

DENOTATIONAL SEMANTICS

Ioannis Markakis

Lectures for Part II CST 2025/2026

REMINDER

We defined **cpos** to be posets with least upper bounds of increasing chains, and **domains** to be cpos with a least element.

REMINDER

We defined **cpos** to be posets with least upper bounds of increasing chains, and **domains** to be cpos with a least element.

We defined **continuous** functions $f : D \rightarrow E$ to be the monotone functions that preserve least upper bounds of chains.

REMINDER

We defined **cpos** to be posets with least upper bounds of increasing chains, and **domains** to be cpos with a least element.

We defined **continuous** functions $f : D \rightarrow E$ to be the monotone functions that preserve least upper bounds of chains.

We saw that continuous functions $f : D \rightarrow D$ on a domain have a **least (pre)fixed point**.

REMINDER

We defined **cpos** to be posets with least upper bounds of increasing chains, and **domains** to be cpos with a least element.

We defined **continuous** functions $f : D \rightarrow E$ to be the monotone functions that preserve least upper bounds of chains.

We saw that continuous functions $f : D \rightarrow D$ on a domain have a **least (pre)fixed point**.

We saw methods for constructing domains:

X_\perp flat domains	$\prod_{i \in I} D_i$ product domains	$D \rightarrow E$ function domains
---------------------------	--	---------------------------------------

FUNCTION OPERATIONS ARE CONTINUOUS

The following operations on continuous functions are well-defined and continuous:

- **Evaluation**

$$\text{eval} : (D \rightarrow E) \times D \rightarrow E$$

$$\text{eval}(f, d) = f(d)$$

FUNCTION OPERATIONS ARE CONTINUOUS

The following operations on continuous functions are well-defined and continuous:

- Evaluation

$$\text{eval} : (D \rightarrow E) \times D \rightarrow E$$

$$\text{eval}(f, d) = f(d)$$

- **Currying** of a continuous $f : D' \times D \rightarrow E$:

$$\text{cur}(f) : D' \rightarrow (D \rightarrow E)$$

$$\text{cur}(f)(d') = \lambda d \in D. f(d', d)$$

FUNCTION OPERATIONS ARE CONTINUOUS

The following operations on continuous functions are well-defined and continuous:

- Evaluation

$$\text{eval} : (D \rightarrow E) \times D \rightarrow E$$

$$\text{eval}(f, d) = f(d)$$

- Currying of a continuous $f : D' \times D \rightarrow E$:

$$\text{cur}(f) : D' \rightarrow (D \rightarrow E)$$

$$\text{cur}(f)(d') = \lambda d \in D. f(d', d)$$

- **Composition**

$$\circ : (E \rightarrow F) \times (D \rightarrow E) \rightarrow (D \rightarrow F)$$

$$f \circ g = \lambda d \in D. g(f(d))$$

Proposition

The least fixed point operator $\text{fix} : (D \rightarrow D) \rightarrow D$ is continuous.

[BACK TO THE INTRODUCTION](#)

THE SEMANTICS OF A WHILE LOOP

$\llbracket \text{while } X > 0 \text{ do } (Y := X * Y; X := X - 1) \rrbracket$

is a fixed point of the following $F : D \rightarrow D$, where D is (State \rightarrow State):

$$F(w)([X \mapsto x, Y \mapsto y]) = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

THE SEMANTICS OF A WHILE LOOP

$\llbracket \text{while } X > 0 \text{ do } (Y := X * Y; X := X - 1) \rrbracket$

is a fixed point of the following $F : D \rightarrow D$, where D is ($\text{State}_\perp \rightarrow \text{State}_\perp$):

$$F(w)([X \mapsto x, Y \mapsto y]) = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

$$F(\perp) = \perp$$

This is continuous and $\text{State}_\perp \rightarrow \text{State}_\perp$ is a domain!

KLEENE'S FIXED POINT THEOREM

Kleene's fixed point theorem gives that:

$$w_\infty = \bigsqcup_{i \in \mathbb{N}} F^n(\perp)$$

is the least fixed point of F , and in particular a fixed point.

KLEENE'S FIXED POINT THEOREM

Kleene's fixed point theorem gives that:

$$w_\infty = \bigsqcup_{i \in \mathbb{N}} F^n(\perp)$$

is the least fixed point of F , and in particular a fixed point.

We **can** compute explicitly

$$w_\infty[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } x > 0 \end{cases}$$

We can **check** this agrees with the operational semantics.

SCOTT INDUCTION

Scott Induction

Let D be a domain, $f: D \rightarrow D$ be continuous, and $S \subseteq D$. If the set S

- (i) contains \perp ,
- (ii) is chain-closed, *i.e.* the lub of any chain of elements of S is also in S ,
- (iii) is stable for f , *i.e.* $f(S) \subseteq S$,

then $\text{fix}(f) \in S$.

REASONING ON FIXED POINTS

Scott Induction

Let D be a domain, $f: D \rightarrow D$ be continuous, and $S \subseteq D$. If the set S

- (i) contains \perp ,
- (ii) is chain-closed, i.e. the lub of any chain of elements of S is also in S ,
- (iii) is stable for f , i.e. $f(S) \subseteq S$,

then $\text{fix}(f) \in S$.

$$\frac{\Phi(\perp) \quad \Phi(x) \Rightarrow \Phi(f(x)) \quad (\forall i \in \mathbb{N}. \Phi(x_i)) \Rightarrow \Phi(\bigsqcup_{i \in \mathbb{N}} x_i)}{\Phi(\text{fix}(f))}$$

SCOTTIND

BUILDING CHAIN-CLOSED SETS

The following are chain-closed subsets

- the ‘diagonal’ $\{(x, y) \in D \times D \mid x = y\}$

BUILDING CHAIN-CLOSED SETS

The following are chain-closed subsets

- the ‘diagonal’ $\{(x, y) \in D \times D \mid x = y\}$
- the down-closed set $d \downarrow \stackrel{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\}$

BUILDING CHAIN-CLOSED SETS

The following are chain-closed subsets

- the ‘diagonal’ $\{(x, y) \in D \times D \mid x = y\}$
- the down-closed set $d \downarrow \stackrel{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\}$
- the set $\{(x, y) \in D \times D \mid x \sqsubseteq y\}$

BUILDING CHAIN-CLOSED SETS

The following are chain-closed subsets

- the ‘diagonal’ $\{(x, y) \in D \times D \mid x = y\}$
- the down-closed set $d \downarrow^{\text{def}} \{x \in D \mid x \sqsubseteq d\}$
- the set $\{(x, y) \in D \times D \mid x \sqsubseteq y\}$
- $f^{-1}S = \{x \in D \mid f(x) \in S\}$ when S is chain-closed and f continuous

BUILDING CHAIN-CLOSED SETS

The following are chain-closed subsets

- the ‘diagonal’ $\{(x, y) \in D \times D \mid x = y\}$
- the down-closed set $d \downarrow \stackrel{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\}$
- the set $\{(x, y) \in D \times D \mid x \sqsubseteq y\}$
- $f^{-1}S = \{x \in D \mid f(x) \in S\}$ when S is chain-closed and f continuous
- the union $S \cup T$ when S and T are chain-closed

BUILDING CHAIN-CLOSED SETS

The following are chain-closed subsets

- the ‘diagonal’ $\{(x, y) \in D \times D \mid x = y\}$
- the down-closed set $d \downarrow \stackrel{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\}$
- the set $\{(x, y) \in D \times D \mid x \sqsubseteq y\}$
- $f^{-1}S = \{x \in D \mid f(x) \in S\}$ when S is chain-closed and f continuous
- the union $S \cup T$ when S and T are chain-closed
- the intersection $\bigcap_{i \in I} S_i$ when S_i are chain-closed

BUILDING CHAIN-CLOSED SETS

The following are chain-closed subsets

- the ‘diagonal’ $\{(x, y) \in D \times D \mid x = y\}$
- the down-closed set $d \downarrow \stackrel{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\}$
- the set $\{(x, y) \in D \times D \mid x \sqsubseteq y\}$
- $f^{-1}S = \{x \in D \mid f(x) \in S\}$ when S is chain-closed and f continuous
- the union $S \cup T$ when S and T are chain-closed
- the intersection $\bigcap_{i \in I} S_i$ when S_i are chain-closed

BUILDING CHAIN-CLOSED SETS

The following are chain-closed subsets

- the ‘diagonal’ $\{(x, y) \in D \times D \mid x = y\}$
- the down-closed set $d \downarrow \stackrel{\text{def}}{=} \{x \in D \mid x \sqsubseteq d\}$
- the set $\{(x, y) \in D \times D \mid x \sqsubseteq y\}$
- $f^{-1}S = \{x \in D \mid f(x) \in S\}$ when S is chain-closed and f continuous
- the union $S \cup T$ when S and T are chain-closed
- the intersection $\bigcap_{i \in I} S_i$ when S_i are chain-closed

In other words, any formula built using $\vee, \wedge, \forall, \sqsubseteq, =$ and continuous f defines chain-closed subsets.

THE "LOGICAL" VIEW

Any formula written using:

- signature: continuous functions + constants
- relations: equality, inequality
- logical connectives: conjunction, disjunction, universal quantification

is chain-closed.

THE "LOGICAL" VIEW

Any formula written using:

- signature: continuous functions + constants
- relations: equality, inequality
- logical connectives: conjunction, disjunction, universal quantification

is chain-closed.

Given any set I , domains D, E , functions $(f_i)_{i \in I}, g: D \rightarrow E, e \in E$,

$$\Phi(x) := \forall y \in E, (\forall i \in I, f_i(x) \sqsubseteq y) \vee g(x) = e$$

is chain-closed.

EXAMPLE: DOWNSET

Proposition

Assume $f(d) \sqsubseteq d$, i.e. d is a pre-fixed point of a continuous $f : D \rightarrow D$. Then $\text{fix}(f) \sqsubseteq d$.

EXAMPLE: DOWNSET

Proposition

Assume $f(d) \sqsubseteq d$, i.e. d is a pre-fixed point of a continuous $f : D \rightarrow D$. Then $\text{fix}(f) \sqsubseteq d$.

Proof by Scott induction on $d \downarrow$

EXAMPLE: PARTIAL CORRECTNESS

Let $w_\infty : \text{State}_\perp \rightarrow \text{State}_\perp$ be the denotation of

`while X > 0 do (Y := X * Y; X := X - 1)`

Recall that $w_\infty = \text{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \leq 0 \\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$
$$F(w)(\perp) = \perp$$

EXAMPLE: PARTIAL CORRECTNESS

Let $w_\infty : \text{State}_\perp \rightarrow \text{State}_\perp$ be the denotation of

`while X > 0 do (Y := X * Y; X := X - 1)`

Recall that $w_\infty = \text{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \leq 0 \\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$
$$F(w)(\perp) = \perp$$

Claim:

$$\forall x. \forall y \geq 0. w_\infty(x, y) \Downarrow \implies \pi_Y(w_\infty(x, y)) \geq 0$$

EXAMPLE: PARTIAL CORRECTNESS

Let $w_\infty : \text{State}_\perp \rightarrow \text{State}_\perp$ be the denotation of

`while X > 0 do (Y := X * Y; X := X - 1)`

Recall that $w_\infty = \text{fix}(F)$ where

$$F(w)(x, y) = \begin{cases} (x, y) & \text{if } x \leq 0 \\ w(x - 1, x \cdot y) & \text{if } x > 0 \end{cases}$$
$$F(w)(\perp) = \perp$$

Claim:

$$\forall x. \forall y \geq 0. w_\infty(x, y) \Downarrow \implies \pi_Y(w_\infty(x, y)) \geq 0$$

Proof: by Scott induction!