
DENOTATIONAL SEMANTICS

Ioannis Markakis
Lectures for Part II CST 2025/2026



THE LANGUAGE PCF



THE LANGUAGE PCF
SYNTAX



TYPES AND TERMS OF PCF

Types: 𝜏 ::= nat ∣ bool ∣ 𝜏 -> 𝜏

Terms: 𝑡 ::= 0 ∣ succ (𝑡) ∣ pred (𝑡) ∣
true ∣ false ∣ zero? (𝑡) ∣ if 𝑡 then 𝑡 else 𝑡
𝑥 ∣ fun 𝑥: 𝜏 . 𝑡 ∣ 𝑡 𝑡 ∣ fix(𝑡)

• λ-calculus + base types/functions + fix
• tiny ML (without references, ADTs, polymorphism…)

1



TYPES AND TERMS OF PCF

Types: 𝜏 ::= nat ∣ bool ∣ 𝜏 -> 𝜏

Terms: 𝑡 ::= 0 ∣ succ (𝑡) ∣ pred (𝑡) ∣
true ∣ false ∣ zero? (𝑡) ∣ if 𝑡 then 𝑡 else 𝑡
𝑥 ∣ fun 𝑥: 𝜏 . 𝑡 ∣ 𝑡 𝑡 ∣ fix(𝑡)

• λ-calculus + base types/functions + fix
• tiny ML (without references, ADTs, polymorphism…)

1



TYPES AND TERMS OF PCF

Types: 𝜏 ::= nat ∣ bool ∣ 𝜏 -> 𝜏

Terms: 𝑡 ::= 0 ∣ succ (𝑡) ∣ pred (𝑡) ∣
true ∣ false ∣ zero? (𝑡) ∣ if 𝑡 then 𝑡 else 𝑡
𝑥 ∣ fun 𝑥: 𝜏 . 𝑡 ∣ 𝑡 𝑡 ∣ fix(𝑡)

• λ-calculus + base types/functions + fix
• tiny ML (without references, ADTs, polymorphism…)

1



VARIABLES, SUBSTITUTIONS AND CONTEXTS

Variables and terms: up to α-equivalence

Substitution: 𝑡[𝑢/𝑥]

Typing contexts: Γ ::= ⋅ ∣ Γ, 𝑥: 𝜏
• partial maps from variable to types
• finite lists 𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛

2



VARIABLES, SUBSTITUTIONS AND CONTEXTS

Variables and terms: up to α-equivalence

Substitution: 𝑡[𝑢/𝑥]

Typing contexts: Γ ::= ⋅ ∣ Γ, 𝑥: 𝜏
• partial maps from variable to types
• finite lists 𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛

2



VARIABLES, SUBSTITUTIONS AND CONTEXTS

Variables and terms: up to α-equivalence

Substitution: 𝑡[𝑢/𝑥]

Typing contexts: Γ ::= ⋅ ∣ Γ, 𝑥: 𝜏

• partial maps from variable to types
• finite lists 𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛

2



VARIABLES, SUBSTITUTIONS AND CONTEXTS

Variables and terms: up to α-equivalence

Substitution: 𝑡[𝑢/𝑥]

Typing contexts: Γ ::= ⋅ ∣ Γ, 𝑥: 𝜏
• partial maps from variable to types
• finite lists 𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛

2



TYPING FOR PCF (I)

Γ ⊢ 𝑡 : 𝜏 The term 𝑡 has type 𝜏 in context Γ

ZERO Γ ⊢ 0 : nat SUCC
Γ ⊢ 𝑡 : nat

Γ ⊢ succ (𝑡) : nat PRED
Γ ⊢ 𝑡 : nat

Γ ⊢ pred (𝑡) : nat

TRUE Γ ⊢ true : bool FALSE Γ ⊢ false : bool ISZ
Γ ⊢ 𝑡 : nat

Γ ⊢ zero? (𝑡) : bool

IF
Γ ⊢ 𝑏 : bool Γ ⊢ 𝑡 : 𝜏 Γ ⊢ 𝑡′ : 𝜏

Γ ⊢ if 𝑏 then 𝑡 else 𝑡′ : 𝜏

3



TYPING FOR PCF (I)

Γ ⊢ 𝑡 : 𝜏 The term 𝑡 has type 𝜏 in context Γ

ZERO Γ ⊢ 0 : nat SUCC
Γ ⊢ 𝑡 : nat

Γ ⊢ succ (𝑡) : nat PRED
Γ ⊢ 𝑡 : nat

Γ ⊢ pred (𝑡) : nat

TRUE Γ ⊢ true : bool FALSE Γ ⊢ false : bool ISZ
Γ ⊢ 𝑡 : nat

Γ ⊢ zero? (𝑡) : bool

IF
Γ ⊢ 𝑏 : bool Γ ⊢ 𝑡 : 𝜏 Γ ⊢ 𝑡′ : 𝜏

Γ ⊢ if 𝑏 then 𝑡 else 𝑡′ : 𝜏

3



TYPING FOR PCF (II)

VAR
Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 : 𝜏 FUN

Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏
Γ ⊢ fun 𝑥: 𝜎 . 𝑡 : 𝜎 -> 𝜏 APP

Γ ⊢ 𝑓 : 𝜎 -> 𝜏 Γ ⊢ 𝑢 : 𝜎
Γ ⊢ 𝑓 𝑢 : 𝜏

FIX
Γ ⊢ 𝑓 : 𝜏 -> 𝜏
Γ ⊢ fix(𝑓 ) : 𝜏

PCFΓ,𝜏
def= {𝑡 ∣ Γ ⊢ 𝑡 : 𝜏 } PCF𝜏

def= PCF⋅,𝜏

The only programs we care about are the well-typed ones!

4



TYPING FOR PCF (II)

VAR
Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 : 𝜏 FUN

Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏
Γ ⊢ fun 𝑥: 𝜎 . 𝑡 : 𝜎 -> 𝜏 APP

Γ ⊢ 𝑓 : 𝜎 -> 𝜏 Γ ⊢ 𝑢 : 𝜎
Γ ⊢ 𝑓 𝑢 : 𝜏

FIX
Γ ⊢ 𝑓 : 𝜏 -> 𝜏
Γ ⊢ fix(𝑓 ) : 𝜏

PCFΓ,𝜏
def= {𝑡 ∣ Γ ⊢ 𝑡 : 𝜏 } PCF𝜏

def= PCF⋅,𝜏

The only programs we care about are the well-typed ones!

4



TYPING FOR PCF (II)

VAR
Γ(𝑥) = 𝜏
Γ ⊢ 𝑥 : 𝜏 FUN

Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏
Γ ⊢ fun 𝑥: 𝜎 . 𝑡 : 𝜎 -> 𝜏 APP

Γ ⊢ 𝑓 : 𝜎 -> 𝜏 Γ ⊢ 𝑢 : 𝜎
Γ ⊢ 𝑓 𝑢 : 𝜏

FIX
Γ ⊢ 𝑓 : 𝜏 -> 𝜏
Γ ⊢ fix(𝑓 ) : 𝜏

PCFΓ,𝜏
def= {𝑡 ∣ Γ ⊢ 𝑡 : 𝜏 } PCF𝜏

def= PCF⋅,𝜏

The only programs we care about are the well-typed ones!

4



TYPING AND SUBSTITUTION

Lemma
If Γ ⊢ 𝑡 : 𝜏 and Γ, 𝑥 : 𝜏 ⊢ 𝑡′ : 𝜏 ′ both hold, then so does Γ ⊢ 𝑡′[𝑡/𝑥] : 𝜏 ′.

5



THE LANGUAGE PCF
OPERATIONAL SEMANTICS



PCF VALUES

Values: 𝑣 ::= 0 ∣ succ (𝑣)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

∣ true ∣ false ∣ fun 𝑥: 𝜏 . 𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
All functions (< fun >)

We will only evaluate closed term to values.

6



PCF VALUES

Values: 𝑣 ::= 0 ∣ succ (𝑣)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

∣ true ∣ false ∣ fun 𝑥: 𝜏 . 𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
All functions (< fun >)

We will only evaluate closed term to values.

6



PCF EVALUATION

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣

SUCC
𝑡 ⇓nat 𝑣

succ (𝑡) ⇓nat succ (𝑣) PRED
𝑡 ⇓nat succ (𝑣)
pred (𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero? (𝑡) ⇓bool true
ZEROS

𝑡 ⇓nat succ (𝑣)
zero? (𝑡) ⇓bool false

IFT
𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 IFF

𝑏 ⇓bool false 𝑡2 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

7



PCF EVALUATION

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 SUCC

𝑡 ⇓nat 𝑣
succ (𝑡) ⇓nat succ (𝑣) PRED

𝑡 ⇓nat succ (𝑣)
pred (𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero? (𝑡) ⇓bool true
ZEROS

𝑡 ⇓nat succ (𝑣)
zero? (𝑡) ⇓bool false

IFT
𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 IFF

𝑏 ⇓bool false 𝑡2 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

7



PCF EVALUATION

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 SUCC

𝑡 ⇓nat 𝑣
succ (𝑡) ⇓nat succ (𝑣) PRED

𝑡 ⇓nat succ (𝑣)
pred (𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero? (𝑡) ⇓bool true
ZEROS

𝑡 ⇓nat succ (𝑣)
zero? (𝑡) ⇓bool false

IFT
𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 IFF

𝑏 ⇓bool false 𝑡2 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

7



PCF EVALUATION

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 SUCC

𝑡 ⇓nat 𝑣
succ (𝑡) ⇓nat succ (𝑣) PRED

𝑡 ⇓nat succ (𝑣)
pred (𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero? (𝑡) ⇓bool true
ZEROS

𝑡 ⇓nat succ (𝑣)
zero? (𝑡) ⇓bool false

IFT
𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 IFF

𝑏 ⇓bool false 𝑡2 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

7



PCF EVALUATION

VAL
⊢ 𝑣 : 𝜏
𝑣 ⇓𝜏 𝑣 SUCC

𝑡 ⇓nat 𝑣
succ (𝑡) ⇓nat succ (𝑣) PRED

𝑡 ⇓nat succ (𝑣)
pred (𝑡) ⇓nat 𝑣

ZEROZ
𝑡 ⇓nat 0

zero? (𝑡) ⇓bool true
ZEROS

𝑡 ⇓nat succ (𝑣)
zero? (𝑡) ⇓bool false

IFT
𝑏 ⇓bool true 𝑡1 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣 IFF

𝑏 ⇓bool false 𝑡2 ⇓𝜏 𝑣
if 𝑏 then 𝑡1 else 𝑡2 ⇓𝜏 𝑣

FUN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣 FIX
𝑡 (fix(𝑡)) ⇓𝜏 𝑣
fix(𝑡) ⇓𝜏 𝑣

7



EXAMPLE: ADDITION

Addition can be defined by recursion on the second argument.
It must satisfy the fixed point equation for 𝑥, 𝑦 : nat:

plus 𝑥 𝑦 = if zero? (𝑦) then 𝑥 else succ (plus 𝑥 pred (𝑦))

We may then define in context 𝑥 : nat:

plus𝑥
def= fix(fun(𝑝: nat -> nat)(𝑦: nat).

if zero? (𝑦) then 𝑥 else succ (𝑝 pred (𝑦)))
and then bind the variable 𝑥 to get:

plus = fun 𝑥: nat. plus𝑥 (1)

8



EXAMPLE: ADDITION

Addition can be defined by recursion on the second argument.
It must satisfy the fixed point equation for 𝑥, 𝑦 : nat:

plus 𝑥 𝑦 = if zero? (𝑦) then 𝑥 else succ (plus 𝑥 pred (𝑦))

We may then define in context 𝑥 : nat:

plus𝑥
def= fix(fun(𝑝: nat -> nat)(𝑦: nat).

if zero? (𝑦) then 𝑥 else succ (𝑝 pred (𝑦)))
and then bind the variable 𝑥 to get:

plus = fun 𝑥: nat. plus𝑥 (1)

8



EVALUATION (I)

FUN
plus ⇓ fun x: nat. plusx plus3 1 ⇓ 4

plus 3 1 ⇓nat 4

FIX

FUN

VAL (fun 𝑝: nat -> nat. … ) ⇓ … VAL (fun 𝑦: nat. …)[plus𝑥/𝑝] ⇓ 𝑟𝑥
(fun(𝑝: nat -> nat)(𝑦 : nat). … ) plus𝑥 ⇓ 𝑟𝑥

plus𝑥 ⇓ fun 𝑦: nat. if zero? (𝑦) then 𝑥 else succ (plus𝑥 pred (𝑦))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟𝑥

9



EVALUATION (I)

FUN
plus ⇓ fun x: nat. plusx plus3 1 ⇓ 4

plus 3 1 ⇓nat 4

FIX

FUN

VAL (fun 𝑝: nat -> nat. … ) ⇓ … VAL (fun 𝑦: nat. …)[plus𝑥/𝑝] ⇓ 𝑟𝑥
(fun(𝑝: nat -> nat)(𝑦 : nat). … ) plus𝑥 ⇓ 𝑟𝑥

plus𝑥 ⇓ fun 𝑦: nat. if zero? (𝑦) then 𝑥 else succ (plus𝑥 pred (𝑦))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟𝑥

9



EVALUATION (II)

FUN
plus3 ⇓ 𝑟3

IFF

ZEROS

VAL 1 ⇓ 1
zero? (1) ⇓ false

SUCC

ZEROZ

PRED
…

pred (1) ⇓ 0
zero? (pred (1)) ⇓ true

…
plus3 pred (1) ⇓ 3

succ (plus3 pred (1)) ⇓ 4
if zero? (1) then 3 else succ (plus3 pred (1)) ⇓ 4

plus3 1 ⇓nat 4

10



DIVERGENCE

Divergence (𝑡 ⇑𝜏 ):
𝑡 : 𝜏 ∧ ∄𝑣. 𝑡 ⇓𝜏 𝑣

Ω𝜏
def= fix(fun 𝑥: 𝜏 . 𝑥)

Ω𝜏 ⇑𝜏 (diverges)

fun 𝑥: 𝜏 . 𝑥 ⇓ fun 𝑥: 𝜏 . 𝑥
P

fix(fun 𝑥: 𝜏 . 𝑥) ⇓ 𝑣
(fun 𝑥: 𝜏 . 𝑥) (fix(fun 𝑥: 𝜏 . 𝑥)) ⇓ 𝑣

fix(fun 𝑥: 𝜏 . 𝑥) ⇓ 𝑣

11



DIVERGENCE

Divergence (𝑡 ⇑𝜏 ):
𝑡 : 𝜏 ∧ ∄𝑣. 𝑡 ⇓𝜏 𝑣

Ω𝜏
def= fix(fun 𝑥: 𝜏 . 𝑥)

Ω𝜏 ⇑𝜏 (diverges)

fun 𝑥: 𝜏 . 𝑥 ⇓ fun 𝑥: 𝜏 . 𝑥
P

fix(fun 𝑥: 𝜏 . 𝑥) ⇓ 𝑣
(fun 𝑥: 𝜏 . 𝑥) (fix(fun 𝑥: 𝜏 . 𝑥)) ⇓ 𝑣

fix(fun 𝑥: 𝜏 . 𝑥) ⇓ 𝑣

11



DIVERGENCE

Divergence (𝑡 ⇑𝜏 ):
𝑡 : 𝜏 ∧ ∄𝑣. 𝑡 ⇓𝜏 𝑣

Ω𝜏
def= fix(fun 𝑥: 𝜏 . 𝑥)

Ω𝜏 ⇑𝜏 (diverges)

fun 𝑥: 𝜏 . 𝑥 ⇓ fun 𝑥: 𝜏 . 𝑥
P

fix(fun 𝑥: 𝜏 . 𝑥) ⇓ 𝑣
(fun 𝑥: 𝜏 . 𝑥) (fix(fun 𝑥: 𝜏 . 𝑥)) ⇓ 𝑣

fix(fun 𝑥: 𝜏 . 𝑥) ⇓ 𝑣
11



CALL-BY-NAME AND CALL-BY-VALUE

FUN-CBN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣

FUN-CBV
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑢 ⇓𝜎 𝑣 ′ 𝑡′[𝑣 ′/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣

What does (fun 𝑥: nat. 0) Ωnat denote?

In call-by-value, all functions are strict... but the least-fixed points of a strict function is
always ⊥!

12



CALL-BY-NAME AND CALL-BY-VALUE

FUN-CBN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣

FUN-CBV
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑢 ⇓𝜎 𝑣 ′ 𝑡′[𝑣 ′/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣

What does (fun 𝑥: nat. 0) Ωnat denote?

In call-by-value, all functions are strict... but the least-fixed points of a strict function is
always ⊥!

12



CALL-BY-NAME AND CALL-BY-VALUE

FUN-CBN
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑡′[𝑢/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣

FUN-CBV
𝑡 ⇓𝜎->𝜏 fun 𝑥: 𝜎 . 𝑡′ 𝑢 ⇓𝜎 𝑣 ′ 𝑡′[𝑣 ′/𝑥] ⇓𝜏 𝑣

𝑡 𝑢 ⇓𝜏 𝑣

What does (fun 𝑥: nat. 0) Ωnat denote?

In call-by-value, all functions are strict... but the least-fixed points of a strict function is
always ⊥!

12



SMALL-STEP SEMANTIC

Small-step 𝑡 ⇝𝜏 𝑢:

(fun 𝑥: 𝜎 . 𝑡) 𝑢 ⇝𝜏 𝑡[𝑢/𝑥]
𝑡 ⇝𝜎->𝜏 𝑡′
𝑡 𝑢 ⇝𝜏 𝑡′ 𝑢 …

We have 𝑡 ⇓𝜏 𝑣 iff 𝑡 ⇝⋆𝜏 𝑢.

13



SMALL-STEP SEMANTIC

Small-step 𝑡 ⇝𝜏 𝑢:

(fun 𝑥: 𝜎 . 𝑡) 𝑢 ⇝𝜏 𝑡[𝑢/𝑥]
𝑡 ⇝𝜎->𝜏 𝑡′
𝑡 𝑢 ⇝𝜏 𝑡′ 𝑢 …

We have 𝑡 ⇓𝜏 𝑣 iff 𝑡 ⇝⋆𝜏 𝑢.

13



TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function 𝜙, there is a PCF term
𝜙 ∈ PCFnat->nat such that for all 𝑛 ∈ ℕ, if 𝜙(𝑛) is defined then 𝜙 𝑛 ⇓nat 𝜙(𝑛).

(Later on: 𝜙 = J𝜙K).

14



TURING-COMPLETENESS

PCF is Turing-complete: for every partial recursive function 𝜙, there is a PCF term
𝜙 ∈ PCFnat->nat such that for all 𝑛 ∈ ℕ, if 𝜙(𝑛) is defined then 𝜙 𝑛 ⇓nat 𝜙(𝑛).

(Later on: 𝜙 = J𝜙K).

14



DETERMINISM

Evaluation in PCF is deterministic: if both 𝑡 ⇓𝜏 𝑣 and 𝑡 ⇓𝜏 𝑣 ′ hold, then 𝑣 = 𝑣 ′.

By (rule) induction on evaluation ⇓:

𝑃(𝑡, 𝜏 , 𝑣) def= ∀𝑣 ′ ∈ PCF𝜏 .(𝑡 ⇓𝜏 𝑣 ′ ⇒ 𝑣 = 𝑣 ′)
Intuition: there is always exactly one rule which applies.

15



DETERMINISM

Evaluation in PCF is deterministic: if both 𝑡 ⇓𝜏 𝑣 and 𝑡 ⇓𝜏 𝑣 ′ hold, then 𝑣 = 𝑣 ′.

By (rule) induction on evaluation ⇓:

𝑃(𝑡, 𝜏 , 𝑣) def= ∀𝑣 ′ ∈ PCF𝜏 .(𝑡 ⇓𝜏 𝑣 ′ ⇒ 𝑣 = 𝑣 ′)
Intuition: there is always exactly one rule which applies.

15



THE LANGUAGE PCF
CONTEXTUAL EQUIVALENCE



CONTEXTUAL EQUIVALENCE – INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.

But what’s a complete program? What’s an observable result?

16



CONTEXTUAL EQUIVALENCE – INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.

But what’s a complete program? What’s an observable result?

16



CONTEXTUAL EQUIVALENCE – INFORMAL

Two phrases of a programming language are contextually equivalent if any occurrences
of the first phrase in a complete program can be replaced by the second phrase without
affecting the observable results of executing the program.

The intuitive notion of program equivalence for programmers.

But what’s a complete program? What’s an observable result?

16



EVALUATION CONTEXTS

“Term with a hole”:

C ::= − ∣ succ (C) ∣ pred (C) ∣ zero? (C) ∣
if C then 𝑡 else 𝑡 ∣ if 𝑡 then C else 𝑡 ∣ if 𝑡 then 𝑡 else C ∣
fun 𝑥: 𝜏 . C ∣ C 𝑡 ∣ 𝑡 C ∣ fix(C)

Typing extended to evaluation contexts: Γ ⊢Δ,𝜎 C : 𝜏 .

Γ ⊢Γ,𝜏 − : 𝜏
Γ ⊢Δ,𝜎 C : 𝜏1 -> 𝜏2 Γ ⊢ 𝑢 : 𝜏1

Γ ⊢Δ,𝜎 C 𝑢 : 𝜏2 …

17



EVALUATION CONTEXTS

“Term with a hole”:

C ::= − ∣ succ (C) ∣ pred (C) ∣ zero? (C) ∣
if C then 𝑡 else 𝑡 ∣ if 𝑡 then C else 𝑡 ∣ if 𝑡 then 𝑡 else C ∣
fun 𝑥: 𝜏 . C ∣ C 𝑡 ∣ 𝑡 C ∣ fix(C)

Typing extended to evaluation contexts: Γ ⊢Δ,𝜎 C : 𝜏 .

Γ ⊢Γ,𝜏 − : 𝜏
Γ ⊢Δ,𝜎 C : 𝜏1 -> 𝜏2 Γ ⊢ 𝑢 : 𝜏1

Γ ⊢Δ,𝜎 C 𝑢 : 𝜏2 …

17



EVALUATION CONTEXTS

“Term with a hole”:

C ::= − ∣ succ (C) ∣ pred (C) ∣ zero? (C) ∣
if C then 𝑡 else 𝑡 ∣ if 𝑡 then C else 𝑡 ∣ if 𝑡 then 𝑡 else C ∣
fun 𝑥: 𝜏 . C ∣ C 𝑡 ∣ 𝑡 C ∣ fix(C)

Typing extended to evaluation contexts: Γ ⊢Δ,𝜎 C : 𝜏 .

Γ ⊢Γ,𝜏 − : 𝜏
Γ ⊢Δ,𝜎 C : 𝜏1 -> 𝜏2 Γ ⊢ 𝑢 : 𝜏1

Γ ⊢Δ,𝜎 C 𝑢 : 𝜏2 …

17



CONTEXTUAL EQUIVALENCE

Given a type 𝜏 , a typing context Γ and terms 𝑡 , 𝑡′ ∈ PCFΓ,𝜏 , contextual equivalence,
written Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 is defined to hold if for all evaluation contexts C such that
⋅ ⊢Γ,𝜏 C : 𝛾 , where 𝛾 is nat or bool, and for all values 𝑣 ∈ PCF𝛾 ,

C[𝑡] ⇓𝛾 𝑣 ⇔ C[𝑡′] ⇓𝛾 𝑣 .

When Γ is the empty context, we simply write 𝑡 ≅ctx 𝑡′ : 𝜏 for ⋅ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 .

Divergence is implicitly covered.

18



CONTEXTUAL EQUIVALENCE

Given a type 𝜏 , a typing context Γ and terms 𝑡 , 𝑡′ ∈ PCFΓ,𝜏 , contextual equivalence,
written Γ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 is defined to hold if for all evaluation contexts C such that
⋅ ⊢Γ,𝜏 C : 𝛾 , where 𝛾 is nat or bool, and for all values 𝑣 ∈ PCF𝛾 ,

C[𝑡] ⇓𝛾 𝑣 ⇔ C[𝑡′] ⇓𝛾 𝑣 .

When Γ is the empty context, we simply write 𝑡 ≅ctx 𝑡′ : 𝜏 for ⋅ ⊢ 𝑡 ≅ctx 𝑡′ : 𝜏 .

Divergence is implicitly covered.

18



DENOTATIONAL SEMANTICS FOR PCF



DENOTATIONAL SEMANTICS FOR PCF
INTRODUCING DENOTATIONAL SEMANTICS



THE AIMS OF DENOTATIONAL SEMANTICS

• a mapping of PCF types 𝜏 to domains J𝜏 K;
• a mapping of PCF contexts Γ to domains JΓK;
• a mapping of closed, well-typed PCF terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏 K;
• denotation of open terms Γ ⊢ 𝑡 : 𝜏 will be continuous functions JΓK → J𝜏 K

Compositionality: J𝑡K = J𝑡′K ⇒ JC[𝑡]K = JC[𝑡′]K.
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .

19



THE AIMS OF DENOTATIONAL SEMANTICS

• a mapping of PCF types 𝜏 to domains J𝜏 K;
• a mapping of PCF contexts Γ to domains JΓK;
• a mapping of closed, well-typed PCF terms ⋅ ⊢ 𝑡 : 𝜏 to elements J𝑡K ∈ J𝜏 K;
• denotation of open terms Γ ⊢ 𝑡 : 𝜏 will be continuous functions JΓK → J𝜏 K

Compositionality: J𝑡K = J𝑡′K ⇒ JC[𝑡]K = JC[𝑡′]K.
Soundness: for any type 𝜏 , 𝑡 ⇓𝜏 𝑣 ⇒ J𝑡K = J𝑣K.
Adequacy: for 𝛾 = bool or nat, if 𝑡 ∈ PCF𝛾 and J𝑡K = J𝑣K then 𝑡 ⇓𝛾 𝑣 .

19



ADEQUACY FOR FUNCTION TYPES?

𝑣 def= fun 𝑥: nat. (fun 𝑦: nat. 𝑦) 0 and 𝑣 ′ def= fun 𝑥: nat. 0.

20



THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish J𝑡1K = J𝑡2K ∈ J𝜏 K

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

21



THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish J𝑡1K = J𝑡2K ∈ J𝜏 K
C[𝑡1] ⇓nat 𝑣 ⇒ JC[𝑡1]K = J𝑣K (soundness)

⇒ JC[𝑡2]K = J𝑣K (compositionality on J𝑡1K = J𝑡2K)
⇒ C[𝑡2] ⇓nat 𝑣 (adequacy)

and symmetrically for C[𝑡2] ⇓nat 𝑣 ⇒ C[𝑡1] ⇓nat 𝑣 , and similarly for bool.
Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

21



THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish J𝑡1K = J𝑡2K ∈ J𝜏 K
C[𝑡1] ⇓nat 𝑣 ⇒ JC[𝑡1]K = J𝑣K (soundness)

⇒ JC[𝑡2]K = J𝑣K (compositionality on J𝑡1K = J𝑡2K)
⇒ C[𝑡2] ⇓nat 𝑣 (adequacy)

and symmetrically for C[𝑡2] ⇓nat 𝑣 ⇒ C[𝑡1] ⇓nat 𝑣 , and similarly for bool.

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

21



THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish J𝑡1K = J𝑡2K ∈ J𝜏 K

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

21



THE POWER OF DENOTATIONAL SEMANTICS

Proof principle: to show
𝑡1 ≅ctx 𝑡2 : 𝜏

it suffices to establish J𝑡1K = J𝑡2K ∈ J𝜏 K

Denotational equality is sound, but is it complete?
Does equality in the model imply contextual equivalence?

Full abstraction.

21



DENOTATIONAL SEMANTICS FOR PCF
DEFINITION



SEMANTICS OF TYPES

JnatK def= ℕ⊥ (flat domain)

JboolK def= 𝔹⊥ (flat domain)

J𝜏 -> 𝜏 ′K def= J𝜏 K → J𝜏 ′K (function domain)

22



SEMANTICS OF CONTEXTS

JΓK def= ∏𝑥∈dom(Γ) JΓ(𝑥)K (environment)

• J⋅K = 𝟙 (one element set)
• J𝑥: 𝜏 K = ({𝑥} → J𝜏 K) ≅ J𝜏 K
• J𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛K ≅ J𝜏1K × ⋯ × J𝜏𝑛K

23



SEMANTICS OF CONTEXTS

JΓK def= ∏𝑥∈dom(Γ) JΓ(𝑥)K (environment)

• J⋅K = 𝟙 (one element set)
• J𝑥: 𝜏 K = ({𝑥} → J𝜏 K) ≅ J𝜏 K
• J𝑥1: 𝜏1, … , 𝑥𝑛: 𝜏𝑛K ≅ J𝜏1K × ⋯ × J𝜏𝑛K

23



DENOTATIONAL SEMANTICS OF PCF

To every typing judgement
Γ ⊢ 𝑡 : 𝜏

we associate a continuous function

JΓ ⊢ 𝑡 : 𝜏 K : JΓK → J𝜏 K
between domains. In other words,

J−K: PCFΓ,𝜏 → JΓK → J𝜏 K

24



DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

succ : ℕ → ℕ
𝑛 ↦ 𝑛 + 1

pred : ℕ ⇀ ℕ
𝑛 + 1 ↦ 𝑛

0 undefined

zero? : ℕ → 𝔹
0 ↦ true

𝑛 + 1 ↦ false

J0K(𝜌) def= 0 ∈ ℕ⊥JtrueK(𝜌) def= true ∈ 𝔹⊥JfalseK(𝜌) def= false ∈ 𝔹⊥

Jsucc (𝑡)K(𝜌) def= succ⊥(J𝑡K(𝜌)) ∈ ℕ⊥Jpred (𝑡)K(𝜌) def= pred⊥(J𝑡K(𝜌)) ∈ ℕ⊥Jzero? (𝑡)K(𝜌) def= zero?⊥(J𝑡K(𝜌)) ∈ 𝔹⊥

Jif 𝑏 then 𝑡 else 𝑡′K def= if (J𝑏K(𝜌), J𝑡K(𝜌), J𝑡′K(𝜌)) ∈ J𝜏 K

25



DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

succ⊥ : ℕ⊥ → ℕ⊥
𝑛 ↦ 𝑛 + 1
⊥ ↦ ⊥

pred⊥ : ℕ⊥ → ℕ⊥
𝑛 + 1 ↦ 𝑛

0 ↦ ⊥
⊥ ↦ ⊥

zero?⊥ : ℕ⊥ → 𝔹⊥
0 ↦ true

𝑛 + 1 ↦ false
⊥ ↦ ⊥

J0K(𝜌) def= 0 ∈ ℕ⊥JtrueK(𝜌) def= true ∈ 𝔹⊥JfalseK(𝜌) def= false ∈ 𝔹⊥

Jsucc (𝑡)K(𝜌) def= succ⊥(J𝑡K(𝜌)) ∈ ℕ⊥Jpred (𝑡)K(𝜌) def= pred⊥(J𝑡K(𝜌)) ∈ ℕ⊥Jzero? (𝑡)K(𝜌) def= zero?⊥(J𝑡K(𝜌)) ∈ 𝔹⊥

Jif 𝑏 then 𝑡 else 𝑡′K def= if (J𝑏K(𝜌), J𝑡K(𝜌), J𝑡′K(𝜌)) ∈ J𝜏 K

25



DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

J0K(𝜌) def= 0 ∈ ℕ⊥JtrueK(𝜌) def= true ∈ 𝔹⊥JfalseK(𝜌) def= false ∈ 𝔹⊥

Jsucc (𝑡)K(𝜌) def= succ⊥(J𝑡K(𝜌)) ∈ ℕ⊥Jpred (𝑡)K(𝜌) def= pred⊥(J𝑡K(𝜌)) ∈ ℕ⊥Jzero? (𝑡)K(𝜌) def= zero?⊥(J𝑡K(𝜌)) ∈ 𝔹⊥

Jif 𝑏 then 𝑡 else 𝑡′K def= if (J𝑏K(𝜌), J𝑡K(𝜌), J𝑡′K(𝜌)) ∈ J𝜏 K

25



DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

J0K(𝜌) def= 0 ∈ ℕ⊥JtrueK(𝜌) def= true ∈ 𝔹⊥JfalseK(𝜌) def= false ∈ 𝔹⊥

Jsucc (𝑡)K(𝜌) def= succ⊥(J𝑡K(𝜌)) ∈ ℕ⊥Jpred (𝑡)K(𝜌) def= pred⊥(J𝑡K(𝜌)) ∈ ℕ⊥Jzero? (𝑡)K(𝜌) def= zero?⊥(J𝑡K(𝜌)) ∈ 𝔹⊥

Jif 𝑏 then 𝑡 else 𝑡′K def= if (J𝑏K(𝜌), J𝑡K(𝜌), J𝑡′K(𝜌)) ∈ J𝜏 K

Jsucc (𝑡)K = succ⊥ ∘J𝑡K
25



DENOTATION OF OPERATIONS ON 𝔹 AND ℕ

J0K(𝜌) def= 0 ∈ ℕ⊥JtrueK(𝜌) def= true ∈ 𝔹⊥JfalseK(𝜌) def= false ∈ 𝔹⊥

Jsucc (𝑡)K(𝜌) def= succ⊥(J𝑡K(𝜌)) ∈ ℕ⊥Jpred (𝑡)K(𝜌) def= pred⊥(J𝑡K(𝜌)) ∈ ℕ⊥Jzero? (𝑡)K(𝜌) def= zero?⊥(J𝑡K(𝜌)) ∈ 𝔹⊥

Jif 𝑏 then 𝑡 else 𝑡′K def= if (J𝑏K(𝜌), J𝑡K(𝜌), J𝑡′K(𝜌)) ∈ J𝜏 K
Jif 𝑏 then 𝑡 else 𝑡′K = if ∘⟨J𝑏K, ⟨J𝑡K, J𝑡′K⟩⟩

25



DENOTATION OF THE λ-CALCULUS OPERATIONS

J𝑥K(𝜌) def= 𝜌(𝑥) ∈ JΓ(𝑥)K

J𝑡1 𝑡2K(𝜌) def= (J𝑡1K(𝜌)) (J𝑡2K(𝜌))Jfun 𝑥: 𝜏 . 𝑡K(𝜌) def= 𝜆𝑑 ∈ J𝜏 K. J𝑡K(𝜌, 𝑑)

J𝑥K(𝜌) = 𝜋𝑥(𝜌)

26



DENOTATION OF THE λ-CALCULUS OPERATIONS

J𝑥K(𝜌) def= 𝜌(𝑥) ∈ JΓ(𝑥)K
J𝑡1 𝑡2K(𝜌) def= (J𝑡1K(𝜌)) (J𝑡2K(𝜌))

Jfun 𝑥: 𝜏 . 𝑡K(𝜌) def= 𝜆𝑑 ∈ J𝜏 K. J𝑡K(𝜌, 𝑑)

J𝑡1 𝑡2K = eval ∘⟨J𝑡1K, J𝑡2K⟩

26



DENOTATION OF THE λ-CALCULUS OPERATIONS

J𝑥K(𝜌) def= 𝜌(𝑥) ∈ JΓ(𝑥)K
J𝑡1 𝑡2K(𝜌) def= (J𝑡1K(𝜌)) (J𝑡2K(𝜌))Jfun 𝑥: 𝜏 . 𝑡K(𝜌) def= 𝜆𝑑 ∈ J𝜏 K. J𝑡K(𝜌, 𝑑)

Jfun 𝑥: 𝜏 . 𝑡K = cur(J𝑡K)

26



DENOTATION OF FIXED POINTS

Jfix 𝑓 K(𝜌) def= fix(J𝑓 K(𝜌))

27



DENOTATION OF PCF TERMS

For any PCF term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 , the object J𝑡K
is well-defined and a continuous function J𝑡K : JΓK → J𝜏 K.

If 𝑡 ∈ PCF𝜏 : J𝑡K ∈ J⋅K → J𝜏 K = 𝟙 → J𝜏 K ≅ J𝜏 K

28



DENOTATION OF PCF TERMS

For any PCF term 𝑡 such that Γ ⊢ 𝑡 : 𝜏 , the object J𝑡K
is well-defined and a continuous function J𝑡K : JΓK → J𝜏 K.

If 𝑡 ∈ PCF𝜏 : J𝑡K ∈ J⋅K → J𝜏 K = 𝟙 → J𝜏 K ≅ J𝜏 K

28



DENOTATIONAL SEMANTICS FOR PCF
COMPOSITIONALITY



COMPOSITIONALITY

Suppose 𝑡 , 𝑢 ∈ PCFΔ,𝜎 , such that

J𝑡K = J𝑢K : JΔK → J𝜎 K
Suppose moreover that C[−] is a PCF context such that Γ ⊢Δ,𝜎 C : 𝜏 . Then

JC[𝑡]K = JC[𝑢]K : JΓK → J𝜏 K.

29



A DENOTATION FOR EVALUATION CONTEXTS

If Γ ⊢Δ,𝜎 C : 𝜏 , then define JCK such that
JCK : (JΔK → J𝜎 K) → JΓK → J𝜏 K

J−K(𝑑) = 𝑑JC 𝑡K(𝑑)(𝜌) = (JCK(𝑑)(𝜌))(J𝑡K(𝜌))
⋮

If Γ ⊢Δ,𝜎 C : 𝜏 and Δ ⊢ 𝑡 : 𝜎 , then
JC[𝑡]K = JCK(J𝑡K)

30



A DENOTATION FOR EVALUATION CONTEXTS

If Γ ⊢Δ,𝜎 C : 𝜏 , then define JCK such that
JCK : (JΔK → J𝜎 K) → JΓK → J𝜏 K

J−K(𝑑) = 𝑑JC 𝑡K(𝑑)(𝜌) = (JCK(𝑑)(𝜌))(J𝑡K(𝜌))
⋮

If Γ ⊢Δ,𝜎 C : 𝜏 and Δ ⊢ 𝑡 : 𝜎 , then
JC[𝑡]K = JCK(J𝑡K)

30



A DENOTATION FOR EVALUATION CONTEXTS

If Γ ⊢Δ,𝜎 C : 𝜏 , then define JCK such that
JCK : (JΔK → J𝜎 K) → JΓK → J𝜏 K

J−K(𝑑) = 𝑑JC 𝑡K(𝑑)(𝜌) = (JCK(𝑑)(𝜌))(J𝑡K(𝜌))
⋮

If Γ ⊢Δ,𝜎 C : 𝜏 and Δ ⊢ 𝑡 : 𝜎 , then
JC[𝑡]K = JCK(J𝑡K)

30



SUBSTITUTION PROPERTY OF THE SEMANTIC FUNCTION

Assume

Γ ⊢ 𝑢 : 𝜎
Γ, 𝑥: 𝜎 ⊢ 𝑡 : 𝜏

Then for all 𝜌 ∈ JΓK J𝑡[𝑢/𝑥]K(𝜌) = J𝑡K(𝜌[𝑥 ↦ J𝑢K(𝜌)]).
In particular when Γ = ⋅, J𝑡K : J𝜎 K → J𝜏 K and

J𝑡[𝑢/𝑥]K = J𝑡K(J𝑢K)

31



DENOTATIONAL SEMANTICS FOR PCF
SOUNDNESS



SOUNDNESS

For all PCF types 𝜏 and all closed terms 𝑡 , 𝑣 ∈ PCF𝜏 with 𝑣 a value, if 𝑡 ⇓𝜏 𝑣 is derivable,
then J𝑡K = J𝑣K ∈ J𝜏 K

32


	The language PCF
	Syntax
	Operational semantics
	Contextual equivalence

	Denotational Semantics for 
	Introducing denotational semantics
	Definition
	Compositionality
	Soundness


