

DENOTATIONAL SEMANTICS

Ioannis Markakis

Lectures for Part II CST 2025/2026

EXTENSIONALITY

Contextual preorder $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ is the one-sided version of contextual equivalence: for all \mathcal{C} such that $\cdot \vdash_{\Gamma, \tau} \mathcal{C} : \gamma$ where $\gamma \in \{\text{nat}, \text{bool}\}$ and for all values v ,

$$\mathcal{C}[t] \Downarrow_{\gamma} v \Rightarrow \mathcal{C}[t'] \Downarrow_{\gamma} v.$$

CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ is the one-sided version of contextual equivalence: for all \mathcal{C} such that $\cdot \vdash_{\Gamma, \tau} \mathcal{C} : \gamma$ where $\gamma \in \{\text{nat}, \text{bool}\}$ and for all values v ,

$$\mathcal{C}[t] \Downarrow_{\gamma} v \Rightarrow \mathcal{C}[t'] \Downarrow_{\gamma} v.$$

This is a reflexive and transitive relation (a preorder).

CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder $\Gamma \vdash t \leq_{\text{ctx}} t' : \tau$ is the one-sided version of contextual equivalence: for all \mathcal{C} such that $\cdot \vdash_{\Gamma, \tau} \mathcal{C} : \gamma$ where $\gamma \in \{\text{nat}, \text{bool}\}$ and for all values v ,

$$\mathcal{C}[t] \Downarrow_{\gamma} v \Rightarrow \mathcal{C}[t'] \Downarrow_{\gamma} v.$$

This is a reflexive and transitive relation (a preorder).

Contextual equivalence is recovered by the contextual preorder via:

$$\Gamma \vdash t \cong_{\text{ctx}} t' : \tau \iff (\Gamma \vdash t \leq_{\text{ctx}} t' : \tau \wedge \Gamma \vdash t' \leq_{\text{ctx}} t : \tau)$$

To characterise contextual preorder between **closed** terms, **applicative** contexts are enough.

To characterise contextual preorder between **closed** terms, **applicative** contexts are enough.

Lemma

Let $\cdot \vdash t_1, t_2 : \tau$ be closed terms. Then $t_1 \leq_{\text{ctx}} t_2 : \tau$ if and only if

$$\forall f \in \text{PCF}_{\tau \rightarrow \text{bool}}. (f t_1 \Downarrow_{\text{bool}} \text{true} \implies f t_2 \Downarrow_{\text{bool}} \text{true})$$

CONTEXTUAL PREORDER AND FORMAL APPROXIMATION

Formal approximation **captures** contextual preorder.

Formal approximation **captures** contextual preorder.

Proposition

For all Pcf types τ and all closed terms $t_1, t_2 \in \text{Pcf}_\tau$

$$t_1 \leq_{\text{ctx}} t_2 : \tau \iff \llbracket t_1 \rrbracket \triangleleft_\tau t_2.$$

For $\gamma = \text{bool}$ or nat , $t_1 \leq_{\text{ctx}} t_2 : \gamma$ holds if and only if

$$\forall v. (t_1 \Downarrow_{\gamma} v \Rightarrow t_2 \Downarrow_{\gamma} v).$$

For $\gamma = \text{bool}$ or nat , $t_1 \leq_{\text{ctx}} t_2 : \gamma$ holds if and only if

$$\forall v. (t_1 \Downarrow_{\gamma} v \Rightarrow t_2 \Downarrow_{\gamma} v).$$

At a function type $\tau \rightarrow \tau'$, $t_1 \leq_{\text{ctx}} t_2 : \tau \rightarrow \tau'$ holds if and only if

$$\forall t \in \text{PCF}_{\tau}. (t_1 t \leq_{\text{ctx}} t_2 t : \tau').$$

FULL ABSTRACTION

FULL ABSTRACTION

FAILURE OF FULL ABSTRACTION

We have related **operational** semantics and **denotational** semantics:

We have related operational semantics and denotational semantics:

- **Soundness:** $t \Downarrow_{\tau} v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$ for every type τ
- **Adequacy:** $\llbracket t \rrbracket = \llbracket v \rrbracket \implies t \Downarrow_{\tau} v$ for $\tau \in \{\text{nat}, \text{bool}\}$

We have related operational semantics and denotational semantics:

- Soundness: $t \Downarrow_{\tau} v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$ for every type τ
- Adequacy: $\llbracket t \rrbracket = \llbracket v \rrbracket \implies t \Downarrow_{\tau} v$ for $\tau \in \{\text{nat}, \text{bool}\}$

We have also related **contextual** with **denotational** equivalence:

We have related operational semantics and denotational semantics:

- Soundness: $t \Downarrow_{\tau} v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$ for every type τ
- Adequacy: $\llbracket t \rrbracket = \llbracket v \rrbracket \implies t \Downarrow_{\tau} v$ for $\tau \in \{\text{nat}, \text{bool}\}$

We have also related contextual with denotational equivalence:

- **Compositionality:** $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies \llbracket c[t] \rrbracket = \llbracket c[t'] \rrbracket$ for all terms and contexts
- Using the above gives $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies t \cong_{\text{ctx}} t' : \tau$

We have related operational semantics and denotational semantics:

- Soundness: $t \Downarrow_{\tau} v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$ for every type τ
- Adequacy: $\llbracket t \rrbracket = \llbracket v \rrbracket \implies t \Downarrow_{\tau} v$ for $\tau \in \{\text{nat}, \text{bool}\}$

We have also related contextual with denotational equivalence:

- Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies \llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[t'] \rrbracket$ for all terms and contexts
- Using the above gives $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies t \cong_{\text{ctx}} t' : \tau$
- What about the converse?

$$t \cong_{\text{ctx}} t' : \tau \stackrel{?}{\implies} \llbracket t \rrbracket = \llbracket t' \rrbracket$$

We have related operational semantics and denotational semantics:

- Soundness: $t \Downarrow_{\tau} v \implies \llbracket t \rrbracket = \llbracket v \rrbracket$ for every type τ
- Adequacy: $\llbracket t \rrbracket = \llbracket v \rrbracket \implies t \Downarrow_{\tau} v$ for $\tau \in \{\text{nat}, \text{bool}\}$

We have also related contextual with denotational equivalence:

- Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies \llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[t'] \rrbracket$ for all terms and contexts
- Using the above gives $\llbracket t \rrbracket = \llbracket t' \rrbracket \implies t \cong_{\text{ctx}} t' : \tau$
- What about the converse?

$$t \cong_{\text{ctx}} t' : \tau \stackrel{?}{\implies} \llbracket t \rrbracket = \llbracket t' \rrbracket$$

A denotational model is called **fully abstract** when

$$t_1 \cong_{\text{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

A denotational model is called **fully abstract** when

$$t_1 \cong_{\text{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

It is a form of **completeness** of semantic equivalence wrt. contextual equivalence.

A denotational model is called **fully abstract** when

$$t_1 \cong_{\text{ctx}} t_2 : \tau \Rightarrow \llbracket t_1 \rrbracket = \llbracket t_2 \rrbracket \in \llbracket \tau \rrbracket$$

It is a form of **completeness** of semantic equivalence wrt. contextual equivalence.

The domain model of PCF is **not** fully abstract.

PARALLEL OR

The *parallel or* function $\text{por} : \mathbb{B}_\perp \times \mathbb{B}_\perp \rightarrow \mathbb{B}_\perp$ is defined as given by the following table:

por	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

LEFT SEQUENTIAL OR

The (left) sequential or function $\text{or} : \mathbb{B}_\perp \times \mathbb{B}_\perp \rightarrow \mathbb{B}_\perp$ is defined as

$$\text{or} \stackrel{\text{def}}{=} [\![\text{fun } x: \text{bool}. \text{ fun } y: \text{bool}. \text{ if } x \text{ then true else } y]\!]$$

It is given by the following table:

or	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	\perp	\perp	\perp

PARALLEL VS SEQUENTIAL OR

por	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

or	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	\perp	\perp	\perp

PARALLEL VS SEQUENTIAL OR

por	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	true	\perp	\perp

or	true	false	\perp
true	true	true	true
false	true	false	\perp
\perp	\perp	\perp	\perp

or is sequential,

but por is not.

UNDEFINABILITY OR PARALLEL OR

Theorem

There is **no** closed PCF term

$$t : \text{bool} \rightarrow \text{bool} \rightarrow \text{bool}$$

satisfying

$$\llbracket t \rrbracket = \text{por} : \mathbb{B}_\perp \rightarrow \mathbb{B}_\perp \rightarrow \mathbb{B}_\perp .$$

Theorem

There is **no** closed PCF term

$$t : \text{bool} \rightarrow \text{bool} \rightarrow \text{bool}$$

satisfying

$$\llbracket t \rrbracket = \text{por} : \mathbb{B}_\perp \rightarrow \mathbb{B}_\perp \rightarrow \mathbb{B}_\perp .$$

The proof – originally by Plotkin – is beyond the scope of this course.

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen T_{true} and T_{false} ,

$$T_{\text{true}} \cong_{\text{ctx}} T_{\text{false}} : (\text{bool} \rightarrow \text{bool} \rightarrow \text{bool}) \rightarrow \text{bool}$$

$$[\![T_{\text{true}}]\!] \neq [\![T_{\text{false}}]\!] \in (\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$$

FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen T_{true} and T_{false} ,

$$T_{\text{true}} \cong_{\text{ctx}} T_{\text{false}} : (\text{bool} \rightarrow \text{bool} \rightarrow \text{bool}) \rightarrow \text{bool}$$

$$\llbracket T_{\text{true}} \rrbracket \neq \llbracket T_{\text{false}} \rrbracket \in (\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$$

Idea:

- for all $f \in PCF_{\text{bool} \rightarrow \text{bool} \rightarrow \text{bool}}$, ensure $T_b f \uparrow_{\text{bool} \dots}$
- but $\llbracket T_b \rrbracket(\text{por}) = \llbracket b \rrbracket$.

EXAMPLE OF FULL ABSTRACTION FAILURE

$$T_b \stackrel{\text{def}}{=} \text{fun } f: \text{bool} \rightarrow (\text{bool} \rightarrow \text{bool}).$$
$$\quad \text{if}(f \text{ true } \Omega_{\text{bool}}) \text{ then}$$
$$\quad \quad \text{if } (f \Omega_{\text{bool}} \text{ true}) \text{ then}$$
$$\quad \quad \quad \text{if } (f \text{ false } \text{ false}) \text{ then } \Omega_{\text{bool}} \text{ else } \textcolor{brown}{b}$$
$$\quad \quad \quad \text{else } \Omega_{\text{bool}}$$
$$\quad \text{else } \Omega_{\text{bool}}$$