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REMINDER

We defined cpos to be posets with least upper bounds of increasing chains, and domains
to be cpos with a least element.

We defined continuous functions 𝑓 : 𝐷 → 𝐸 to be the monotone functions that preserve
least upper bounds of chains.

We saw that continuous functions 𝑓 : 𝐷 → 𝐷 on a domain have a least (pre)fixed point.

We saw methods for constructing domains:

𝑋⊥ ∏𝑖∈𝐼 𝐷𝑖 𝐷 → 𝐸
flat domains product domains function domains
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FUNCTION OPERATIONS ARE CONTINUOUS

The following operations on continuous functions are well-defined and continuous:

• Evaluation

eval : (𝐷 → 𝐸) × 𝐷 → 𝐸
eval(𝑓 , 𝑑) = 𝑓 (𝑑)

• Currying of a continuous 𝑓 : 𝐷′ × 𝐷 → 𝐸:
cur(𝑓 ) : 𝐷′ → (𝐷 → 𝐸)

cur(𝑓 )(𝑑′) = 𝜆𝑑 ∈ 𝐷. 𝑓 (𝑑′, 𝑑)
• Composition

∘ : (𝐸 → 𝐹) × (𝐷 → 𝐸) → (𝐷 → 𝐹)
𝑓 ∘ 𝑔 = 𝜆𝑑 ∈ 𝐷. 𝑔(𝑓 (𝑑))
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CONTINUITY OF THE FIXED POINT OPERATOR

Proposition
The least fixed point operator fix : (𝐷 → 𝐷) → 𝐷 is continuous.
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BACK TO THE INTRODUCTION



THE SEMANTICS OF A WHILE LOOP

Jwhile 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)K
is a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is (State ⇀ State ):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0

𝐹(⊥) = ⊥
This is continuous and State⊥ → State⊥ is a domain!

4



THE SEMANTICS OF A WHILE LOOP

Jwhile 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)K
is a fixed point of the following 𝐹 : 𝐷 → 𝐷, where 𝐷 is ( State⊥ → State⊥):

𝐹(𝑤)([𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]) = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0

𝐹(⊥) = ⊥
This is continuous and State⊥ → State⊥ is a domain!

4



KLEENE’S FIXED POINT THEOREM

Kleene’s fixed point theorem gives that:

𝑤∞ = ⨆
𝑖∈ℕ

𝐹 𝑛(⊥)

is the least fixed point of 𝐹 , and in particular a fixed point.

We can compute explicitly

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 > 0

We can check this agrees with the operational semantics.
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SCOTT INDUCTION



REASONING ON FIXED POINTS

Scott Induction
Let 𝐷 be a domain, 𝑓 : 𝐷 → 𝐷 be continuous, and 𝑆 ⊆ 𝐷. If the set 𝑆
(i) contains ⊥,
(ii) is chain-closed, i.e. the lub of any chain of elements of 𝑆 is also in 𝑆 ,
(iii) is stable for 𝑓 , i.e. 𝑓 (𝑆) ⊆ 𝑆 ,
then fix(𝑓 ) ∈ 𝑆 .

SCOTTIND

Φ(⊥) Φ(𝑥) ⇒ Φ(𝑓 (𝑥)) (∀𝑖 ∈ ℕ. Φ(𝑥𝑖)) ⇒ Φ(⨆
𝑖∈ℕ

𝑥𝑖)

Φ(fix(𝑓 ))
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BUILDING CHAIN-CLOSED SETS

The following are chain-closed subsets

• the ‘diagonal’ {(𝑥, 𝑦) ∈ 𝐷 × 𝐷 ∣ 𝑥 = 𝑦}

• the down-closed set 𝑑 ↓def= {𝑥 ∈ 𝐷 ∣ 𝑥 ⊑ 𝑑}
• the set {(𝑥, 𝑦) ∈ 𝐷 × 𝐷 ∣ 𝑥 ⊑ 𝑦}
• 𝑓 −1𝑆 = {𝑥 ∈ 𝐷 ∣ 𝑓 (𝑥) ∈ 𝑆} when 𝑆 is chain-closed and 𝑓 continuous

• the union 𝑆 ∪ 𝑇 when 𝑆 and 𝑇 are chain-closed

• the intersection⋂𝑖∈𝐼 𝑆𝑖 when 𝑆𝑖 are chain-closed
In other words, any formula built using ∨, ∧, ∀, ⊑, = and continuous 𝑓 defines
chain-closed subsets.
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THE ”LOGICAL” VIEW

Any formula written using:

• signature: continuous functions + constants
• relations: equality, inequality
• logical connectives: conjunction, disjunction, universal quantification

is chain-closed.

Given any set 𝐼 , domains 𝐷, 𝐸, functions (𝑓𝑖)𝑖∈𝐼 , 𝑔: 𝐷 → 𝐸, 𝑒 ∈ 𝐸,
Φ(𝑥) ≔ ∀𝑦 ∈ 𝐸, (∀𝑖 ∈ 𝐼 , 𝑓𝑖(𝑥) ⊑ 𝑦) ∨ 𝑔(𝑥) = 𝑒

is chain-closed.
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EXAMPLE: DOWNSET

Proposition
Assume 𝑓 (𝑑) ⊑ 𝑑 , i.e. 𝑑 is a pre-fixed point of a continuous 𝑓 : 𝐷 → 𝐷. Then
fix(𝑓 ) ⊑ 𝑑 .

Proof by Scott induction on 𝑑 ↓
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EXAMPLE: PARTIAL CORRECTNESS

Let 𝑤∞ : State⊥ → State⊥ be the denotation of

while 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 : = 𝑋 − 1)
Recall that 𝑤∞ = fix(𝐹) where

𝐹(𝑤)(𝑥, 𝑦) = { (𝑥, 𝑦) if 𝑥 ≤ 0
𝑤(𝑥 − 1, 𝑥 ⋅ 𝑦) if 𝑥 > 0

𝐹(𝑤)(⊥) = ⊥

Claim:
∀𝑥. ∀𝑦 ≥ 0. 𝑤∞(𝑥, 𝑦) ⇓ ⟹ 𝜋𝑌 (𝑤∞(𝑥, 𝑦)) ≥ 0

Proof: by Scott induction!
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