
DENOTATIONAL SEMANTICS

Ioannis Markakis
Lectures for Part II CST 2025/2026



RECAP: DENOTATIONAL SEMANTICS

• a mapping of PCF types 𝜏 to domains J𝜏 K;
• a mapping of PCF contexts Γ to domains JΓK;
• a mapping of closed, well-typed PCF terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏 K;
• denotation of open terms Γ ⊢ 𝑡 : 𝜏 will be continuous functions JΓK → J𝜏 K

Compositionality: J𝑡K = J𝑡′K ⇒ JC[𝑡]K = JC[𝑡′]K.
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .

1



RECAP: TYPES AND CONTEXTS

JnatK def= ℕ⊥ (flat domain)

JboolK def= 𝔹⊥ (flat domain)

J𝜏 -> 𝜏 ′K def= J𝜏 K → J𝜏 ′K (function domain)

J⋅K = 𝟙 (one element set)JΓ, 𝑥: 𝜏 K = JΓK × J𝜏 K (product domain)

2



RECAP: TERMS

J0K = 𝜆 𝜌 ∈ JΓK. 0 Jif 𝑏 then 𝑡 else 𝑡′K = if ∘⟨J𝑏K, ⟨J𝑡K, J𝑡′K⟩⟩JtrueK = 𝜆 𝜌 ∈ JΓK. true J𝑥K = 𝜋𝑥JfalseK = 𝜆 𝜌 ∈ JΓK. false J𝑡1 𝑡2K = eval ∘⟨J𝑡1K, J𝑡2K⟩Jsucc (𝑡)K = succ⊥ ∘J𝑡K Jfun 𝑥: 𝜏 . 𝑡K = cur(J𝑡K)Jpred (𝑡)K = pred⊥ ∘J𝑡K Jfix 𝑓 K = fix ∘J𝑓 KJzero? (𝑡)K = zero?⊥ ∘J𝑡K

3



RECAP: EVALUATION CONTEXTS AND COMPOSITIONALITY

We define also denotation for evaluation contexts Γ ⊢Δ,𝜎 C : 𝜏 to be functions
JCK : (JΔK → J𝜎 K) → JΓK → J𝜏 K

such that JC[𝑡]K = JCK(J𝑡K)
This gives us compositionality for free:

J𝑡K = J𝑡′K ⇒ JC[𝑡]K = JC[𝑡′]K
for every evaluation context C.

4



ADEQUACY



SOUNDNESS AND ADEQUACY

Proposition (Soundness)
For all PCF types 𝜏 and all closed 𝑡 , 𝑣 ∈ PCF𝜏 with 𝑣 a value, if 𝑡 ⇓𝜏 𝑣 is derivable, then

J𝑡K = J𝑣K ∈ J𝜏 K
Proposition (Adequacy)
For any closed PCF term 𝑡 and value 𝑣 of ground type 𝛾 ∈ {nat, bool}

J𝑡K = J𝑣K ⇒ 𝑡 ⇓𝛾 𝑣

5



ADEQUACY FOR FUNCTION TYPES

Adequacy does not hold at function types or for open terms:

Jfun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥K = Jfun 𝑥: 𝜏 . 𝑥K : J𝜏 K → J𝜏 K
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥 /⇓𝜏->𝜏 fun 𝑥: 𝜏 . 𝑥

A more serious example for Γ = (𝑓 : nat → nat)
Jfun 𝑥: nat. (if zero? (𝑓 𝑥) then true else true)K

?= Jfun 𝑥: nat. trueK
This denotational equality holds exactly when 𝑓 is a total function. But there is no hope
that we can decide what the first expression should evaluate to: this would mean solving
the halting problem for 𝑓 !

6



ADEQUACY FOR FUNCTION TYPES

Adequacy does not hold at function types or for open terms:

Jfun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥K = Jfun 𝑥: 𝜏 . 𝑥K : J𝜏 K → J𝜏 K
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥 /⇓𝜏->𝜏 fun 𝑥: 𝜏 . 𝑥

A more serious example for Γ = (𝑓 : nat → nat)
Jfun 𝑥: nat. (if zero? (𝑓 𝑥) then true else true)K

?= Jfun 𝑥: nat. trueK
This denotational equality holds exactly when 𝑓 is a total function. But there is no hope
that we can decide what the first expression should evaluate to: this would mean solving
the halting problem for 𝑓 !

6



ADEQUACY FOR FUNCTION TYPES

Adequacy does not hold at function types or for open terms:

Jfun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥K = Jfun 𝑥: 𝜏 . 𝑥K : J𝜏 K → J𝜏 K
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥 /⇓𝜏->𝜏 fun 𝑥: 𝜏 . 𝑥

A more serious example for Γ = (𝑓 : nat → nat)
Jfun 𝑥: nat. (if zero? (𝑓 𝑥) then true else true)K

?= Jfun 𝑥: nat. trueK

This denotational equality holds exactly when 𝑓 is a total function. But there is no hope
that we can decide what the first expression should evaluate to: this would mean solving
the halting problem for 𝑓 !

6



ADEQUACY FOR FUNCTION TYPES

Adequacy does not hold at function types or for open terms:

Jfun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥K = Jfun 𝑥: 𝜏 . 𝑥K : J𝜏 K → J𝜏 K
fun 𝑥: 𝜏 . (fun 𝑦: 𝜏 . 𝑦) 𝑥 /⇓𝜏->𝜏 fun 𝑥: 𝜏 . 𝑥

A more serious example for Γ = (𝑓 : nat → nat)
Jfun 𝑥: nat. (if zero? (𝑓 𝑥) then true else true)K

?= Jfun 𝑥: nat. trueK
This denotational equality holds exactly when 𝑓 is a total function. But there is no hope
that we can decide what the first expression should evaluate to: this would mean solving
the halting problem for 𝑓 !

6



ADEQUACY
FORMAL APPROXIMATION



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:

• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy

1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣

The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]

• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy

1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣

The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛

• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏
This is a logical relation,
tailored for each type!

Proof of adequacy

1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣

The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy

1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣

The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy

1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣

The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy

1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣

The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy
1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.

2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣
The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy
1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.

3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣
The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy
1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛

4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣
The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy
1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣

The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy
1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣

The same proof shows adequacy for bool.

7



PROOF STRATEGY

We define a family of relations 𝑅𝜏 ⊆ J𝜏 K × PCF𝜏 such that:
• 𝑅𝜏 (J𝑡K, 𝑡) holds for ⋅ ⊢ 𝑡 : 𝜏 [Fundamental Property]
• 𝑅nat(𝑛, 𝑡) implies that 𝑡 ⇓nat 𝑛
• 𝑅bool(𝑏, 𝑡) implies that 𝑡 ⇓bool 𝑏

This is a logical relation,
tailored for each type!

Proof of adequacy
1. Let 𝑡 , 𝑣 ∈ PCFnat with 𝑣 a value with J𝑡K = J𝑣K.
2. By definition of values, 𝑣 = 𝑛 for some 𝑛 ∈ ℕ.
3. By the fundamental property 𝑅nat(J𝑡K, 𝑡) holds and J𝑡K = J𝑣K = 𝑛
4. But this implies that 𝑡 ⇓nat 𝑛, that is 𝑡 ⇓nat 𝑣
The same proof shows adequacy for bool.

7



FORMAL APPROXIMATION AT BASE TYPES

We define the formal approximation relation recursively on the type 𝜏 :
⊲𝜏⊆ J𝜏 K × PCF𝜏

On base types, we let:

𝑑 ⊲nat 𝑡 def⇔ (𝑑 ∈ ℕ ⇒ 𝑡 ⇓nat 𝑑)
𝑑 ⊲bool 𝑡 def⇔ (𝑑 = true ⇒ 𝑡 ⇓bool true)

∧(𝑑 = false ⇒ 𝑡 ⇓bool false)

• Exactly what we asked for in the previous slide!
• Note though that ⊥ ⊲nat 𝑡 for all 𝑡 ∈ PCFnat.

8



FORMAL APPROXIMATION AT FUNCTION TYPES

We need to define ⊲𝜏→𝜏 ′ so that the J𝑡K ⊲𝜏 𝑡 for any closed term.

1. Proof by induction on the typing derivation of 𝑡 ;
2. We need to interpret each typing rule, in particular:

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K ⊲𝜏 ′ 𝑡 𝑢?
By definition! We let:

𝑑 ⊲𝜏->𝜏 ′ 𝑡
def⇔ ∀𝑒 ∈ J𝜏 K. ∀𝑢 ∈ PCF𝜏 . (𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)

9



FORMAL APPROXIMATION AT FUNCTION TYPES

We need to define ⊲𝜏→𝜏 ′ so that the J𝑡K ⊲𝜏 𝑡 for any closed term.
1. Proof by induction on the typing derivation of 𝑡 ;
2. We need to interpret each typing rule, in particular:

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K ⊲𝜏 ′ 𝑡 𝑢?
By definition! We let:

𝑑 ⊲𝜏->𝜏 ′ 𝑡
def⇔ ∀𝑒 ∈ J𝜏 K. ∀𝑢 ∈ PCF𝜏 . (𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)

9



FORMAL APPROXIMATION AT FUNCTION TYPES

We need to define ⊲𝜏→𝜏 ′ so that the J𝑡K ⊲𝜏 𝑡 for any closed term.
1. Proof by induction on the typing derivation of 𝑡 ;
2. We need to interpret each typing rule, in particular:

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K ⊲𝜏 ′ 𝑡 𝑢?
By definition! We let:

𝑑 ⊲𝜏->𝜏 ′ 𝑡
def⇔ ∀𝑒 ∈ J𝜏 K. ∀𝑢 ∈ PCF𝜏 . (𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)

9



FORMAL APPROXIMATION AT FUNCTION TYPES

We need to define ⊲𝜏→𝜏 ′ so that the J𝑡K ⊲𝜏 𝑡 for any closed term.
1. Proof by induction on the typing derivation of 𝑡 ;
2. We need to interpret each typing rule, in particular:

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K ⊲𝜏 ′ 𝑡 𝑢?

By definition! We let:

𝑑 ⊲𝜏->𝜏 ′ 𝑡
def⇔ ∀𝑒 ∈ J𝜏 K. ∀𝑢 ∈ PCF𝜏 . (𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)

9



FORMAL APPROXIMATION AT FUNCTION TYPES

We need to define ⊲𝜏→𝜏 ′ so that the J𝑡K ⊲𝜏 𝑡 for any closed term.
1. Proof by induction on the typing derivation of 𝑡 ;
2. We need to interpret each typing rule, in particular:

APP
⊢ 𝑡 : 𝜏 -> 𝜏 ′ ⊢ 𝑢 : 𝜏

⊢ 𝑡 𝑢 : 𝜏 ′

Assume J𝑢K ⊲𝜏 𝑢 and J𝑡K ⊲𝜏->𝜏 ′ 𝑡 , how do we get J𝑡 𝑢K ⊲𝜏 ′ 𝑡 𝑢?
By definition! We let:

𝑑 ⊲𝜏->𝜏 ′ 𝑡
def⇔ ∀𝑒 ∈ J𝜏 K. ∀𝑢 ∈ PCF𝜏 . (𝑒 ⊲𝜏 𝑢 ⇒ 𝑑(𝑒) ⊲𝜏 ′ 𝑡 𝑢)

9



FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′

Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove the fundamental property, we also need to talk about open terms.

J𝑡K(J𝑢K) = J(𝑡[𝑢/𝑥])K Semantic application ≈ syntactic substitution

Parallel substitution: ⋅ ⊢ 𝜎 : Γ assigns to each 𝑥 ∈ dom(Γ) a term 𝜎(𝑥) ∈ PCFΓ(𝑥)
We define also for 𝜌 ∈ JΓK:

𝜌 ⊲Γ 𝜎 def⇔ ∀𝑥 ∈ dom(Γ), 𝜌(𝑥) ⊲Γ(𝑥) 𝜎(𝑥)

10



FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′

Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove the fundamental property, we also need to talk about open terms.

J𝑡K(J𝑢K) = J(𝑡[𝑢/𝑥])K Semantic application ≈ syntactic substitution

Parallel substitution: ⋅ ⊢ 𝜎 : Γ assigns to each 𝑥 ∈ dom(Γ) a term 𝜎(𝑥) ∈ PCFΓ(𝑥)
We define also for 𝜌 ∈ JΓK:

𝜌 ⊲Γ 𝜎 def⇔ ∀𝑥 ∈ dom(Γ), 𝜌(𝑥) ⊲Γ(𝑥) 𝜎(𝑥)

10



FORMAL APPROXIMATION FOR OPEN TERMS

ABS
Γ, 𝑥: 𝜏 ⊢ 𝑡 : 𝜏 ′

Γ ⊢ fun 𝑥: 𝜏 . 𝑡 : 𝜏 -> 𝜏 ′

To prove the fundamental property, we also need to talk about open terms.

J𝑡K(J𝑢K) = J(𝑡[𝑢/𝑥])K Semantic application ≈ syntactic substitution

Parallel substitution: ⋅ ⊢ 𝜎 : Γ assigns to each 𝑥 ∈ dom(Γ) a term 𝜎(𝑥) ∈ PCFΓ(𝑥)
We define also for 𝜌 ∈ JΓK:

𝜌 ⊲Γ 𝜎 def⇔ ∀𝑥 ∈ dom(Γ), 𝜌(𝑥) ⊲Γ(𝑥) 𝜎(𝑥)

10



THE FUNDAMENTAL PROPERTY

For any

• context Γ and type 𝜏
• term 𝑡 such that Γ ⊢ 𝑡 : 𝜏
• environment 𝜌 ∈ JΓK
• substitution ⋅ ⊢ 𝜎 : Γ

we have that
𝜌 ⊲Γ 𝜎 ⇒ J𝑡K(𝜌) ⊲𝜏 𝑡[𝜎].

Corollary
For every term 𝑡 ∈ PCF𝜏 , we have J𝑡K ⊲𝜏 𝑡 .

11


	Adequacy
	Formal approximation


