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BEYOND FULL ABSTRACTION FAILURE



RECAP

We have related operational semantics and denotational semantics:

• Soundness: 𝑡 ⇓𝜏 𝑣 ⟹ J𝑡K = J𝑣K for every type 𝜏
• Adequacy: J𝑡K = J𝑣K ⟹ 𝑡 ⇓𝜏 𝑣 for 𝜏 ∈ {nat, bool}

We have also related contextual with denotational equivalence:

• Compositionality: J𝑡K = J𝑡′K ⟹ JC[𝑡]K = JC[𝑡′]K for all terms and contexts
• Using the above gives J𝑡K = J𝑡′K ⟹ 𝑡 ≅ctx 𝑡′ : 𝜏
• Failure of full abstraction:

𝑡 ≅ctx 𝑡′ : 𝜏 ⇏ J𝑡K = J𝑡′K
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INTERPRETING FULL ABSTRACTION FAILURE

• PCF is not expressive enough to present the model?
• Contexts are too weak: they do not distinguish enough programs?
• The model does not adequately capture PCF?
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PCF+por

Γ ⊢ 𝑡 : 𝜏

… POR
Γ ⊢ 𝑡1 : bool Γ ⊢ 𝑡2 : bool

Γ ⊢ por(𝑡1, 𝑡2) : bool

𝑡 ⇓𝜏 𝑣

PORL
𝑡1 ⇓bool true

por(𝑡1, 𝑡2) ⇓bool true
PORR

𝑡2 ⇓bool true
por(𝑡1, 𝑡2) ⇓bool true

PORF
𝑡1 ⇓bool false 𝑡2 ⇓bool false

por(𝑡1, 𝑡2) ⇓bool false
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FULL ABSTRACTION FOR PCF+por

Theorem
If we extend the semantics of PCF to PCF+por with

JporK = por
the resulting denotational semantics is fully abstract.

but is PCF+por still a reasonable model of programming language?
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REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow…) to a language, you can
distinguish more programs

Full abstraction becomes different: somewhat easier...
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TOWARDS FULLY ABSTRACT SEMANTICS FOR PCF

• Berry introduced dI-domains & stable functions
• removed por from the model
• still not fully abstract

• O’Hearn and Riecke used logical relations
• characterised the definable elements
• fully abstract but not as insightful

• Game semantics give another fully abstract model
• program execution↦ two-player game
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LOADER’S UNDECIDABILITY RESULT

Let PCF bool be the restriction of PCF consisting of:

• variables, abstraction, application
• true, false, if
• a primitive divergent Ω : bool

This is a very minimal language with semantics in finite domains. However...

Loader’s Theorem
Definability and contextual equivalence in PCF bool are undecidable.
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OVERVIEW: WHERE TO GO FROM HERE?



TOWARDS FULL ABSTRACTION

Source of a very rich literature:

• linear logic
• logical relations
• game semantics
• bisimulation techniques
• …
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CATEGORICAL SEMANTICS

Separate

1. the structure needed to interpret a language (generic)
2. how to construct this structure in particular examples (specific)

Example:

1. λ-calculus→ cartesian closed categories
2. domains and continuous functions are a CCC

Generally we interpret:

• a type 𝜏 as an object in a category;
• a context Γ as the product of its types;
• a term Γ ⊢ 𝑡 : 𝜏 as an arrow J𝑡K : JΓK → J𝜏 K.
• parallel substitution Γ ⊢ 𝜎 : Δ as an arrow J𝜎 K : JΓK → JΔK
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DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml’s ADT:

type 'a tree =
| Leaf
| Node of 'a * 'a tree * 'a tree

Tree(𝐴) = 1 + 𝐴 × Tree(𝐴) × Tree(𝐴)

It is a fixed point equation! We can use domain theory to solve it.
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BEYOND PURE LANGUAGES

Effects: control flow (errors), mutability/state, input-output, etc.
An important aspect of programming languages!

Modelled as a monad 𝑇 (example: 𝑇 (𝐴) def= (𝐴 × State)State)

Denotation of a computation: JΓK → 𝑇(J𝜏 K)
And more: adjunctions, effect handlers…
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MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between
different approaches.
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