

DENOTATIONAL SEMANTICS

Ioannis Markakis

Lectures for Part II CST 2025/2026

DOMAINS AND FIXED POINTS

DOMAINS AND FIXED POINTS

POSETS AND MONOTONE FUNCTIONS

PARTIALLY ORDERED SET

A **partial order** on a set D is a binary relation \sqsubseteq that is

reflexive: $\forall d \in D. d \sqsubseteq d$

transitive: $\forall d, d', d'' \in D. d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$

antisymmetric: $\forall d, d' \in D. d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'$.

PARTIALLY ORDERED SET

A **partial order** on a set D is a binary relation \sqsubseteq that is

reflexive: $\forall d \in D. d \sqsubseteq d$

transitive: $\forall d, d', d'' \in D. d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$

antisymmetric: $\forall d, d' \in D. d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'$.

$$\text{REFL} \quad \frac{}{x \sqsubseteq x}$$

$$\text{TRANS} \quad \frac{x \sqsubseteq y \quad y \sqsubseteq z}{x \sqsubseteq z}$$

$$\text{ASYM} \quad \frac{x \sqsubseteq y \quad y \sqsubseteq x}{x = y}$$

PARTIALLY ORDERED SET

A **partial order** on a set D is a binary relation \sqsubseteq that is

reflexive: $\forall d \in D. d \sqsubseteq d$

transitive: $\forall d, d', d'' \in D. d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$

antisymmetric: $\forall d, d' \in D. d \sqsubseteq d' \sqsubseteq d \Rightarrow d = d'$.

$$\text{REFL} \quad \frac{}{x \sqsubseteq x}$$

$$\text{TRANS} \quad \frac{x \sqsubseteq y \quad y \sqsubseteq z}{x \sqsubseteq z}$$

$$\text{ASYM} \quad \frac{x \sqsubseteq y \quad y \sqsubseteq x}{x = y}$$

A pair (D, \sqsubseteq) is called a **partially ordered set**, or simply **poset**.

EXAMPLE: PARTIAL FUNCTIONS $X \rightarrow Y$

Set: Partial functions $f : X \rightarrow Y$, i.e.

Total functions $f : A \rightarrow Y$ where $A \subseteq X$

EXAMPLE: PARTIAL FUNCTIONS $X \rightarrow Y$

Set: Partial functions $f : X \rightarrow Y$, i.e.

Total functions $f : A \rightarrow Y$ where $A \subseteq X$

Order: $f \sqsubseteq g$ when $\text{graph}(f) \subseteq \text{graph}(g)$, i.e.

- $\text{dom}(f) \subseteq \text{dom}(g)$ and
- $f(x) = g(x)$ for all $x \in \text{dom}(f)$

EXAMPLE: PARTIAL FUNCTIONS $X \rightharpoonup Y$

Set: Partial functions $f : X \rightharpoonup Y$, i.e.

Total functions $f : A \rightarrow Y$ where $A \subseteq X$

Order: $f \sqsubseteq g$ when $\text{graph}(f) \subseteq \text{graph}(g)$, i.e.

- $\text{dom}(f) \subseteq \text{dom}(g)$ and
- $f(x) = g(x)$ for all $x \in \text{dom}(f)$

Properties: Check reflexivity, antisymmetry, transitivity!

EXAMPLE: PARTIAL FUNCTIONS $X \rightarrow Y$

Set: Partial functions $f : X \rightarrow Y$, i.e.

Total functions $f : A \rightarrow Y$ where $A \subseteq X$

Order: $f \sqsubseteq g$ when $\text{graph}(f) \subseteq \text{graph}(g)$, i.e.

- $\text{dom}(f) \subseteq \text{dom}(g)$ and
- $f(x) = g(x)$ for all $x \in \text{dom}(f)$

Properties: Check reflexivity, antisymmetry, transitivity!

The agrees with the order that we defined on $\text{State} \rightarrow \text{State}$ to give semantics for while loops.

MONOTONICITY

A function $f: D \rightarrow E$ between posets is **monotone** if it preserves the order:

$$\forall d, d' \in D. d \sqsubseteq_D d' \Rightarrow f(d) \sqsubseteq_E f(d').$$

MONOTONICITY

A function $f: D \rightarrow E$ between posets is **monotone** if it preserves the order:

$$\forall d, d' \in D. d \sqsubseteq_D d' \Rightarrow f(d) \sqsubseteq_E f(d').$$

$$\text{MON} \quad \frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)}$$

MONOTONICITY

A function $f: D \rightarrow E$ between posets is **monotone** if it preserves the order:

$$\forall d, d' \in D. d \sqsubseteq_D d' \Rightarrow f(d) \sqsubseteq_E f(d').$$

$$\text{MON} \quad \frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)}$$

Exercise: Check that the function $F_{b,c}$ is monotone.

DOMAINS AND FIXED POINTS

LEAST ELEMENTS AND LEAST UPPER BOUNDS

LEAST ELEMENT

Let S a subset of a poset D . An element $d \in S$ is the **least** element of S if it satisfies

$$\forall x \in S. d \sqsubseteq x.$$

LEAST ELEMENT

Let S a subset of a poset D . An element $d \in S$ is the **least** element of S if it satisfies

$$\forall x \in S. d \sqsubseteq x.$$

Such an element is unique *if it exists*, and is written as \perp_S or simply \perp .

$$\text{LEAST} \quad \frac{x \in S}{\perp_S \sqsubseteq x}$$

LEAST ELEMENT

Let S a subset of a poset D . An element $d \in S$ is the **least** element of S if it satisfies

$$\forall x \in S. d \sqsubseteq x.$$

Such an element is unique *if it exists*, and is written as \perp_S or simply \perp .

$$\text{LEAST } \frac{x \in S}{\perp_S \sqsubseteq x} \qquad \text{ASYM } \frac{\text{LEAST } \frac{\perp'_S \in S}{\perp_S \sqsubseteq \perp'_S} \qquad \text{LEAST } \frac{\perp_S \in S}{\perp'_S \sqsubseteq \perp_S}}{\perp_S = \perp'_S}$$

LEAST ELEMENT

Let S a subset of a poset D . An element $d \in S$ is the **least** element of S if it satisfies

$$\forall x \in S. d \sqsubseteq x.$$

Such an element is unique *if it exists*, and is written as \perp_S or simply \perp .

$$\frac{\text{LEAST } x \in S \quad \text{ASYM} \quad \frac{\text{LEAST } \perp'_S \in S}{\perp_S \sqsubseteq \perp'_S} \quad \text{LEAST } \perp_S \in S}{\perp_S = \perp'_S}$$
$$\frac{\perp'_S \sqsubseteq \perp_S}{\perp'_S \in S}$$

Note that \perp_S is always an element of S !

LEAST UPPER BOUND

Let S be a subset of a poset D . An element $d \in D$ (*not necessarily in S*) is an **upper bound** of S if it satisfies

$$\forall x \in S. x \sqsubseteq d.$$

LEAST UPPER BOUND

Let S be a subset of a poset D . An element $d \in D$ (not necessarily in S) is an **upper bound** of S if it satisfies

$$\forall x \in S. x \sqsubseteq d.$$

A **least upper bound (lub)** of S is the least element of the set of upper bounds of S . If it exists, it is unique and we will denote it by $\sqcup S$.

LEAST UPPER BOUND

Let S be a subset of a poset D . An element $d \in D$ (not necessarily in S) is an **upper bound** of S if it satisfies

$$\forall x \in S. x \sqsubseteq d.$$

A **least upper bound (lub)** of S is the least element of the set of upper bounds of S . If it exists, it is unique and we will denote it by $\sqcup S$.

$$\text{LUB-BOUND} \quad \frac{x \in S}{x \sqsubseteq \sqcup S}$$

$$\text{LUB-LEAST} \quad \frac{\forall x \in S. x \sqsubseteq y}{\sqcup S \sqsubseteq y}$$

LEAST UPPER BOUND

Let S be a subset of a poset D . An element $d \in D$ (not necessarily in S) is an **upper bound** of S if it satisfies

$$\forall x \in S. x \sqsubseteq d.$$

A **least upper bound (lub)** of S is the least element of the set of upper bounds of S . If it exists, it is unique and we will denote it by $\sqcup S$.

$$\text{LUB-BOUND} \quad \frac{x \in S}{x \sqsubseteq \sqcup S}$$

$$\text{LUB-LEAST} \quad \frac{\forall x \in S. x \sqsubseteq y}{\sqcup S \sqsubseteq y}$$

- Lubs are also known as joins, supremums or limits
- The lub of S does *not* need to be in S !

LEAST UPPER BOUNDS OF CHAINS

A (countable, increasing) **chain** in a poset D is a sequence $(d_i)_{i \in \mathbb{N}}$ in D such that

$$d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$$

LEAST UPPER BOUNDS OF CHAINS

A (countable, increasing) **chain** in a poset D is a sequence $(d_i)_{i \in \mathbb{N}}$ in D such that

$$d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$$

The **least upper bound** of $\{d_n : n \in \mathbb{N}\}$ will be denoted by $\bigsqcup_{n \in \mathbb{N}} d_n$ or simply $\bigsqcup_n d_n$. It satisfies:

$$\text{LUB-BOUND} \quad \frac{}{\forall i \in \mathbb{N}. d_i \sqsubseteq \bigsqcup_{n \in \mathbb{N}} d_n}$$

$$\text{LUB-LEAST} \quad \frac{\forall i \in \mathbb{N}. d_i \sqsubseteq d}{\bigsqcup_{n \in \mathbb{N}} d_n \sqsubseteq d}$$

LEAST UPPER BOUNDS OF CHAINS

A (countable, increasing) **chain** in a poset D is a sequence $(d_i)_{i \in \mathbb{N}}$ in D such that

$$d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$$

The **least upper bound** of $\{d_n : n \in \mathbb{N}\}$ will be denoted by $\bigsqcup_{n \in \mathbb{N}} d_n$ or simply $\bigsqcup_n d_n$. It satisfies:

$$\text{LUB-BOUND} \quad \frac{}{\forall i \in \mathbb{N}. d_i \sqsubseteq \bigsqcup_{n \in \mathbb{N}} d_n}$$

$$\text{LUB-LEAST} \quad \frac{\forall i \in \mathbb{N}. d_i \sqsubseteq d}{\bigsqcup_{n \in \mathbb{N}} d_n \sqsubseteq d}$$

The lub of a sequence does *not* need to be an element of the sequence!

SOME PROPERTIES OF LUBS

- Lubs are unique if they exist (being least elements of some set)

SOME PROPERTIES OF LUBS

- Lubs are unique if they exist (being least elements of some set)
- Forming lubs is monotone: if $\forall n \in \mathbb{N}. d_n \sqsubseteq e_n$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$

SOME PROPERTIES OF LUBS

- Lubs are unique if they exist (being least elements of some set)
- Forming lubs is monotone: if $\forall n \in \mathbb{N}. d_n \sqsubseteq e_n$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$
- We can discard elements: $\bigsqcup_n d_n = \bigsqcup_n d_{n+k}$ for any $k \in \mathbb{N}$

SOME PROPERTIES OF LUBS

- Lubs are unique if they exist (being least elements of some set)
- Forming lubs is monotone: if $\forall n \in \mathbb{N}. d_n \sqsubseteq e_n$ then $\bigsqcup_n d_n \sqsubseteq \bigsqcup_n e_n$
- We can discard elements: $\bigsqcup_n d_n = \bigsqcup_n d_{n+k}$ for any $k \in \mathbb{N}$
- If $d_k = d_{k+1} = d_{k+2} = \dots$ for some $k \in \mathbb{N}$, then $\bigsqcup_{n \in \mathbb{N}} d_n = d_k$

DIAGONALISATION

Let D be a poset and $(d_{m,n})_{m,n \in \mathbb{N}}$ be an increasing doubly-indexed sequence in D :

$$m \leq m' \Rightarrow d_{m,n} \sqsubseteq d_{m',n}$$

$$n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m,n'}$$

DIAGONALISATION

Let D be a poset and $(d_{m,n})_{m,n \in \mathbb{N}}$ be an increasing doubly-indexed sequence in D :

$$m \leq m' \Rightarrow d_{m,n} \sqsubseteq d_{m',n} \quad n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m,n'}$$

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n \in \mathbb{N}} d_{0,n} \sqsubseteq \bigsqcup_{n \in \mathbb{N}} d_{1,n} \sqsubseteq \bigsqcup_{n \in \mathbb{N}} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m \in \mathbb{N}} d_{m,0} \sqsubseteq \bigsqcup_{m \in \mathbb{N}} d_{m,1} \sqsubseteq \bigsqcup_{m \in \mathbb{N}} d_{m,2} \sqsubseteq \dots$$

DIAGONALISATION

Let D be a poset and $(d_{m,n})_{m,n \in \mathbb{N}}$ be an increasing doubly-indexed sequence in D :

$$m \leq m' \Rightarrow d_{m,n} \sqsubseteq d_{m',n} \quad n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m,n'}$$

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n \in \mathbb{N}} d_{0,n} \sqsubseteq \bigsqcup_{n \in \mathbb{N}} d_{1,n} \sqsubseteq \bigsqcup_{n \in \mathbb{N}} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m \in \mathbb{N}} d_{m,0} \sqsubseteq \bigsqcup_{m \in \mathbb{N}} d_{m,1} \sqsubseteq \bigsqcup_{m \in \mathbb{N}} d_{m,2} \sqsubseteq \dots$$

Moreover, again assuming the lubs of these chains exist,

$$\bigsqcup_{m \in \mathbb{N}} \left(\bigsqcup_{n \in \mathbb{N}} d_{m,n} \right) = \bigsqcup_{n \in \mathbb{N}} \left(\bigsqcup_{m \in \mathbb{N}} d_{m,n} \right) = \bigsqcup_{k \in \mathbb{N}} d_{k,k}$$

DIAGONALISATION

Let D be a poset and $(d_{m,n})_{m,n \in \mathbb{N}}$ be an increasing doubly-indexed sequence in D :

$$m \leq m' \Rightarrow d_{m,n} \sqsubseteq d_{m',n} \quad n \leq n' \Rightarrow d_{m,n} \sqsubseteq d_{m,n'}$$

Then, assuming they exist, the lubs form two chains

$$\bigsqcup_{n \in \mathbb{N}} d_{0,n} \sqsubseteq \bigsqcup_{n \in \mathbb{N}} d_{1,n} \sqsubseteq \bigsqcup_{n \in \mathbb{N}} d_{2,n} \sqsubseteq \dots$$

and

$$\bigsqcup_{m \in \mathbb{N}} d_{m,0} \sqsubseteq \bigsqcup_{m \in \mathbb{N}} d_{m,1} \sqsubseteq \bigsqcup_{m \in \mathbb{N}} d_{m,2} \sqsubseteq \dots$$

Moreover, again assuming the lubs of these chains exist,

$$\bigsqcup_{m \in \mathbb{N}} \left(\bigsqcup_{n \in \mathbb{N}} d_{m,n} \right) = \bigsqcup_{n \in \mathbb{N}} \left(\bigsqcup_{m \in \mathbb{N}} d_{m,n} \right) = \bigsqcup_{k \in \mathbb{N}} d_{k,k}$$

Show the equality by proving that they are all lubs for the set $\{d_{m,n} : m, n \in \mathbb{N}\}$

DOMAINS AND FIXED POINTS

COMPLETE PARTIAL ORDERS AND DOMAINS

A poset (D, \sqsubseteq) is called **chain complete** or a **cpo** when every (increasing, countable) chain has a least upper bound.

A poset (D, \sqsubseteq) is called **chain complete** or a **cpo** when every (increasing, countable) chain has a least upper bound.

We will call (D, \sqsubseteq) a **domain** when it is a cpo with a least element \perp .

CPOS AND DOMAINS

A poset (D, \sqsubseteq) is called **chain complete** or a **cpo** when every (increasing, countable) chain has a least upper bound.

We will call (D, \sqsubseteq) a **domain** when it is a cpo with a least element \perp .

We will see that these are the ingredients we need to construct **least fixed points**.

EXAMPLE: PARTIAL FUNCTIONS $X \rightarrow Y$

Least element: \perp is the everywhere undefined function.

EXAMPLE: PARTIAL FUNCTIONS $X \rightarrow Y$

Least element: \perp is the everywhere undefined function.

Lub of a chain: The lub of a chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f defined by

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in \text{dom}(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Equivalently, the partial function f has graph the union of the graphs of the f_n .

EXAMPLE: PARTIAL FUNCTIONS $X \rightarrow Y$

Least element: \perp is the everywhere undefined function.

Lub of a chain: The lub of a chain $f_0 \sqsubseteq f_1 \sqsubseteq f_2 \sqsubseteq \dots$ is the partial function f defined by

$$f(x) = \begin{cases} f_n(x) & \text{if } x \in \text{dom}(f_n) \text{ for some } n \\ \text{undefined} & \text{otherwise} \end{cases}$$

Equivalently, the partial function f has graph the union of the graphs of the f_n .

Beware: the definition of $\bigsqcup_n f_n$ is a partial function only if the f_n form a chain!

EXAMPLE: FINITE CPOS

Every finite poset is a cpo. Why?

EXAMPLE: FINITE CPOS

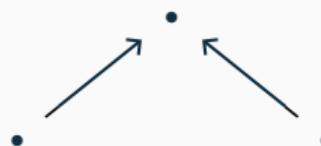
Every finite poset is a cpo. Why?

Are they always domains?

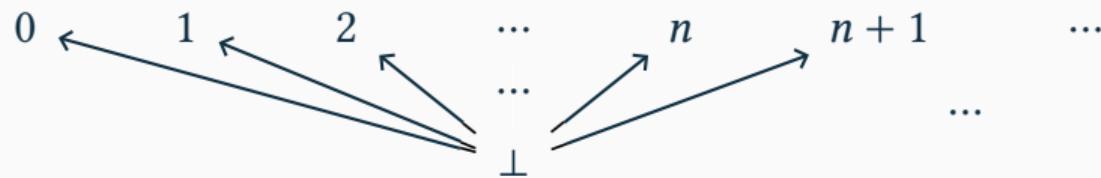
EXAMPLE: FINITE CPOS

Every finite poset is a cpo. Why?

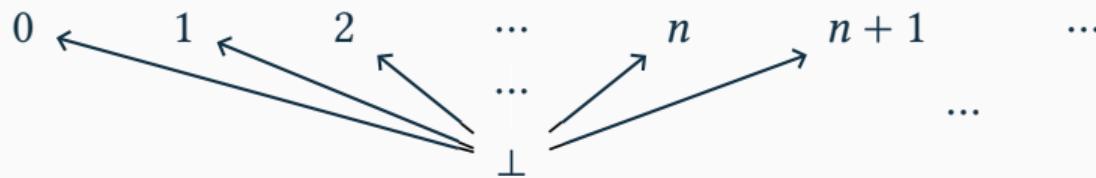
Are they always domains?



EXAMPLE: THE FLAT NATURAL NUMBERS \mathbb{N}_\perp



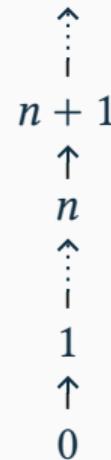
EXAMPLE: THE FLAT NATURAL NUMBERS \mathbb{N}_\perp



Every chain in \mathbb{N}_\perp is eventually constant.

EXAMPLE: VERTICAL NATURAL NUMBERS

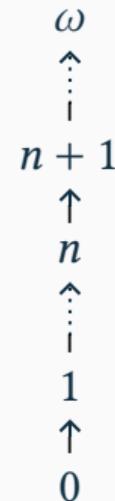
Is (\mathbb{N}, \leq) a domain?



No! (Why?)

EXAMPLE: VERTICAL NATURAL NUMBERS

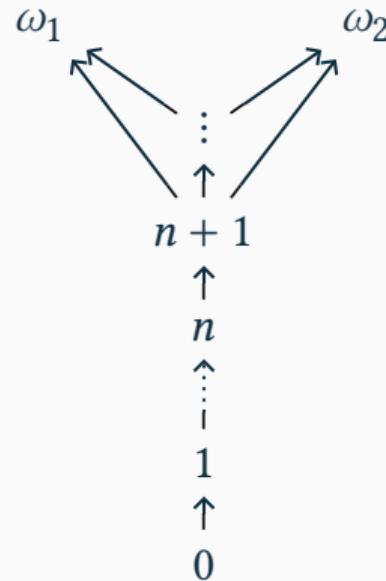
What if we add a greatest element?



Yes!

EXAMPLE: VERTICAL NATURAL NUMBERS

What if we add two greatest elements?



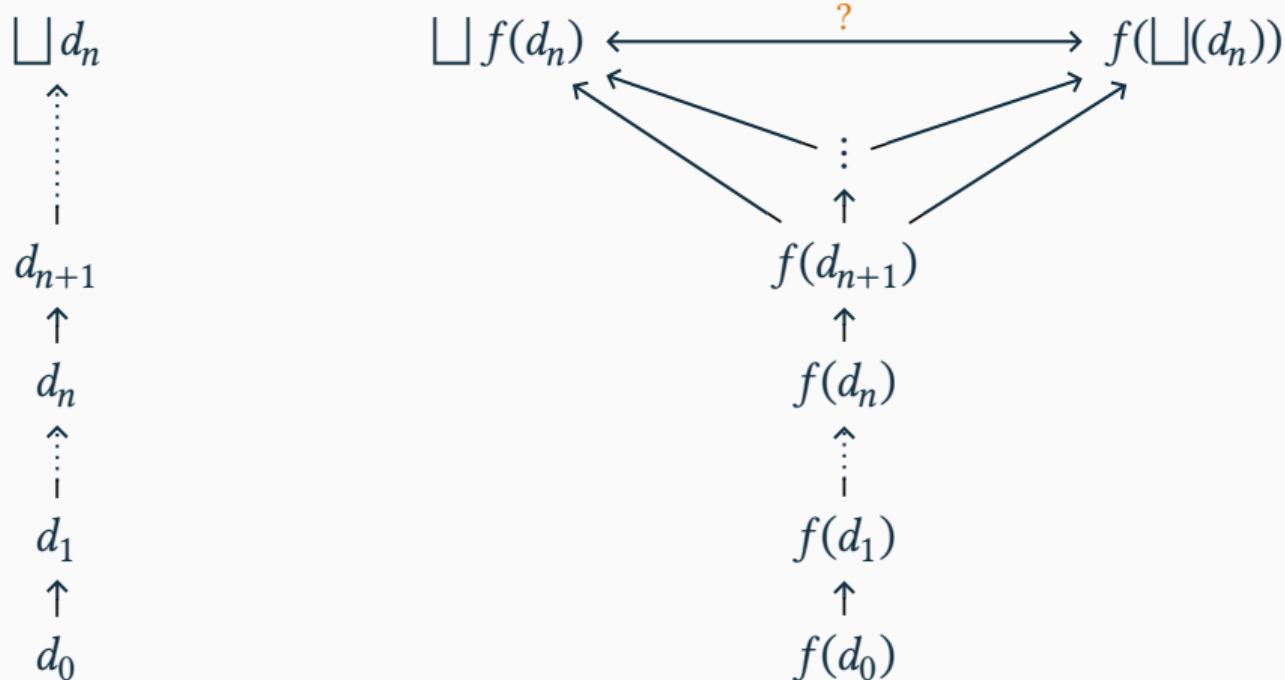
No! (Why?)

DOMAINS AND FIXED POINTS

CONTINUOUS FUNCTIONS

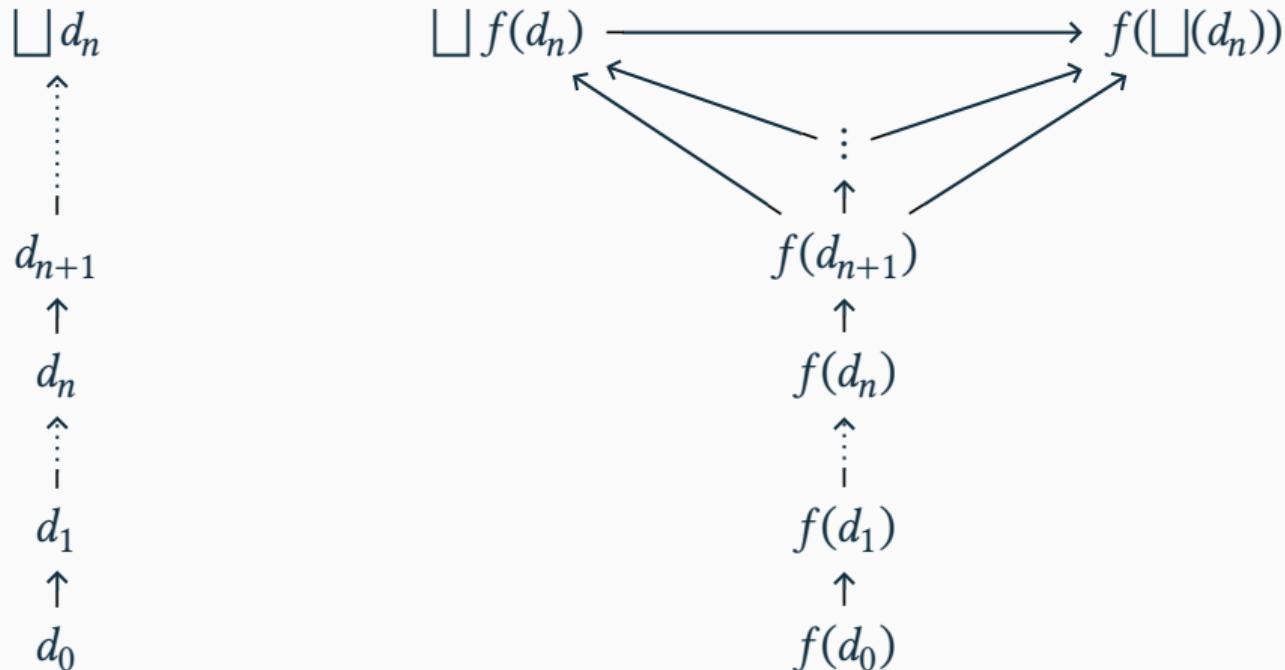
MONOTONE FUNCTIONS AND LUBS

Let $f : D \rightarrow E$ monotone function between cpos and $(d_n)_{n \in \mathbb{N}}$ a chain in D .



MONOTONE FUNCTIONS AND LUBS

Let $f : D \rightarrow E$ monotone function between cpos and $(d_n)_{n \in \mathbb{N}}$ a chain in D .



Given two cpos D and E , a function $f: D \rightarrow E$ is called **continuous** if

- it is monotone, and
- it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D , we have

$$\bigsqcup f(d_n) = f(\bigsqcup d_n) \quad (\sqsubseteq \text{ is automatic})$$

Given two cpos D and E , a function $f: D \rightarrow E$ is called **continuous** if

- it is monotone, and
- it preserves lubs of chains, *i.e.* for all chains $d_0 \sqsubseteq d_1 \sqsubseteq \dots$ in D , we have

$$\bigsqcup f(d_n) = f(\bigsqcup d_n) \quad (\sqsubseteq \text{ is automatic})$$

A continuous function $f : D \rightarrow E$ between domains is **strict** when $f(\perp_D) = \perp_E$.

All computable functions are continuous.

All **computable** functions are continuous.

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? $(\mathbb{N} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

0 0 \perp ... $\mapsto \perp$

0 0 0 0 1 ... $\mapsto 1$

0 0 0 0 0 $\bar{0}$ $\mapsto 0$

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? $(\mathbb{N} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

0	0	\perp	...			$\mapsto \perp$
0	0	0	0	1	...	$\mapsto 1$
0	0	0	0	0	...	$\mapsto ?$
0	0	0	0	0	$\bar{0}$	$\mapsto 0$

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? $(\mathbb{N} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

0	0	\perp	...		$\mapsto \perp$					
0	0	0	0	1	...	$\mapsto 1$				
0	0	0	0	0	0	0	\perp	...	$\mapsto \perp$	
0	0	0	0	0	0	0	0	0	...	$\mapsto ?$
0	0	0	0	0	$\overline{0}$					$\mapsto 0$

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? $(\mathbb{N} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

0	0	\perp	...		$\mapsto \perp$					
0	0	0	0	1	...	$\mapsto 1$				
0	0	0	0	0	0	0	\perp	...	$\mapsto \perp$	
0	0	0	0	0	0	0	0	0	...	$\mapsto ?$
0	0	0	0	0	$\overline{0}$					$\mapsto 0$

Intuition: non-continuity \approx “jump at infinity” \approx non-computability

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? $(\mathbb{N} \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

0	0	\perp	...		$\mapsto \perp$					
0	0	0	0	1	...	$\mapsto 1$				
0	0	0	0	0	0	0	\perp	...	$\mapsto \perp$	
0	0	0	0	0	0	0	0	0	...	$\mapsto ?$
0	0	0	0	0	$\overline{0}$					$\mapsto 0$

Intuition: non-continuity \approx “jump at infinity” \approx non-computability

Later in the course: we **show** the thesis... by giving a denotational semantics.

DOMAINS AND FIXED POINTS

FIXED POINTS

FIXED AND PRE-FIXED POINTS

A **fixed point** of a function $f: D \rightarrow D$ is some $d \in D$ satisfying $f(d) = d$.

FIXED AND PRE-FIXED POINTS

A **fixed point** of a function $f: D \rightarrow D$ is some $d \in D$ satisfying $f(d) = d$.

A **pre-fixed point** of a function $f: D \rightarrow D$ on a poset is some $d \in D$ satisfying $f(d) \sqsubseteq d$.

FIXED AND PRE-FIXED POINTS

A **fixed point** of a function $f: D \rightarrow D$ is some $d \in D$ satisfying $f(d) = d$.

A **pre-fixed point** of a function $f: D \rightarrow D$ on a poset is some $d \in D$ satisfying $f(d) \sqsubseteq d$.

The **least pre-fixed point** of f , if it exists, will be written $\text{fix}(f)$.

FIXED AND PRE-FIXED POINTS

A **fixed point** of a function $f: D \rightarrow D$ is some $d \in D$ satisfying $f(d) = d$.

A **pre-fixed point** of a function $f: D \rightarrow D$ on a poset is some $d \in D$ satisfying $f(d) \sqsubseteq d$.

The **least pre-fixed point** of f , if it exists, will be written $\text{fix}(f)$.

It is (uniquely) specified by the two properties:

$$\text{LFP-FIX} \quad \frac{}{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)}$$

$$\text{LFP-LEAST} \quad \frac{f(d) \sqsubseteq d}{\text{fix}(f) \sqsubseteq d}$$

FIXED AND PRE-FIXED POINTS

A **fixed point** of a function $f: D \rightarrow D$ is some $d \in D$ satisfying $f(d) = d$.

A **pre-fixed point** of a function $f: D \rightarrow D$ on a poset is some $d \in D$ satisfying $f(d) \sqsubseteq d$.

The **least pre-fixed point** of f , if it exists, will be written $\text{fix}(f)$.

It is (uniquely) specified by the two properties:

$$\text{LFP-FIX} \quad \frac{}{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)}$$

$$\text{LFP-LEAST} \quad \frac{f(d) \sqsubseteq d}{\text{fix}(f) \sqsubseteq d}$$

- $\text{fix}(f)$ is a pre-fixed point
- To prove $\text{fix}(f) \sqsubseteq d$, it is enough to show $f(d) \sqsubseteq d$.

fix(f) IS A FIXED POINT

$$\text{LFP-FIX } \frac{}{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)}$$

$$\text{LFP-LEAST } \frac{f(d) \sqsubseteq d}{\text{fix}(f) \sqsubseteq d}$$

fix(f) IS A FIXED POINT

$$\text{LFP-FIX } \frac{}{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)}$$

$$\text{LFP-LEAST } \frac{f(d) \sqsubseteq d}{\text{fix}(f) \sqsubseteq d}$$

Application: If $f: D \rightarrow D$ is monotone, then $\text{fix}(f)$ is a fixed point (if it exists)

fix(f) IS A FIXED POINT

$$\text{LFP-FIX} \quad \frac{}{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)}$$

$$\text{LFP-LEAST} \quad \frac{f(d) \sqsubseteq d}{\text{fix}(f) \sqsubseteq d}$$

Application: If $f: D \rightarrow D$ is monotone, then $\text{fix}(f)$ is a fixed point (if it exists)

$$\text{ASYM} \quad \frac{\begin{array}{c} f(\text{fix}(f)) \sqsubseteq \text{fix}(f) \\ \hline \text{fix}(f) \sqsubseteq f(\text{fix}(f)) \end{array}}{f(\text{fix}(f)) = \text{fix}(f)}$$

fix(f) IS A FIXED POINT

$$\text{LFP-FIX} \quad \frac{}{f(\text{fix}(f)) \sqsubseteq \text{fix}(f)}$$

$$\text{LFP-LEAST} \quad \frac{f(d) \sqsubseteq d}{\text{fix}(f) \sqsubseteq d}$$

Application: If $f: D \rightarrow D$ is monotone, then $\text{fix}(f)$ is a fixed point (if it exists)

$$\text{ASYM} \quad \frac{\text{LFP-FIX} \quad f(\text{fix}(f)) \sqsubseteq \text{fix}(f) \quad \text{LFP-LEAST} \quad \frac{\text{LFP-FIX} \quad f(\text{fix}(f)) \sqsubseteq \text{fix}(f) \quad \text{MON} \quad \frac{}{f(f(\text{fix}(f))) \sqsubseteq f(\text{fix}(f))}}{\text{fix}(f) \sqsubseteq f(\text{fix}(f))}}{f(\text{fix}(f)) = \text{fix}(f)}$$

DOMAINS AND FIXED POINTS

KLEENE'S FIXED POINT THEOREM

KLEENE'S FIXED POINT THEOREM

Theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D . Then f possesses a least pre-fixed point, given by

$$\text{fix}(f) = \bigsqcup_{n \in \mathbb{N}} f^n(\perp).$$

KLEENE'S FIXED POINT THEOREM

Theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D . Then f possesses a least pre-fixed point, given by

$$\text{fix}(f) = \bigsqcup_{n \in \mathbb{N}} f^n(\perp).$$

It is also the **least fixed point** of f !

KLEENE'S FIXED POINT THEOREM

Theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D . Then f possesses a least pre-fixed point, given by

$$\text{fix}(f) = \bigsqcup_{n \in \mathbb{N}} f^n(\perp).$$

It is also the **least fixed point** of f !

We need to check that:

- $f^n(\perp)$ is increasing
- $f(\text{fix}(f)) \sqsubseteq \text{fix}(f)$
- $f(d) \sqsubseteq d \Rightarrow \text{fix}(f) \sqsubseteq d$

KLEENE'S FIXED POINT THEOREM

Theorem

Let $f: D \rightarrow D$ be a continuous function on a domain D . Then f possesses a least pre-fixed point, given by

$$\text{fix}(f) = \bigsqcup_{n \in \mathbb{N}} f^n(\perp).$$

It is also the **least fixed point** of f !

We need to check that:

- $f^n(\perp)$ is increasing
- $f(\text{fix}(f)) \sqsubseteq \text{fix}(f)$
- $f(d) \sqsubseteq d \Rightarrow \text{fix}(f) \sqsubseteq d$

Question: What is $\text{fix}(f)$ when f is strict?

CONSTRUCTIONS ON DOMAINS

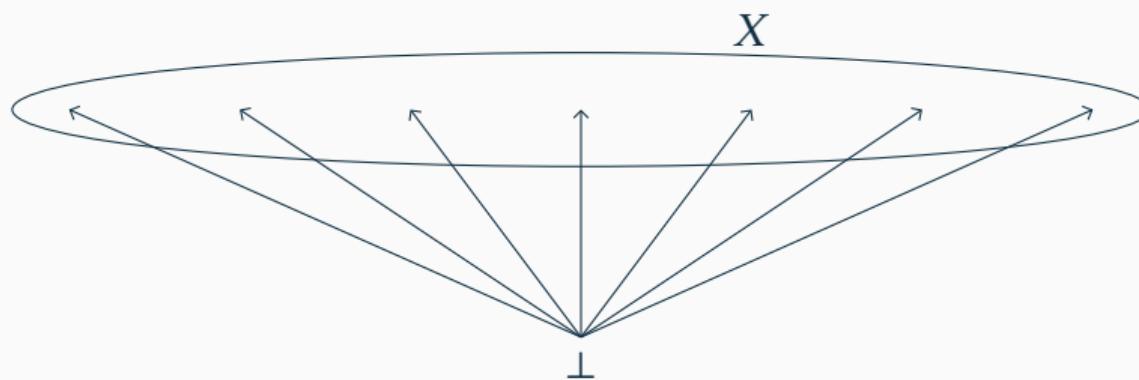
CONSTRUCTIONS ON DOMAINS

FLAT DOMAINS

FLAT DOMAIN ON X

The **flat domain** on a set X is defined by:

- its underlying set $X \uplus \{\perp\}$ i.e. X extended with a new element \perp ;
- $x \sqsubseteq x'$ if either $x = \perp$ or $x = x'$.



Let $f : X \rightarrow Y$ be a partial function between two sets. Then

$$\begin{aligned} f_{\perp} : X_{\perp} &\rightarrow Y_{\perp} \\ d &\mapsto \begin{cases} f(d) & \text{if } d \in X \text{ and } f \text{ is defined at } d \\ \perp & \text{if } d \in X \text{ and } f \text{ is not defined at } d \\ \perp & \text{if } d = \perp \end{cases} \end{aligned}$$

defines a strict continuous function.

CONSTRUCTIONS ON DOMAINS

BINARY PRODUCTS

BINARY PRODUCT OF POSETS

The **product** of two posets (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \wedge d_2 \in D_2\}$$

and partial order \sqsubseteq defined componentwise:

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \stackrel{\text{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d'_1 \wedge d_2 \sqsubseteq_2 d'_2$$

The **product** of two posets (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) has underlying set

$$D_1 \times D_2 = \{(d_1, d_2) \mid d_1 \in D_1 \wedge d_2 \in D_2\}$$

and partial order \sqsubseteq defined componentwise:

$$(d_1, d_2) \sqsubseteq (d'_1, d'_2) \stackrel{\text{def}}{\Leftrightarrow} d_1 \sqsubseteq_1 d'_1 \wedge d_2 \sqsubseteq_2 d'_2$$

$$\text{PO}\times \frac{d_1 \sqsubseteq_1 d'_1 \quad d_2 \sqsubseteq_2 d'_2}{(d_1, d_2) \sqsubseteq (d'_1, d'_2)}$$

Lubs of chains are computed componentwise:

$$\bigsqcup_n (d_{1,n}, d_{2,n}) = \left(\bigsqcup_i d_{1,i}, \bigsqcup_j d_{2,j} \right).$$

Lubs of chains are computed componentwise:

$$\bigsqcup_n (d_{1,n}, d_{2,n}) = \left(\bigsqcup_i d_{1,i}, \bigsqcup_j d_{2,j} \right).$$

Bottom elements are computed componentwise:

$$\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$$

Lubs of chains are computed componentwise:

$$\bigsqcup_n (d_{1,n}, d_{2,n}) = \left(\bigsqcup_i d_{1,i}, \bigsqcup_j d_{2,j} \right).$$

Bottom elements are computed componentwise:

$$\perp_{D_1 \times D_2} = (\perp_{D_1}, \perp_{D_2})$$

Therefore, products of cpos are cpos, and products of domains are domains.

FUNCTIONS OF TWO ARGUMENTS

A function $f : (D \times E) \rightarrow F$ is **monotone** exactly when it is monotone in each argument:

$$\begin{aligned}\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e) \\ \forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').\end{aligned}$$

FUNCTIONS OF TWO ARGUMENTS

A function $f : (D \times E) \rightarrow F$ is **monotone** exactly when it is monotone in each argument:

$$\begin{aligned}\forall d, d' \in D, e \in E. d \sqsubseteq d' \Rightarrow f(d, e) \sqsubseteq f(d', e) \\ \forall d \in D, e, e' \in E. e \sqsubseteq e' \Rightarrow f(d, e) \sqsubseteq f(d, e').\end{aligned}$$

It is continuous if and only if it preserves lubs in each argument separately:

$$f(\bigsqcup_m d_m, e) = \bigsqcup_m f(d_m, e) \quad f(d, \bigsqcup_n e_n) = \bigsqcup_n f(d, e_n).$$

DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

$$\text{MON}\times \frac{f \text{ monotone} \quad x \sqsubseteq x' \quad y \sqsubseteq y'}{f(x, y) \sqsubseteq f(x', y')}$$

$$f\left(\bigsqcup_m x_m, \bigsqcup_n y_n\right) = \bigsqcup_m \bigsqcup_n f(x_m, y_n) = \bigsqcup_k f(x_k, y_k)$$

PROJECTIONS AND PAIRING

Let D_1 and D_2 be cpos (domains). The **projections**

$$\begin{aligned}\pi_1 : D_1 \times D_2 &\rightarrow D_1 \\ (d_1, d_2) &\mapsto d_1\end{aligned}$$

$$\begin{aligned}\pi_2 : D_1 \times D_2 &\rightarrow D_2 \\ (d_1, d_2) &\mapsto d_2\end{aligned}$$

are (strict) continuous functions.

PROJECTIONS AND PAIRING

Let D_1 and D_2 be cpos (domains). The **projections**

$$\begin{array}{rcl} \pi_1 : & D_1 \times D_2 & \rightarrow D_1 \\ & (d_1, d_2) & \mapsto d_1 \end{array} \qquad \qquad \begin{array}{rcl} \pi_2 : & D_1 \times D_2 & \rightarrow D_2 \\ & (d_1, d_2) & \mapsto d_2 \end{array}$$

are (strict) continuous functions.

If $f_1 : D \rightarrow D_1$ and $f_2 : D \rightarrow D_2$ are (strict) continuous functions from a cpo (domain) D , then their **pairing**:

$$\begin{array}{rcl} \langle f_1, f_2 \rangle : & D & \rightarrow D_1 \times D_2 \\ & d & \mapsto (f_1(d), f_2(d)) \end{array}$$

is (strict) continuous.

APPLICATION: DOMAIN CONDITIONAL

For any domain D , the **conditional** function

$$\begin{aligned} \text{if} : \quad \mathbb{B}_\perp \times (D \times D) &\rightarrow D \\ (x, d) &\mapsto \begin{cases} \pi_1(d) & \text{if } x = \text{true} \\ \pi_2(d) & \text{if } x = \text{false} \\ \perp_D & \text{if } x = \perp_{\mathbb{B}} \end{cases} \end{aligned}$$

is (strict) continuous.

CONSTRUCTIONS ON DOMAINS

GENERAL PRODUCTS

GENERAL PRODUCT

The (cartesian) **product** of a family of sets $(X_i)_{i \in I}$ indexed by a set I is the set

$$\prod_{i \in I} X_i = \left\{ p: I \rightarrow \bigcup_{i \in I} X_i \mid \forall i \in I. p(i) \in X_i \right\}$$

GENERAL PRODUCT

The (cartesian) **product** of a family of sets $(X_i)_{i \in I}$ indexed by a set I is the set

$$\prod_{i \in I} X_i = \left\{ p: I \rightarrow \bigcup_{i \in I} X_i \mid \forall i \in I. p(i) \in X_i \right\}$$

We can think of its elements equivalently either as

- I -indexed tuples: $(\dots, x_i, \dots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

GENERAL PRODUCT

The (cartesian) **product** of a family of sets $(X_i)_{i \in I}$ indexed by a set I is the set

$$\prod_{i \in I} X_i = \left\{ p: I \rightarrow \bigcup_{i \in I} X_i \mid \forall i \in I. p(i) \in X_i \right\}$$

We can think of its elements equivalently either as

- I -indexed tuples: $(\dots, x_i, \dots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Special case: $\prod_{i \in \mathbb{B}} D_i$ is canonically bijective to $D_{\text{true}} \times D_{\text{false}}$.

GENERAL PRODUCT

The (cartesian) **product** of a family of sets $(X_i)_{i \in I}$ indexed by a set I is the set

$$\prod_{i \in I} X_i = \left\{ p: I \rightarrow \bigcup_{i \in I} X_i \mid \forall i \in I. p(i) \in X_i \right\}$$

We can think of its elements equivalently either as

- I -indexed tuples: $(\dots, x_i, \dots)_{i \in I}$ such that $x_i \in X_i$;
- heterogeneous functions: p defined on I such that $p(i) \in X_i$.

Special case: $\prod_{i \in \mathbb{B}} D_i$ is canonically bijective to $D_{\text{true}} \times D_{\text{false}}$.

It is equipped with projection functions (for any $i \in I$) and pairing:

$$\pi_i : \left(\prod_{i \in I} X_i \right) \rightarrow X_i \quad \langle - \rangle_{i \in I} : \prod_{i \in I} (X \rightarrow X_i) \rightarrow \left(X \rightarrow \prod_{i \in I} X_i \right)$$

GENERAL PRODUCT OF DOMAINS

The **product** of a family $(D_i, \sqsubseteq_i)_{i \in I}$ of posets indexed by a set I is the poset with

- underlying set $\prod_{i \in I} D_i$

GENERAL PRODUCT OF DOMAINS

The **product** of a family $(D_i, \sqsubseteq_i)_{i \in I}$ of posets indexed by a set I is the poset with

- underlying set $\prod_{i \in I} D_i$;
- componentwise order

$$p \sqsubseteq p' \stackrel{\text{def}}{\Leftrightarrow} \forall i \in I. p(i) \sqsubseteq_i p'(i).$$

Lubs of chains and bottom elements are computed componentwise, so the product of cpos (domains) is again a cpo (domain)

GENERAL PRODUCT OF DOMAINS

The **product** of a family $(D_i, \sqsubseteq_i)_{i \in I}$ of posets indexed by a set I is the poset with

- underlying set $\prod_{i \in I} D_i$;
- componentwise order

$$p \sqsubseteq p' \stackrel{\text{def}}{\Leftrightarrow} \forall i \in I. p(i) \sqsubseteq_i p'(i).$$

Lubs of chains and bottom elements are computed componentwise, so the product of cpos (domains) is again a cpo (domain)

The projections are (strict) continuous and the pairing of (strict) continuous functions is (strict) continuous.

CONSTRUCTIONS ON DOMAINS

FUNCTION DOMAINS

Given two cpos (domains) (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the **function cpo** $(D \rightarrow E, \sqsubseteq)$ has underlying set

$$\{f : D \rightarrow E \mid f \text{ is a continuous function}\}$$

equipped with the pointwise order:

$$f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D. f(d) \sqsubseteq_E f'(d).$$

Given two cpos (domains) (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the **function cpo** $(D \rightarrow E, \sqsubseteq)$ has underlying set

$$\{f : D \rightarrow E \mid f \text{ is a continuous function}\}$$

equipped with the pointwise order:

$$f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D. f(d) \sqsubseteq_E f'(d).$$

$$\frac{f \sqsubseteq_{D \rightarrow E} g \quad x \sqsubseteq_D y}{f(x) \sqsubseteq_E g(y)}$$

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (domains) (D, \sqsubseteq_D) and (E, \sqsubseteq_E) , the **function cpo** $(D \rightarrow E, \sqsubseteq)$ has underlying set

$$\{f : D \rightarrow E \mid f \text{ is a continuous function}\}$$

equipped with the pointwise order:

$$f \sqsubseteq f' \stackrel{\text{def}}{\Leftrightarrow} \forall d \in D. f(d) \sqsubseteq_E f'(d).$$

$$\frac{f \sqsubseteq_{D \rightarrow E} g \quad x \sqsubseteq_D y}{f(x) \sqsubseteq_E g(y)}$$

Argumentwise least elements and lubs:

$$\perp_{D \rightarrow E}(d) = \perp_E \quad \left(\bigsqcup_{n \in \mathbb{N}} f_n \right)(d) = \bigsqcup_{n \in \mathbb{N}} f_n(d)$$