DENOTATIONAL SEMANTICS

Ioannis Markakis Lectures for Part II CST 2025/2026

We have related operational semantics and denotational semantics:

We have related operational semantics and denotational semantics:

- · Soundness: $t \downarrow_{\tau} v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$ for every type τ
- $\cdot \ \mathsf{Adequacy:} \quad [\![t]\!] = [\![v]\!] \implies t \ \downarrow_\tau v \ \mathsf{for} \ \tau \in \{\mathsf{nat}, \mathsf{bool}\}$

We have related operational semantics and denotational semantics:

- · Soundness: $t \downarrow_{\tau} v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$ for every type τ
- · Adequacy: $[\![t]\!] = [\![v]\!] \implies t \downarrow_{\tau} v \text{ for } \tau \in \{\text{nat}, \text{bool}\}$

We have also related **contextual** with **denotational** equivalence:

We have related operational semantics and denotational semantics:

- · Soundness: $t \downarrow_{\tau} v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$ for every type τ
- · Adequacy: $[\![t]\!] = [\![v]\!] \implies t \downarrow_{\tau} v \text{ for } \tau \in \{\text{nat}, \text{bool}\}$

We have also related contextual with denotational equivalence:

- · Compositionality: $[t] = [t'] \implies [C[t]] = [C[t']]$ for all terms and contexts
- · Using the above gives $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies t \cong_{\operatorname{ctx}} t' : \tau$

We have related operational semantics and denotational semantics:

- · Soundness: $t \downarrow_{\tau} v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$ for every type τ
- · Adequacy: $[\![t]\!] = [\![v]\!] \implies t \downarrow_{\tau} v \text{ for } \tau \in \{\text{nat}, \text{bool}\}$

We have also related contextual with denotational equivalence:

- · Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies \llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[t'] \rrbracket$ for all terms and contexts
- · Using the above gives $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies t \cong_{\operatorname{ctx}} t' : \tau$
- Failure of full abstraction:

$$t \cong_{\mathsf{ctx}} t' : \tau \Rightarrow \llbracket t \rrbracket = \llbracket t' \rrbracket$$

We have related operational semantics and denotational semantics:

- · Soundness: $t \downarrow_{\tau} v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$ for every type τ
- · Adequacy: $[\![t]\!] = [\![v]\!] \implies t \downarrow_{\tau} v \text{ for } \tau \in \{\text{nat}, \text{bool}\}$

We have also related contextual with denotational equivalence:

- · Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies \llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[t'] \rrbracket$ for all terms and contexts
- · Using the above gives $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies t \cong_{\operatorname{ctx}} t' : \tau$
- Failure of full abstraction:

$$t \cong_{\mathsf{ctx}} t' : \tau \Rightarrow \llbracket t \rrbracket = \llbracket t' \rrbracket$$

INTERPRETING FULL ABSTRACTION FAILURE

- PCF is not expressive enough to present the model?
- · Contexts are too weak: they do not distinguish enough programs?
- The model does not adequately capture Pcf?

Pcf+por

$$\Gamma \vdash t : \tau$$

... $\qquad \qquad \mathsf{POR} \; \frac{\Gamma \vdash t_1 : \mathsf{bool} \qquad \Gamma \vdash t_2 : \mathsf{bool}}{\Gamma \vdash \mathsf{por}(t_1, t_2) : \mathsf{bool}}$

 $t \downarrow_{\tau} v$

FULL ABSTRACTION FOR PCF+por

Theorem

If we extend the semantics of PCF to PCF+por with

$$[\![\mathtt{por}]\!] = \mathrm{por}$$

the resulting denotational semantics is fully abstract.

Full abstraction for Pcf+por

Theorem

If we extend the semantics of PCF to PCF+por with

$$[\![\mathtt{por}]\!] = \mathrm{por}$$

the resulting denotational semantics is fully abstract...

but is PCF+por still a reasonable model of programming language?

REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow...) to a language, you can distinguish more programs

REAL LANGUAGES HAVE EFFECTS

If you add effects (references, control flow...) to a language, you can distinguish more programs

Full abstraction becomes different: somewhat easier...

TOWARDS FULLY ABSTRACT SEMANTICS FOR PCF

- Berry introduced dI-domains & stable functions
 - · removed por from the model
 - still not fully abstract

TOWARDS FULLY ABSTRACT SEMANTICS FOR PCF

- Berry introduced dI-domains & stable functions
 - removed por from the model
 - still not fully abstract
- · O'Hearn and Riecke used logical relations
 - · characterised the definable elements
 - fully abstract but not as insightful

TOWARDS FULLY ABSTRACT SEMANTICS FOR PCF

- Berry introduced dI-domains & stable functions
 - removed por from the model
 - still not fully abstract

- O'Hearn and Riecke used logical relations
 - · characterised the definable elements
 - · fully abstract but not as insightful

- · Game semantics give another fully abstract model
 - \cdot program execution \mapsto two-player game

LOADER'S UNDECIDABILITY RESULT

Let PCF bool be the restriction of PCF consisting of:

- \cdot variables, abstraction, application
- · true, false, if
- \cdot a primitive divergent Ω : bool

LOADER'S UNDECIDABILITY RESULT

Let PCF bool be the restriction of PCF consisting of:

- variables, abstraction, application
- · true, false, if
- · a primitive divergent Ω : bool

This is a very minimal language with semantics in finite domains. However...

Loader's Theorem

Definability and contextual equivalence in PCF bool are undecidable.

TOWARDS FULL ABSTRACTION

Source of a very rich literature:

- linear logic
- logical relations
- game semantics
- · bisimulation techniques

• ...

CATEGORICAL SEMANTICS

Separate

- 1. the structure needed to interpret a language (generic)
- 2. how to construct this structure in particular examples (specific)

CATEGORICAL SEMANTICS

Separate

- 1. the structure needed to interpret a language (generic)
- 2. how to construct this structure in particular examples (specific)

Example:

- 1. λ -calculus \rightarrow cartesian closed categories
- 2. domains and continuous functions are a CCC

CATEGORICAL SEMANTICS

Separate

- 1. the structure needed to interpret a language (generic)
- 2. how to construct this structure in particular examples (specific)

Example:

- 1. λ -calculus \rightarrow cartesian closed categories
- 2. domains and continuous functions are a CCC

Generally we interpret:

- \cdot a type au as an object in a category;
- \cdot a context Γ as the product of its types;
- · a term $\Gamma \vdash t : \tau$ as an arrow $[\![t]\!] : [\![\Gamma]\!] \to [\![\tau]\!]$.
- · parallel substitution $\Gamma \vdash \sigma : \Delta$ as an arrow $[\![\sigma]\!] : [\![\Gamma]\!] \to [\![\Delta]\!]$

DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml's ADT:

DOMAIN THEORY FOR ABSTRACT DATATYPES

OCaml's ADT:

$$Tree(A) = 1 + A \times Tree(A) \times Tree(A)$$

It is a fixed point equation! We can use domain theory to solve it.

Effects: control flow (errors), mutability/state, input-output, etc. An important aspect of programming languages!

Effects: control flow (errors), mutability/state, input-output, etc. An important aspect of programming languages!

Modelled as a monad T (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

Effects: control flow (errors), mutability/state, input-output, etc. An important aspect of programming languages!

Modelled as a monad T (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

Denotation of a computation: $\llbracket \Gamma \rrbracket \to T(\llbracket \tau \rrbracket)$

Effects: control flow (errors), mutability/state, input-output, etc. An important aspect of programming languages!

Modelled as a monad T (example: $T(A) \stackrel{\text{def}}{=} (A \times \text{State})^{\text{State}}$)

Denotation of a computation: $[\![\Gamma]\!] \to T([\![\tau]\!])$

And more: adjunctions, effect handlers...

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

MORE SEMANTICS

Easter: axiomatic semantic (Hoare Logic and Model Checking)

In the end, the most interesting aspects of semantics is in the interaction between different approaches.