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EXTENSIONALITY



CHARACTERIZING FORMAL APPROXIMATION

Contextual preorder Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏 is the one-sided version of contextual equivalence:
for all C such that ⋅ ⊢Γ,𝜏 C : 𝛾 where 𝛾 ∈ {nat, bool} and for all values 𝑣 ,

C[𝑡] ⇓𝛾 𝑣 ⇒ C[𝑡′] ⇓𝛾 𝑣 .

This is a reflexive and transitive relation (a preorder).

Contextual equivalence is recovered by the contextual preorder via:

Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 ⟺ (Γ ⊢ 𝑡 ≤ctx 𝑡′ : 𝜏 ∧ Γ ⊢ 𝑡′ ≤ctx 𝑡 : 𝜏 )
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APPLICATION CONTEXTS

To characterise contextual preorder between closed terms, applicative contexts are
enough.

Lemma
Let ⋅ ⊢ 𝑡1, 𝑡2 : 𝜏 be closed terms. Then 𝑡1 ≤ctx 𝑡2 : 𝜏 if and only if

∀𝑓 ∈ PCF𝜏→bool . (𝑓 𝑡1 ⇓bool true ⟹ 𝑓 𝑡2 ⇓bool true)
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CONTEXTUAL PREORDER AND FORMAL APPROXIMATION

Formal approximation captures contextual preorder.

Proposition
For all PCF types 𝜏 and all closed terms 𝑡1, 𝑡2 ∈ PCF𝜏

𝑡1 ≤ctx 𝑡2 : 𝜏 ⟺ J𝑡1K ⊲𝜏 𝑡2.
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EXTENSIONALITY PROPERTIES OF CONTEXTUAL PREORDER

For 𝛾 = bool or nat, 𝑡1 ≤ctx 𝑡2 : 𝛾 holds if and only if
∀𝑣. (𝑡1 ⇓𝛾 𝑣 ⇒ 𝑡2 ⇓𝛾 𝑣).

At a function type 𝜏 -> 𝜏 ′, 𝑡1 ≤ctx 𝑡2 : 𝜏 -> 𝜏 ′ holds if and only if
∀𝑡 ∈ PCF𝜏 . (𝑡1 𝑡 ≤ctx 𝑡2 𝑡 : 𝜏 ′).
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FULL ABSTRACTION



FULL ABSTRACTION
FAILURE OF FULL ABSTRACTION



RECAP

We have related operational semantics and denotational semantics:

• Soundness: 𝑡 ⇓𝜏 𝑣 ⟹ J𝑡K = J𝑣K for every type 𝜏
• Adequacy: J𝑡K = J𝑣K ⟹ 𝑡 ⇓𝜏 𝑣 for 𝜏 ∈ {nat, bool}

We have also related contextual with denotational equivalence:

• Compositionality: J𝑡K = J𝑡′K ⟹ JC[𝑡]K = JC[𝑡′]K for all terms and contexts
• Using the above gives J𝑡K = J𝑡′K ⟹ 𝑡 ≅ctx 𝑡′ : 𝜏
• What about the converse?

𝑡 ≅ctx 𝑡′ : 𝜏 ?⟹ J𝑡K = J𝑡′K
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FULL ABSTRACTION

A denotational model is called fully abstract when

𝑡1 ≅ctx 𝑡2 : 𝜏 ⇒ J𝑡1K = J𝑡2K ∈ J𝜏 K

It is a form of completeness of semantic equivalence wrt. contextual equivalence.

The domain model of PCF is not fully abstract.
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PARALLEL OR

The parallel or function por : 𝔹⊥ ×𝔹⊥ → 𝔹⊥ is defined as given by the following table:

por true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥
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LEFT SEQUENTIAL OR

The (left) sequential or function or : 𝔹⊥ × 𝔹⊥ → 𝔹⊥ is defined as

or def= Jfun 𝑥: bool. fun 𝑦: bool. if 𝑥 then true else 𝑦K
It is given by the following table:

or true false ⊥
true true true true
false true false ⊥
⊥ ⊥ ⊥ ⊥
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PARALLEL VS SEQUENTIAL OR

por true false ⊥
true true true true
false true false ⊥
⊥ true ⊥ ⊥

or true false ⊥
true true true true
false true false ⊥
⊥ ⊥ ⊥ ⊥

or is sequential, but por is not.
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UNDEFINABILITY OR PARALLEL OR

Theorem
There is no closed PCF term

𝑡 : bool -> bool -> bool

satisfying J𝑡K = por : 𝔹⊥ → 𝔹⊥ → 𝔹⊥ .

The proof – originally by Plotkin – is beyond the scope of this course.
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FAILURE OF FULL ABSTRACTION

The denotational model of PCF in domains and continuous functions is not fully abstract.

For well-chosen 𝑇true and 𝑇false,

𝑇true ≅ctx 𝑇false : (bool -> bool -> bool) -> bool

J𝑇trueK ≠ J𝑇falseK ∈ (𝔹 → 𝔹 → 𝔹) → 𝔹

Idea:

• for all 𝑓 ∈ 𝑃𝐶𝐹bool->bool->bool, ensure 𝑇𝑏 𝑓 ⇑bool…
• but J𝑇𝑏K(por) = J𝑏K.
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EXAMPLE OF FULL ABSTRACTION FAILURE

𝑇𝑏 def= fun 𝑓 : bool -> (bool -> bool).
if(𝑓 true Ωbool) then
if (𝑓 Ωbool true) then
if (𝑓 false false) then Ωbool else 𝑏

else Ωbool
else Ωbool
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