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RECAP: DENOTATIONAL SEMANTICS

- a mapping of PCF types 7 to domains [7];

- a mapping of PcF contexts I" to domains [I7];

- a mapping of closed, well-typed PcF terms - ¢ : 7 to elements [t] € [r];
- denotation of open terms I" =t : 7 will be continuous functions [I'] — [r]

Compositionality: [t] = [t'] = [C[t]] = [C[']].
Soundness: foranytyper,t |, v = [t] = [v].
Adequacy: fory = bool or nat, ift € PcF, and [t] = [v] then ¢ U), V.



RECAP: TYPES AND CONTEXTS

[nat] - N, (flat domain)

[bool] e B, (flat domain)
[t = '] £ [z] = [r'] (function domain)
[]=1 (one element set)

T, x: 7] = [I] x [r] (product domain)



RECAP: TERMS

[0 =Ap € [I].0 [if b thent else t'] = if o«([b], ([t], [t']))
[true] = A p € [I]. true [x] = 7y
[false] = A p € [I]. false [t1 t2] = eval o([t1], [t2])
[succ (t)] = succ, °[t] [funx:7.t] = cur([t])
[pred (1)] = pred, +[f] [fix f] = fix o]
[zero? (t)] = zero? | o[t]



RECAP: EVALUATION CONTEXTS AND COMPOSITIONALITY

We define also denotation for evaluation contexts I' -  C : 7 to be functions

[c] : ([A] = [o]) = [] - [7]
such that
[clt]] = [e(ieD)
This gives us compositionality for free:

[1] =[] = [cle]) = [ele'TD

for every evaluation context C.



ADEQUACY



SOUNDNESS AND ADEQUACY

Proposition (Soundness)
For all PcF types 7 and all closed t, v € PcF, with v a value, ift |, v is derivable, then

[t] = V] €[]

Proposition (Adequacy)
For any closed PcF term ¢t and value v of ground type y € {nat, bool}

==t v
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ADEQUACY FOR FUNCTION TYPES

Adequacy does not hold at function types or for open terms:

[funx:z. (funy:7. y) x] = [funx: 7. x] : [r] — [7]
funx:z. (funy:t. y) x 5, funx:z. x

A more serious example forI' = (f : nat — nat)

[funx:nat. (if zero?(f x) then true else true)]

?
= [funx:nat. true]

This denotational equality holds exactly when f is a total function. But there is no hope
that we can decide what the first expression should evaluate to: this would mean solving
the halting problem for f!



ADEQUACY
FORMAL APPROXIMATION
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PROOF STRATEGY

We define a family of relations R; C [r] x PcF; such that:

- R ([t],t) holds for- +t: T [Fundamental Property] This is a logical relation,

* Rnat(n,t) implies thatt Ja¢ 1 tailored for each type!
* Rpoo1(b,t) implies that t Ypoo1 b
Proof of adequacy

1. Letf,v € PCFh5¢ With v a value with ] = [v].

2. By definition of values, v = n for somen € IN.

3. By the fundamental property R4+ ([t],%) holds and [t] = [v] = n

4. But this implies thatt |5t 1, thatist {,5¢ v

The same proof shows adequacy for bool.



FORMAL APPROXIMATION AT BASE TYPES

We define the formal approximation relation recursively on the type 7:
<,C [[7] x PcF,

On base types, we let:

d<dpait S (dEN=t Iy d)

def
d ool £ & (d = true >t Ubool true)

A(d = false = t |1 false)

- Exactly what we asked for in the previous slide!
- Note though that L <3¢ ¢t forall € PcF4¢.
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We need to define <,_, - so that the [t] <, t for any closed term.

1. Proof by induction on the typing derivation of t;
2. We need to interpret each typing rule, in particular:

Ft:T > 1T Fu:T

APP p;
Htu:t

Assume [u] <; u and [f] <;—s;# t, how do we get [t u] < ¢ u?

By definition! We let:

def
d<,_s.t o Vee [t]. Yu € Pcr, . (e <, u = d(e) < t u)
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FORMAL APPROXIMATION FOR OPEN TERMS

Ix:it—t:7

ABS
I'funxit.t:z > 1

To prove the fundamental property, we also need to talk about open terms.

[t1([u]) = [(t[u/x])]  Semantic application = syntactic substitution

Parallel substitution: - - o : T assigns to each x € dom(T') a term o(x) € PCFp(y)
We define also for p € [IT:

p<ro o Vx € dom(I'), p(x) <r(y) o(x)



THE FUNDAMENTAL PROPERTY

For any

- contextI" and type T

- termtsuchthatI' =t : 7
- environment p € [I]

- substitution- o : T’

we have that
pro = [tl(p) <, t[o].

Corollary
For every term t € PCF., we have [t] <, .

1
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