

DENOTATIONAL SEMANTICS

Ioannis Markakis

Lectures for Part II CST 2025/2026

RECAP: DENOTATIONAL SEMANTICS

- a mapping of Pcf types τ to domains $\llbracket \tau \rrbracket$;
- a mapping of Pcf contexts Γ to domains $\llbracket \Gamma \rrbracket$;
- a mapping of closed, well-typed Pcf terms $\cdot \vdash t : \tau$ to elements $\llbracket t \rrbracket \in \llbracket \tau \rrbracket$;
- denotation of open terms $\Gamma \vdash t : \tau$ will be continuous functions $\llbracket \Gamma \rrbracket \rightarrow \llbracket \tau \rrbracket$

Compositionality: $\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow \llbracket \mathcal{C}[t] \rrbracket = \llbracket \mathcal{C}[t'] \rrbracket$.

Soundness: for any type τ , $t \Downarrow_{\tau} v \Rightarrow \llbracket t \rrbracket = \llbracket v \rrbracket$.

Adequacy: for $\gamma = \text{bool}$ or nat , if $t \in \text{Pcf}_{\gamma}$ and $\llbracket t \rrbracket = \llbracket v \rrbracket$ then $t \Downarrow_{\gamma} v$.

RECAP: TYPES AND CONTEXTS

$$\llbracket \text{nat} \rrbracket \stackrel{\text{def}}{=} \mathbb{N}_{\perp} \quad (\text{flat domain})$$

$$\llbracket \text{bool} \rrbracket \stackrel{\text{def}}{=} \mathbb{B}_{\perp} \quad (\text{flat domain})$$

$$\llbracket \tau \rightarrow \tau' \rrbracket \stackrel{\text{def}}{=} \llbracket \tau \rrbracket \rightarrow \llbracket \tau' \rrbracket \quad (\text{function domain})$$

$$\llbracket \cdot \rrbracket = \mathbb{1} \quad (\text{one element set})$$

$$\llbracket \Gamma, x: \tau \rrbracket = \llbracket \Gamma \rrbracket \times \llbracket \tau \rrbracket \quad (\text{product domain})$$

RECAP: TERMS

$$[\![0]\!] = \lambda \rho \in [\![\Gamma]\!]. 0$$

$$[\![\text{true}]\!] = \lambda \rho \in [\![\Gamma]\!]. \text{true}$$

$$[\![\text{false}]\!] = \lambda \rho \in [\![\Gamma]\!]. \text{false}$$

$$[\![\text{succ}(t)]\!] = \text{succ}_{\perp} \circ [\![t]\!]$$

$$[\![\text{pred}(t)]\!] = \text{pred}_{\perp} \circ [\![t]\!]$$

$$[\![\text{zero?}(t)]\!] = \text{zero?}_{\perp} \circ [\![t]\!]$$

$$[\![\text{if } b \text{ then } t \text{ else } t']\!] = \text{if} \circ \langle [\![b]\!], \langle [\![t]\!], [\![t']\!] \rangle \rangle$$

$$[\![x]\!] = \pi_x$$

$$[\![t_1 \ t_2]\!] = \text{eval} \circ \langle [\![t_1]\!], [\![t_2]\!] \rangle$$

$$[\![\text{fun } x: \tau. t]\!] = \text{cur}([\![t]\!])$$

$$[\![\text{fix } f]\!] = \text{fix} \circ [\![f]\!]$$

RECAP: EVALUATION CONTEXTS AND COMPOSITIONALITY

We define also denotation for evaluation contexts $\Gamma \vdash_{\Delta, \sigma} \mathcal{C} : \tau$ to be functions

$$[\mathcal{C}] : ([\Delta] \rightarrow [\sigma]) \rightarrow [\Gamma] \rightarrow [\tau]$$

such that

$$[\mathcal{C}[t]] = [\mathcal{C}](\llbracket t \rrbracket)$$

This gives us compositionality for free:

$$\llbracket t \rrbracket = \llbracket t' \rrbracket \Rightarrow [\mathcal{C}[t]] = [\mathcal{C}[t']]$$

for every evaluation context \mathcal{C} .

ADEQUACY

Proposition (Soundness)

For all PCF types τ and all closed $t, v \in \text{PCF}_\tau$ with v a value, if $t \Downarrow_\tau v$ is derivable, then

$$\llbracket t \rrbracket = \llbracket v \rrbracket \in \llbracket \tau \rrbracket$$

Proposition (Adequacy)

For any **closed** PCF term t and value v of **ground** type $\gamma \in \{\text{nat}, \text{bool}\}$

$$\llbracket t \rrbracket = \llbracket v \rrbracket \Rightarrow t \Downarrow_\gamma v$$

ADEQUACY FOR FUNCTION TYPES

Adequacy does **not** hold at function types or for open terms:

ADEQUACY FOR FUNCTION TYPES

Adequacy does **not** hold at function types or for open terms:

$$\llbracket \text{fun } x: \tau. (\text{fun } y: \tau. y) x \rrbracket = \llbracket \text{fun } x: \tau. x \rrbracket : \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket$$
$$\text{fun } x: \tau. (\text{fun } y: \tau. y) x \not\approx_{\tau \rightarrow \tau} \text{fun } x: \tau. x$$

ADEQUACY FOR FUNCTION TYPES

Adequacy does **not** hold at function types or for open terms:

$$\llbracket \text{fun } x: \tau. (\text{fun } y: \tau. y) x \rrbracket = \llbracket \text{fun } x: \tau. x \rrbracket : \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket$$
$$\text{fun } x: \tau. (\text{fun } y: \tau. y) x \not\approx_{\tau \rightarrow \tau} \text{fun } x: \tau. x$$

A more serious example for $\Gamma = (f : \text{nat} \rightarrow \text{nat})$

$$\llbracket \text{fun } x: \text{nat}. (\text{if zero?}(f x) \text{ then true else true}) \rrbracket$$
$$\stackrel{?}{=} \llbracket \text{fun } x: \text{nat}. \text{true} \rrbracket$$

ADEQUACY FOR FUNCTION TYPES

Adequacy does **not** hold at function types or for open terms:

$$\llbracket \text{fun } x: \tau. (\text{fun } y: \tau. y) x \rrbracket = \llbracket \text{fun } x: \tau. x \rrbracket : \llbracket \tau \rrbracket \rightarrow \llbracket \tau \rrbracket$$
$$\text{fun } x: \tau. (\text{fun } y: \tau. y) x \not\Downarrow_{\tau \rightarrow \tau} \text{ fun } x: \tau. x$$

A more serious example for $\Gamma = (f : \text{nat} \rightarrow \text{nat})$

$$\llbracket \text{fun } x: \text{nat}. (\text{if zero?}(f x) \text{ then true else true}) \rrbracket$$
$$\stackrel{?}{=} \llbracket \text{fun } x: \text{nat}. \text{true} \rrbracket$$

This denotational equality holds exactly when f is a total function. But there is no hope that we can decide what the first expression should evaluate to: this would mean solving the halting problem for f !

ADEQUACY

FORMAL APPROXIMATION

PROOF STRATEGY

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{Pcf}_\tau$ such that:

PROOF STRATEGY

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PcF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]

PROOF STRATEGY

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]
- $R_{\text{nat}}(n, t)$ implies that $t \Downarrow_{\text{nat}} \underline{n}$

PROOF STRATEGY

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]
- $R_{\text{nat}}(n, t)$ implies that $t \Downarrow_{\text{nat}} \underline{n}$
- $R_{\text{bool}}(b, t)$ implies that $t \Downarrow_{\text{bool}} \underline{b}$

PROOF STRATEGY

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]
- $R_{\text{nat}}(n, t)$ implies that $t \Downarrow_{\text{nat}} \underline{n}$
- $R_{\text{bool}}(b, t)$ implies that $t \Downarrow_{\text{bool}} \underline{b}$

PROOF STRATEGY

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]
- $R_{\text{nat}}(n, t)$ implies that $t \Downarrow_{\text{nat}} \underline{n}$
- $R_{\text{bool}}(b, t)$ implies that $t \Downarrow_{\text{bool}} \underline{b}$

This is a **logical relation**,
tailored for each type!

PROOF STRATEGY

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]
- $R_{\text{nat}}(n, t)$ implies that $t \Downarrow_{\text{nat}} \underline{n}$
- $R_{\text{bool}}(b, t)$ implies that $t \Downarrow_{\text{bool}} \underline{b}$

This is a **logical relation**, tailored for each type!

Proof of adequacy

1. Let $t, v \in \text{PCF}_{\text{nat}}$ with v a value with $\llbracket t \rrbracket = \llbracket v \rrbracket$.

PROOF STRATEGY

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]
- $R_{\text{nat}}(n, t)$ implies that $t \Downarrow_{\text{nat}} \underline{n}$
- $R_{\text{bool}}(b, t)$ implies that $t \Downarrow_{\text{bool}} \underline{b}$

This is a **logical relation**, tailored for each type!

Proof of adequacy

1. Let $t, v \in \text{PCF}_{\text{nat}}$ with v a value with $\llbracket t \rrbracket = \llbracket v \rrbracket$.
2. By definition of values, $v = \underline{n}$ for some $n \in \mathbb{N}$.

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]
- $R_{\text{nat}}(n, t)$ implies that $t \Downarrow_{\text{nat}} \underline{n}$
- $R_{\text{bool}}(b, t)$ implies that $t \Downarrow_{\text{bool}} \underline{b}$

This is a **logical relation**, tailored for each type!

Proof of adequacy

1. Let $t, v \in \text{PCF}_{\text{nat}}$ with v a value with $\llbracket t \rrbracket = \llbracket v \rrbracket$.
2. By definition of values, $v = \underline{n}$ for some $n \in \mathbb{N}$.
3. By the fundamental property $R_{\text{nat}}(\llbracket t \rrbracket, t)$ holds and $\llbracket t \rrbracket = \llbracket v \rrbracket = n$

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]
- $R_{\text{nat}}(n, t)$ implies that $t \Downarrow_{\text{nat}} \underline{n}$
- $R_{\text{bool}}(b, t)$ implies that $t \Downarrow_{\text{bool}} \underline{b}$

This is a **logical relation**, tailored for each type!

Proof of adequacy

1. Let $t, v \in \text{PCF}_{\text{nat}}$ with v a value with $\llbracket t \rrbracket = \llbracket v \rrbracket$.
2. By definition of values, $v = \underline{n}$ for some $n \in \mathbb{N}$.
3. By the fundamental property $R_{\text{nat}}(\llbracket t \rrbracket, t)$ holds and $\llbracket t \rrbracket = \llbracket v \rrbracket = n$
4. But this implies that $t \Downarrow_{\text{nat}} \underline{n}$, that is $t \Downarrow_{\text{nat}} v$

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]
- $R_{\text{nat}}(n, t)$ implies that $t \Downarrow_{\text{nat}} \underline{n}$
- $R_{\text{bool}}(b, t)$ implies that $t \Downarrow_{\text{bool}} \underline{b}$

This is a **logical relation**, tailored for each type!

Proof of adequacy

1. Let $t, v \in \text{PCF}_{\text{nat}}$ with v a value with $\llbracket t \rrbracket = \llbracket v \rrbracket$.
2. By definition of values, $v = \underline{n}$ for some $n \in \mathbb{N}$.
3. By the fundamental property $R_{\text{nat}}(\llbracket t \rrbracket, t)$ holds and $\llbracket t \rrbracket = \llbracket v \rrbracket = n$
4. But this implies that $t \Downarrow_{\text{nat}} \underline{n}$, that is $t \Downarrow_{\text{nat}} v$

PROOF STRATEGY

We define a family of relations $R_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$ such that:

- $R_\tau(\llbracket t \rrbracket, t)$ holds for $\cdot \vdash t : \tau$ [Fundamental Property]
- $R_{\text{nat}}(n, t)$ implies that $t \Downarrow_{\text{nat}} \underline{n}$
- $R_{\text{bool}}(b, t)$ implies that $t \Downarrow_{\text{bool}} \underline{b}$

This is a **logical relation**, tailored for each type!

Proof of adequacy

1. Let $t, v \in \text{PCF}_{\text{nat}}$ with v a value with $\llbracket t \rrbracket = \llbracket v \rrbracket$.
2. By definition of values, $v = \underline{n}$ for some $n \in \mathbb{N}$.
3. By the fundamental property $R_{\text{nat}}(\llbracket t \rrbracket, t)$ holds and $\llbracket t \rrbracket = \llbracket v \rrbracket = n$
4. But this implies that $t \Downarrow_{\text{nat}} \underline{n}$, that is $t \Downarrow_{\text{nat}} v$

The same proof shows adequacy for **bool**.

FORMAL APPROXIMATION AT BASE TYPES

We define the **formal approximation** relation recursively on the type τ :

$$\triangleleft_\tau \subseteq \llbracket \tau \rrbracket \times \text{PCF}_\tau$$

On base types, we let:

$$\begin{aligned} d \triangleleft_{\text{nat}} t &\stackrel{\text{def}}{\Leftrightarrow} (d \in \mathbb{N} \Rightarrow t \Downarrow_{\text{nat}} \underline{d}) \\ d \triangleleft_{\text{bool}} t &\stackrel{\text{def}}{\Leftrightarrow} (d = \text{true} \Rightarrow t \Downarrow_{\text{bool}} \text{true}) \\ &\quad \wedge (d = \text{false} \Rightarrow t \Downarrow_{\text{bool}} \text{false}) \end{aligned}$$

- Exactly what we asked for in the previous slide!
- Note though that $\perp \triangleleft_{\text{nat}} t$ for all $t \in \text{PCF}_{\text{nat}}$.

FORMAL APPROXIMATION AT FUNCTION TYPES

We need to define $\triangleleft_{\tau \rightarrow \tau'}$ so that the $\llbracket t \rrbracket \triangleleft_{\tau} t$ for any closed term.

FORMAL APPROXIMATION AT FUNCTION TYPES

We need to define $\triangleleft_{\tau \rightarrow \tau'}$ so that the $\llbracket t \rrbracket \triangleleft_{\tau} t$ for any closed term.

1. Proof by induction on the typing derivation of t ;
2. We need to interpret each typing rule, in particular:

FORMAL APPROXIMATION AT FUNCTION TYPES

We need to define $\triangleleft_{\tau \rightarrow \tau'}$ so that the $\llbracket t \rrbracket \triangleleft_{\tau} t$ for any closed term.

1. Proof by induction on the typing derivation of t ;
2. We need to interpret each typing rule, in particular:

$$\text{APP} \frac{\vdash t : \tau \rightarrow \tau' \quad \vdash u : \tau}{\vdash t u : \tau'}$$

FORMAL APPROXIMATION AT FUNCTION TYPES

We need to define $\triangleleft_{\tau \rightarrow \tau'}$ so that the $\llbracket t \rrbracket \triangleleft_{\tau} t$ for any closed term.

1. Proof by induction on the typing derivation of t ;
2. We need to interpret each typing rule, in particular:

$$\text{APP} \frac{\vdash t : \tau \rightarrow \tau' \quad \vdash u : \tau}{\vdash t u : \tau'}$$

Assume $\llbracket u \rrbracket \triangleleft_{\tau} u$ and $\llbracket t \rrbracket \triangleleft_{\tau \rightarrow \tau'} t$, how do we get $\llbracket t u \rrbracket \triangleleft_{\tau'} t u$?

FORMAL APPROXIMATION AT FUNCTION TYPES

We need to define $\triangleleft_{\tau \rightarrow \tau'}$ so that the $\llbracket t \rrbracket \triangleleft_{\tau} t$ for any closed term.

1. Proof by induction on the typing derivation of t ;
2. We need to interpret each typing rule, in particular:

$$\text{APP} \frac{\vdash t : \tau \rightarrow \tau' \quad \vdash u : \tau}{\vdash t u : \tau'}$$

Assume $\llbracket u \rrbracket \triangleleft_{\tau} u$ and $\llbracket t \rrbracket \triangleleft_{\tau \rightarrow \tau'} t$, how do we get $\llbracket t u \rrbracket \triangleleft_{\tau'} t u$?

By definition! We let:

$$d \triangleleft_{\tau \rightarrow \tau'} t \stackrel{\text{def}}{\Leftrightarrow} \forall e \in \llbracket \tau \rrbracket. \forall u \in \text{PCF}_{\tau}. (e \triangleleft_{\tau} u \Rightarrow d(e) \triangleleft_{\tau'} t u)$$

FORMAL APPROXIMATION FOR OPEN TERMS

$$\text{ABS} \quad \frac{\Gamma, x:\tau \vdash t : \tau'}{\Gamma \vdash \text{fun } x:\tau. t : \tau \rightarrow \tau'}$$

To prove the fundamental property, we also need to talk about **open** terms.

FORMAL APPROXIMATION FOR OPEN TERMS

$$\text{ABS} \quad \frac{\Gamma, x:\tau \vdash t : \tau'}{\Gamma \vdash \text{fun } x:\tau. t : \tau \rightarrow \tau'}$$

To prove the fundamental property, we also need to talk about **open** terms.

$$[\![t]\!](\![\![u]\!]) = \![\![t[u/x]]\!] \quad \text{Semantic application} \approx \text{syntactic substitution}$$

FORMAL APPROXIMATION FOR OPEN TERMS

$$\text{ABS} \quad \frac{\Gamma, x:\tau \vdash t : \tau'}{\Gamma \vdash \text{fun } x:\tau. t : \tau \rightarrow \tau'}$$

To prove the fundamental property, we also need to talk about **open** terms.

$$[\![t]\!](\![\![u]\!]) = \![\![t[u/x]]\!] \quad \text{Semantic application} \approx \text{syntactic substitution}$$

Parallel substitution: $\cdot \vdash \sigma : \Gamma$ assigns to each $x \in \text{dom}(\Gamma)$ a term $\sigma(x) \in \text{PCF}_{\Gamma(x)}$
We define also for $\rho \in \llbracket \Gamma \rrbracket$:

$$\rho \triangleleft_{\Gamma} \sigma \stackrel{\text{def}}{\Leftrightarrow} \forall x \in \text{dom}(\Gamma), \rho(x) \triangleleft_{\Gamma(x)} \sigma(x)$$

THE FUNDAMENTAL PROPERTY

For any

- context Γ and type τ
- term t such that $\Gamma \vdash t : \tau$
- environment $\rho \in \llbracket \Gamma \rrbracket$
- substitution $\cdot \vdash \sigma : \Gamma$

we have that

$$\rho \triangleleft_{\Gamma} \sigma \quad \Rightarrow \quad \llbracket t \rrbracket(\rho) \triangleleft_{\tau} t[\sigma].$$

Corollary

For every term $t \in \text{PCF}_{\tau}$, we have $\llbracket t \rrbracket \triangleleft_{\tau} t$.