC



CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)
2. how to construct this structure in particular examples (specific)

Example:

1. A-calculus — cartesian closed categories
2. domains and continuous functions are a CCC

Generally we interpret:

- atype 7 as an object in a category;

- a context I' as the product of its types;

-atermI' =t : rasanarrow [t] : [I] — [r].

- parallel substitutionI' = o : A as an arrow [o] : [I'T — [A]



DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml's ADT:

type 'a tree =
| Leaf
| Node of 'a * 'a tree * 'a tree



DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml's ADT:

type 'a tree =
| Leaf
| Node of 'a * 'a tree * 'a tree

Tree(A) = 1+ A x Tree(A) x Tree(A)

It is a fixed point equation! We can use domain theory to solve it.



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

1



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

def
Modelled as a monad T (example: T(A) = (A x State)St2te)

1



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

def
Modelled as a monad T (example: T(A) = (A x State)St2te)

Denotation of a computation: [I'] — T([z])

1



BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

def
Modelled as a monad T (example: T(A) = (A x State)St2te)
Denotation of a computation: [I'] — T([z])

And more: adjunctions, effect handlers...

1



MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)



MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.



	Beyond full abstraction failure
	Overview: Where to go from here?

