DENOTATIONAL SEMANTICS

loannis Markakis
Lectures for Part I CST 2025/2026

THE LANGUAGE PCF

THE LANGUAGE PCF
SYNTAX

TYPES AND TERMS OF PCF

Types: T u=nat|bool|r >

TYPES AND TERMS OF PCF

Types: T u=nat|bool|r >

Terms: t == 0|succ(t)|pred(®)]
true | false | zero?(¢t) | if t thent elset
x| funx:z.t|tt| Fix(t)

TYPES AND TERMS OF PCF

Types: T u=nat|bool|r >

Terms: t == 0|succ(t)|pred(®)]
true | false | zero?(¢t) | if t thent elset
x| funx:z.t|tt| Fix(t)

- A-calculus + base types/functions + fix
- tiny ML (without references, ADTs, polymorphism...)

VARIABLES, SUBSTITUTIONS AND CONTEXTS

Variables and terms: up to a-equivalence

VARIABLES, SUBSTITUTIONS AND CONTEXTS

Variables and terms: up to a-equivalence

Substitution: t{u/x]

VARIABLES, SUBSTITUTIONS AND CONTEXTS

Variables and terms: up to a-equivalence
Substitution: t{u/x]

Typing contexts: I' :i= - | T, x: 7

VARIABLES, SUBSTITUTIONS AND CONTEXTS

Variables and terms: up to a-equivalence
Substitution: t{u/x]

Typing contexts: I' :i= - | T, x: 7

- partial maps from variable to types

- finite lists X1: 77, ..., X Ty

TYPING FOR PcF (I)

The term t has type 7 in context I

I't:nat I't:nat

/ERQ —m—8M8M8M888 Succ PRED
'+ 0:nat I' - succ(t) : nat I' - pred(¢) : nat

TYPING FOR PcF (I)

The term t has type 7 in context I

I'=t:nat I'—t:nat
/ERQ —m—8M8M8M888 Succ PRED
'+ 0:nat I' - succ(t) : nat I' - pred(¢) : nat
I'—t:nat
TRUE FALSE IsZ
I' + true : bool I' - false : bool I' - zero?(t) : bool
I'-b:bool '—t:r T+t :7

IF
IF'~if b thentelset : 7

TYPING FOR PcF (Il)

I'x)=1 Ixiokt:T I'+-f:o0>7 Tru:o
VAR ———— FUN APP
F'Fx:7 '+ funxio.t:oc =1 ' fu:r
'-f:r->r1

T FFix() 7

TYPING FOR PcF (Il)

I'x)=1 Ixiokt:T I'+-f:o0>7 Tru:o
VAR ———— FUN APP
F'Fx:7 '+ funxio.t:oc =1 ' fu:r
'-f:r->r1

T FFix() 7

def def
Perr, = {t | Tt : 7} PCF, = PCF.;

TYPING FOR PcF (Il)

I'x)=1 Ixiokt:T I'+-f:o0>7 Tru:o
VAR ———— FUN APP
F'Fx:7 '+ funxio.t:oc =1 ' fu:r
'-f:r->r1

T FFix() 7

def def
Perr, = {t | Tt : 7} PCF, = PCF.;

The only programs we care about are the well-typed ones!

TYPING AND SUBSTITUTION

Lemma
fT+t:7andT,x: 7+t : 7’ both hold, then so does T + t'[t/x] : T’

THE LANGUAGE PCF
OPERATIONAL SEMANTICS

PCF VALUES

Values: vi=0|succ(v)| true| false| funx:z.t
——— —
n All functions (< fun >)

PCF VALUES

Values: vi=0|succ(v)| true| false| funx:z.t
——— —
n All functions (< fun >)

We will only evaluate closed term to values.

PCF EVALUATION

Fv:.rT
VA

L
vi,v

PCF EVALUATION

Fv:T t bpat v t Upat succ(v)
Succ PRED

VAL
v, v succ () Upat succ (v) pred(t) ot v

PCF EVALUATION

Fv:T t bpat v t Upat succ(v)
VAL Succ PRED
v, v succ () Upat succ (v) pred(t) ot v
t Unat 0 t Unat SUCC(V)
/EROZ ZEROS

zero? (t) Jpoo1 true zero? (t) Jpyo1 false

PCF EVALUATION

Fv:T t bpat v t Upat succ(v)
VAL Succ PRED
vi,v succ (t) U3t succ(v) pred(t) J,at v
t Unat 0 t Unat SUCC(V)
/EROZ ZEROS
zero? (t) Jpoo1 true zero? (t) Jpyo1 false

b lpoo1 true t1 v b lpoo1 Talse thy ;v

[FT

IFF
if b thent, elsety |, v if b thent) elsety |, v

PCF EVALUATION

Fv:T t bpat v t Upat succ(v)
VAL Succ PRED
vi,v succ (t) Upatr succ(v) pred(t) Inat v
t Unat 0 t Unat SUCC(V)
/EROZ ZEROS
zero? (t) Jpoo1 true zero? (t) Jpyo1 false
b lpoor true ty ;v b lpoor false t |, v
IFT IFF
if b thent, elsety |, v if b thent) elsety |, v
tloosy funx:o.t’ t'[u/x] ;v t(Fix(@®) U, v
FUN FIX ————

tul, v fix() I, v

EXAMPLE: ADDITION

Addition can be defined by recursion on the second argument.
It must satisfy the fixed point equation for x, y : nat:

plus x y = if zero?(y) then x else succ(plus x pred(y))

EXAMPLE: ADDITION

Addition can be defined by recursion on the second argument.
It must satisfy the fixed point equation for x, y : nat:

plus x y = if zero?(y) then x else succ(plus x pred(y))

We may then define in context x : nat:
def .
plus, = fix(fun(p:nat — nat)(y:nat).
if zero?(y) then x else succ(p pred(y)))
and then bind the variable x to get:

plus = funx:nat. plus, (1)

EVALUATION (1)

plus || funx:nat. plusy pluss1 | 4
pLUS 31 Unge 4

FUN

EVALUATION (1)

plus || funx:nat. plusy pluss1 | 4
pLUS 31 Unge 4

FUN

VAL VAL
(fun p:nat - nat. ...) | ... (funy:nat....)[plus,/p] | ry

F
o (fun(p:nat — nat)(y:nat). ...) plus, | ry

Fix
plus, | funy:nat.if zero?(y) then x else succ(plus, pred(y))

Ix

EvALUATION (11)

PRED —pred (l) m
zero? (pred (1)) | true

/EROZ

L 101 pluss pred (1)13
ZEROS e Succ
zero? (l) | false succ (plus§ pred (1)) l4
IFF
pluss | r3 if zero? (1) then 3 else succ (plus§ pred (l)) |4

FUN
plusil Upnat 4

DIVERGENCE

Divergence (t f1,):
t:t AN Bvtl,v

1

DIVERGENCE

Divergence (t f1,):
t:t AN Bvtl,v

ef
Q. E fix(funx:7. x)

Q 1, (diverges)

1

DIVERGENCE

Divergence (t f1,):
t:t AN Bvtl,v

ef
Q. E fix(funx:7. x)

Q 1, (diverges)

P
funx:t.x | funx:7. x fix(funx:t.x) | v

(funx:7.x) (fix(funx:7.x)) | v

fix(funx:t.x) | v

1

CALL-BY-NAME AND CALL-BY-VALUE

tlosy funx:o.t’ t'[u/x] U, v

FUN-CBN
tul, v

tlysr funxiot” ulyv' t'[v/x] U, v
FUN-CBV

tul, v

CALL-BY-NAME AND CALL-BY-VALUE

tlosy funx:o.t’ t'[u/x] U, v

FUN-CBN
tul, v

tlysr funxiot” ulyv' t'[v/x] U, v
FUN-CBV

tul, v

What does (fun x: nat. 0) Q,,+ denote?

CALL-BY-NAME AND CALL-BY-VALUE

tlosy funx:o.t’ t'[u/x] U, v

FUN-CBN
tul, v

tlysr funxiot” ulyv' t'[v/x] U, v
FUN-CBV

tul, v

What does (fun x: nat. 0) Q,,+ denote?

In call-by-value, all functions are strict... but the least-fixed points of a strict function is
always 1!

SMALL-STEP SEMANTIC

Small-step t ~», w:

t ot t’

(funx:o.t) u ~»; tlu/x] tu-, t'u

SMALL-STEP SEMANTIC

Small-step t ~», w:

t ot t’

(funx:o.t) u ~»; tlu/x] tu-, t'u

We havet |, vifft ~»> u.

TURING-COMPLETENESS

PcF is Turing-complete: for every partial recursive function ¢, there is a PCF term
@ € PCFhat—nat Such that for alln € N, if ¢(n) is defined then ¢ n U5 P(n).

14

TURING-COMPLETENESS

PcF is Turing-complete: for every partial recursive function ¢, there is a PCF term
@ € PCFhat—nat Such that for alln € N, if ¢(n) is defined then ¢ n U5 P(n).

(Later on: ¢ = [@]]).

14

DETERMINISM

Evaluation in PcF is deterministic: if both t ||, v and ¢t |; v’ hold, thenv = v".

DETERMINISM

Evaluation in PcF is deterministic: if both t ||, v and ¢t |; v’ hold, thenv = v".

By (rule) induction on evaluation |J:

def
P(t,r,v) = VYV € Pcr,.(t U, vV = v=1)

Intuition: there is always exactly one rule which applies.

THE LANGUAGE PCF
CONTEXTUAL EQUIVALENCE

CONTEXTUAL EQUIVALENCE — INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

CONTEXTUAL EQUIVALENCE — INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.

CONTEXTUAL EQUIVALENCE — INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.

But what's a complete program? What's an observable result?

EVALUATION CONTEXTS

“Term with a hole”:

¢ == —|succ(C)]|pred(C)| zero?(C)|
if C thentelset|ift thenCelset|ift thent elseC |
funx:t.c|ct|tc| fix(C)

EVALUATION CONTEXTS

“Term with a hole”:

¢ == —|succ(C)]|pred(C)| zero?(C)|
if C thentelset|ift thenCelset|ift thent elseC |
funx:t.c|ct|tc| fix(C)

Typing extended to evaluation contexts: I' =7, C : 7.

EVALUATION CONTEXTS

“Term with a hole”:

¢ == —|succ(C)]|pred(C)| zero?(C)|
if C thentelset|ift thenCelset|ift thent elseC |
funx:t.c|ct|tc| fix(C)

Typing extended to evaluation contexts: I' =7, C : 7.

FbpsCiny > ThRu:g

I, — 2@ FFaAgCu:ny

CONTEXTUAL EQUIVALENCE

Given a type 7, a typing context I and terms t,t’ € PCFr 7, contextual equivalence,
written T' -t =4« t’ : T is defined to hold if for all evaluation contexts C such that
Fr; C:y, whereyisnat or bool, and for all values v € PcFy,

cltl by veclt'] iy v.

When T' is the empty context, we simply write t =g t’ : T for- 1 =g t' : 7.

CONTEXTUAL EQUIVALENCE

Given a type 7, a typing context I and terms t,t’ € PCFr 7, contextual equivalence,
written T' -t =4« t’ : T is defined to hold if for all evaluation contexts C such that
Fr; C:y, whereyisnat or bool, and for all values v € PcFy,

cltl by veclt'] iy v.

When T' is the empty context, we simply write t =g t’ : T for- 1 =g t' : 7.

Divergence is implicitly covered.

DENOTATIONAL SEMANTICS FOR PCF

DENOTATIONAL SEMANTICS FOR PCF

INTRODUCING DENOTATIONAL SEMANTICS

THE AIMS OF DENOTATIONAL SEMANTICS

- a mapping of PcF types 7 to domains [7];

- a mapping of PcF contexts I" to domains [I7];

- a mapping of closed, well-typed PcF terms - ¢ : 7 to elements [t] € [r];
- denotation of open terms I" -~ t : 7 will be continuous functions [I'] — [r]

19

THE AIMS OF DENOTATIONAL SEMANTICS

- a mapping of PcF types 7 to domains [7];

- a mapping of PcF contexts I" to domains [I7];

- a mapping of closed, well-typed PcF terms - ¢ : 7 to elements [t] € [r];
- denotation of open terms I" -~ t : 7 will be continuous functions [I'] — [r]

Compositionality: [t] = [t'] = [Clt]] = [’]].
Soundness: forany type 7, t |, v = [t] = [v].
Adequacy: fory = bool or nat, ift € PCF, and [t] = [v] thent Uy V.

19

ADEQUACY FOR FUNCTION TYPES?

def def
v = funx:nat. (funy:nat.y)@ and v = funx:nat. 0.

20

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl =cix tz T

it suffices to establish
t1] = [t2] € [7]

21

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
S b T
it suffices to establish
[t:1] = [t2] € [7]

Clt] Unat v = [Clt1]] = V] (soundness)
= [Cl&]] = V] (compositionality on [t;] = [t])
= C[tp] nat v (adequacy)

21

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
S b T
it suffices to establish
[t:1] = [t2] € [7]

Clt] Unat v = [Clt1]] = V] (soundness)
= [Cl&]] = V] (compositionality on [t;] = [t])
= C[tp] nat v (adequacy)

and symmetrically for C[ts] Unat v = C[t1] Upat v, and similarly for bool.

21

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl =cix tz T

it suffices to establish
t1] = [t2] € [7]

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

21

THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
tl =cix tz T

it suffices to establish
t1] = [t2] € [7]

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

21

DENOTATIONAL SEMANTICS FOR PCF

DEFINITION

SEMANTICS OF TYPES

[nat] e N, (flat domain)
[bool] = B, (flat domain)

def . .
[t = '] = [r] = [r] (function domain)

22

SEMANTICS OF CONTEXTS

] o erdom(r) [T(x)] (environment)

23

SEMANTICS OF CONTEXTS

] o erdom(r) [T(x)] (environment)

- [] = 1 (one element set)
< Ixit] = (- [7]) = [7]

T s X T]l =[] X X 1]

23

DENOTATIONAL SEMANTICS OF PCF

To every typing judgement
I'—t:r

we associate a continuous function
[T=t:7]:[I] — [r]
between domains. In other words,

[=1: PcFr — [T — [7]

24

DENOTATION OF OPERATIONS ON B AND N

SucCcC :

N —

n —

N pred : N — N
. n+l — n
0 undefined
zero? : N — B

0 — ftrue
n+1 — false

25

DENOTATION OF OPERATIONS ON B AND N

red, : N, —- N
succ, : N, — N, predy n—ii o nL
n - n+1
0 —» L
1l = 1
1l = 1
zero?, : N, — B,
0 +— ftrue
n+1 — false
1l = 1

25

[01(p)
[true](p)
[false](p)

= 0 e N,
= true e B,

= false eB,

DENOTATION OF OPERATIONS ON B AND N

25

DENOTATION OF OPERATIONS ON B AND N

[0](p) = O €Ny

[true](p) ' true e B,

[false](p) ' false e B,

[succI(p) = suce, ([1(p)) e N,

pred ())(p) = pred, ([£1(p)) eN,
def

[zero? (DI(p) = zero? ([t](p)) €B,

[succ (t)] = succ °[t]

DENOTATION OF OPERATIONS ON B AND N

[0l(p) = 0 eN,
[true](p) ' true e B,
[false](p) ' false e B,

[succI(p) = suce, ([1(p)) e N,
lpred MI(p) = pred, ([t](p)) e N,
[zero? M)(p) = zero?, ([1(p)) €B,

[if bthentelser] = if (16)(p) [tI(p). ['1(p)) € [r]

[if b thent else t'] = if o([b], ([t], [t']))

25

DENOTATION OF THE A-CALCULUS OPERATIONS

def

[xI(p) = p(x) € [I(x)]

[x1(p) = mx(p)

26

DENOTATION OF THE A-CALCULUS OPERATIONS

XH(p) = p(X) € [[(x)]
[t tzﬂ(P) = ([[fl]](/?)) ([t20(p))

[t1 2] = eval «([11], [£2])

26

DENOTATION OF THE A-CALCULUS OPERATIONS

XH(p) = p(x) € [I(x)]
[t tzﬂ(P) ([[tl]](,D)) ([21(p))
[funx:z.t](p) Ad € [7]. [t](p, d)

de

[funx:7.t] = cur([t])

26

DENOTATION OF FIXED POINTS

def

[fix fl(p) = fix([f](p))

27

DENOTATION OF PCF TERMS

For any Pcr term ¢ such thatI' - ¢ : 7, the object [t]
is well-defined and a continuous function [t] : [I'] — [7].

28

DENOTATION OF PCF TERMS

For any Pcr term ¢ such thatI' - ¢ : 7, the object [t]
is well-defined and a continuous function [t] : [I'] — [7].

ftepPcr: [f] € []1—>[r] = 1-—]r]

I
—
~
=

28

DENOTATIONAL SEMANTICS FOR PCF

COMPOSITIONALITY

COMPOSITIONALITY

Suppose t,u € PCFp 4, such that

[£] = [u] : [A] = [o]

Suppose moreover that C[—] is a PcF context such that T Fag C: 7. Then

[ele]l = [clull = [T — [z].

29

A DENOTATION FOR EVALUATION CONTEXTS

IfI' FA & C : 7, then define [C] such that

el : ([A] = [o]) = [I] — []

30

A DENOTATION FOR EVALUATION CONTEXTS

IfI' FA & C : 7, then define [C] such that

el : ([A] = [o]) = [I] — []

[-1(d) =d
[c t](d)(p) = ([(p)([tT(p))

30

A DENOTATION FOR EVALUATION CONTEXTS

IfI' FA & C : 7, then define [C] such that

el : ([A] = [o]) = [I] — []

[-1(d) =d
[c t](d)(p) = ([(p)([tT(p))

IfI' Fpq C:Tand A+t : o, then

[cle]l = 1e3CiD

30

SUBSTITUTION PROPERTY OF THE SEMANTIC FUNCTION

Assume

T'u:o
I'x:ocrt:7

Then for all p € [T
[t[u/x11(p) = [11(plx — [ul(p)D.

In particular when I' = - [t] : [o] — [r] and

[t[u/x11 = [9([ul)

31

DENOTATIONAL SEMANTICS FOR PCF
SOUNDNESS

SOUNDNESS

For all PcF types 7 and all closed terms t, v € PcF, with v a value, if t |J; v is derivable,
then

[t] = [v] €[]

32

	The language PCF
	Syntax
	Operational semantics
	Contextual equivalence

	Denotational Semantics for
	Introducing denotational semantics
	Definition
	Compositionality
	Soundness

