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A pair (D,E) is called a partially ordered set, or simply poset.
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EXAMPLE: PARTIAL FUNCTIONS X — Y

Set: Partial functions f : X =Y, ie.

Total functions f : A —» Y where AC X The agrees with the order that

Order: f C g when graph(f) C graph(g), ie. we defined on State — State
) dom(f) - dom(g) and to give semantics for while
- f(x) = g(x) for all x € dom(f) loops.

Properties: Check reflexivity, antisymmetry, transitivity!
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MONOTONICITY

A function f: D — E between posets is monotone if it preserves the order:

Vd,d’ € D.dCp d’ = f(d)Cg f(d).

xty Exercise: Check that the
o m function Fp . is monotone.
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LEAST ELEMENT

Let S a subset of a poset D. An elementd € S is the least element of S if it satisfies

VxeS. dLC x.

Such an element is unique if it exists, and is written as Lg or simply L.

15€S 1s€S
LEAST T LEAST — -
gL L e 1g
xX€ES ASYM S - S
LEAST —— lg=1
IS Cx E

Note that Lg is always an element of S!
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LEAST UPPER BOUND

Let S be a subset of a poset D. An element d € D (not necessarily in S) is an upper
bound of S if it satisfies
VxeS. xCd.

A least upper bound (lub) of S is the least element of the set of upper bounds of S. If it
exists, it is unique and we will denote it by | |S.

PSIN VxeS.xCy
LUB-LEAST ——————

xE| s | |scy

- Lubs are also known as joins, supremums or limits
- The lub of S does not need to be in S!

LUB-BOUND
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LEAST UPPER BOUNDS OF CHAINS

A (countable, increasing) chain in a poset D is a sequence (d});ep in D such that
dyCdiCdyC ..

The least upper bound of {d, : n € N} will be denoted by | |,y d, or simply ||, dy. It

satisfies:
VieN.dCd
LUB-BOUND LUB-LEAST —/—/mMmMmm™mmm8 ™
vieN.dC| |d, | |d.cd
neN neN

The lub of a sequence does not need to be an element of the sequence!



SOME PROPERTIES OF LUBS

- Lubs are unique if they exist (being least elements of some set)



SOME PROPERTIES OF LUBS

- Lubs are unique if they exist (being least elements of some set)

- Forming lubs is monotone: if Vn € N.d, C e, then | |, d, E| |, e,



SOME PROPERTIES OF LUBS

- Lubs are unique if they exist (being least elements of some set)
- Forming lubs is monotone: if Vn € N.d, C e, then | |, d, E| |, e,

- We can discard elements: | |, d, =|_|,, dyk foranyk € N



SOME PROPERTIES OF LUBS

- Lubs are unique if they exist (being least elements of some set)
- Forming lubs is monotone: if Vn € N.d, C e, then | |, d, E| |, e,
- We can discard elements: | |, d, =|_|,, dyk foranyk € N

“Ifdg = dgyq = dgyg = ... forsome k € N, then | |,cp dy = di
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DIAGONALISATION

Let D be a poset and (dm,n)m,neN be an increasing doubly-indexed sequence in D:
"lg’n,=°dﬁﬂ£;dﬁﬁn nf;n/=’dmﬂg;dmﬂ’

Then, assuming they exist, the lubs form two chains

LJ‘%ﬂ = LJ‘hﬂ C LJ‘bﬂ E oo

neN neN neN
and
[l dno € [ da € [ dn €
meN meN meN

Moreover, again assuming the lubs of these chains exist,

Show the equality by proving

|_| |_| dpn | = |_| |_| Apn | = |_| di k that they are all lubs for the

meN \neN neN \meN keN set {dy,, : m,n € N}
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CPOS AND DOMAINS

A poset (D, E) is called chain complete or a cpo when every (increasing, countable)
chain has a least upper bound.

We will call (D, E) a domain when it is a cpo with a least element L.

We will see that these are the ingredients we need to construct least fixed points.
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EXAMPLE: PARTIAL FUNCTIONS X — Y

Least element: L is the everywhere undefined function.

Lub of a chain: The lub of a chain fy E f; E f, £ ... is the partial function f defined by

fn(x) if x € dom( f;,) for some n
undefined otherwise

fl) = {

Equivalently, the partial function f has graph the union of the graphs of the

Jn

Beware: the definition of |_|, f; is a partial function only if the f;, form a chain!
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EXAMPLE: FINITE CPOS

Every finite poset is a cpo. Why?

Are they always domains?

N

1
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EXAMPLE: THE FLAT NATURAL NUMBERS D\IJ_

0&://’”1'”

Every chain in N is eventually constant.
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Is (N, <) a domain?
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EXAMPLE: VERTICAL NATURAL NUMBERS

What if we add a greatest element?
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EXAMPLE: VERTICAL NATURAL NUMBERS

What if we add two greatest elements?

w1 )

.

DI D>+

N

(=) =) [ o0

No! (Why?)
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MONOTONE FUNCTIONS AND LUBS

Let f : D — E monotone function between cpos and (d,),ep @ chain in D.
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MONOTONE FUNCTIONS AND LUBS

Let f : D — E monotone function between cpos and (d,),ep @ chain in D.

Lldn LI f(dy) / f(L@)
dn+1 f(dn+1)

T T

d, f(dy,)

dl f(dl)

1 1

14
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CONTINUITY AND STRICTNESS

Given two cpos D and E, a function f: D — E is called continuous if

- itis monotone, and

- it preserves lubs of chains, i.e. for all chainsdy C d; C ... in D, we have

| £y = £ |4 (C is automatic)

A continuous function f : D — E between domains is strict when f(Lp) = Lg.
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THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0"? (N — B) — B

0O 0 L .. ———
000 0 1 .. - 1
000 0O0OUOO OGO L > 1
000 00O OGO 0 > ?
000 0O O - 0

Intuition: non-continuity = “jump at infinity” = non-computability

Later in the course: we show the thesis... by giving a denotational semantics.
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FIXED AND PRE-FIXED POINTS

A fixed point of a function f: D — D is some d € D satisfying f(d) = d.
A pre-fixed point of a function f: D — D on a poset is some d € D satisfying f(d) C d.
The least pre-fixed point of f, if it exists, will be written fix(f).

It is (uniquely) specified by the two properties:

fd)Ed
LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)c d

- fix(f) is a pre-fixed point
- To prove fix(f) C d, it is enough to show f(d) C d.
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fix(f) 1s A FIXED POINT

f(dcCd
LFP-FIX LFP-LEAST

FEX(P) C fix(f) fix(f)C d

Application: If f: D — D is monotone, then fix(f) is a fixed point (if it exists)

LFP-FI

- " F(Fix(F) C fix(f)
fUfEix(f)) T f(Eix(f))
o e fEC) E fix(f) e fix(f) C f(fix(f))
flix(f)) = fix(f)
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KLEENE’'S FIXED POINT THEOREM

Theorem
Let f: D — D be a continuous function on a domain D. Then f possesses a least

pre-fixed point, given by
fix(f) = | | /(L.
neN

We need to check that:
- f*(L) is increasing
- f(fix(f)) C fix(f)
. fdCd=fix(f)C d

It is also the least fixed point of f!
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KLEENE’'S FIXED POINT THEOREM

Theorem
Let f: D — D be a continuous function on a domain D. Then f possesses a least

pre-fixed point, given by
fix(f) = | | /(L.
neN

We need to check that:
- f*(L) is increasing
- f(tix(f)) C fix(f)
. fdCd=fix(f)C d

It is also the least fixed point of f!

Question: What is fix(f) when f is strict?

19
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FLAT DOMAIN ON X

The flat domain on a set X is defined by:

- its underlying set X |+ {1} ie. X extended with a new element L;
- x C x" ifeitherx = Lorx = x’.

20



FLAT DOMAIN LIFTING

Let f : X — Y be a partial function between two sets. Then

fir Xi - Y,
f(d) ifde X and fis defined atd
d - J1 ifd € X and f is not defined at d
1 ifd=1

defines a strict continuous function.

21
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BINARY PRODUCT OF POSETS

The product of two posets (Dy,C4) and (D,, Cy) has underlying set

Dy x Dy ={(dy,dy) | dy € Dy Ndy € Dy}

and partial order E defined componentwise:

def
(dl,dz) C (dl,,dé) < dl El d{ A dg Ez dé
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BINARY PRODUCT OF POSETS

The product of two posets (Dy,C4) and (D,, Cy) has underlying set

Dy x Dy ={(dy,dy) | dy € Dy Ndy € Dy}

and partial order E defined componentwise:

def
(dl,dz) C (dl,,dé) < dl El d{ A dg Ez dé

diCid] dyCyd}
(dy,d») E (di,d3)

22



BINARY PRODUCT OF CPOS AND DOMAINS

Lubs of chains are computed componentwise:

|_|n(d1,n’ d2,n) = <|_|1 dl,i’ |_|j dz’j) ’

23



BINARY PRODUCT OF CPOS AND DOMAINS

Lubs of chains are computed componentwise:

|_|n(d1,n’ d2,n) = <|_|1 dl,i’ |_|j dz’j) ’

Bottom elements are computed componentwise:

Lp,xp, = (Lp,>Lp,)

23



BINARY PRODUCT OF CPOS AND DOMAINS

Lubs of chains are computed componentwise:

|_|n(d1,n’ d2,n) = <|_|1 dl,i’ |_|j dz’j) ’

Bottom elements are computed componentwise:

Lp,xp, = (Lp,>Lp,)

Therefore, products of cpos are cpos, and products of domains are domains.

23



FUNCTIONS OF TWO ARGUMENTS

A function f : (D x E) — F is monotone exaclty when it is monotone in each argument:

Vd,d’ € D,ec E.dCd = f(d,e)C f(d’,e)
Vd € D,e,e’ € E.eC e’ = f(d,e) C f(d,e).
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FUNCTIONS OF TWO ARGUMENTS

A function f : (D x E) — F is monotone exaclty when it is monotone in each argument:

Vd,d’ € D,ec E.dCd = f(d,e)C f(d’,e)
Vd € D,e,e’ € E.eC e’ = f(d,e) C f(d,e).

It is continuous if and only if it preserves lubs in each argument separately:

f] dmr =] | fm e f@, | ] e =|| fd e

24



DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

’

f monotone  xCx” yCy

fGe,y) T f(x",y")

MONX

f(|_|xms|_|.Vrl> = |_||_|f(xm9yn) = |_|f(xk’yk)
m n m n k

25



PROJECTIONS AND PAIRING

Let Dy and Dy be cpos (domains). The projections

i DlxDZ — Dl Ty © DlxDZ — D2
(di.dy) — 4 (di,dy) +— dy

are (strict) continuous functions.
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PROJECTIONS AND PAIRING

Let Dy and Dy be cpos (domains). The projections

i DlxDZ — Dl Ty © DlxDZ — D2
(di.dy) — 4 (di,dy) +— dy

are (strict) continuous functions.
If fi : D — Dy and fo : D — D, are (strict) continuous functions from a cpo (domain)
D, then their pairing:

(fisfo): D — DyxD,
d — (fi(d), fo(d)

is (strict) continuous.

26



APPLICATION: DOMAIN CONDITIONAL

For any domain D, the conditional function

if: Byx(DxD) —» D
m(d) if x = true
(x,d) > 4my(d) if x = false
1p ifx=_1pg

is (strict) continuous.

27
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GENERAL PRODUCT

The (cartesian) product of a family of sets (X;),es indexed by a set I is the set

HX;zgp:IaUXi | VieI.p(i)eX,—}

iel iel
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GENERAL PRODUCT

The (cartesian) product of a family of sets (X;),es indexed by a set I is the set
[1x= {p:[—> X | viel pG) eX,-}
i€l i€l

We can think of its elements equivalently either as

- I-indexed tuples: (..., x;, ... );eg such that x; € X;;
- heterogeneous functions: p defined on I such that p(i) € X;.

Special case: [ [;eg D; is canonicall bijective to Dypye X Dralse-

It is equipped with projection functions (for any i € I) and pairing:

m:(HXl)»Xi <—>,~61:H(X~Xi>a(><+1"[xi>

iel iel el

28



GENERAL PRODUCT OF DOMAINS

The product of a family (D;, C;);es of posets indexed by a set I is the poset with

- underlying set [ [, D;;
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- componentwise order
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GENERAL PRODUCT OF DOMAINS

The product of a family (D;, C;);es of posets indexed by a set I is the poset with

- underlying set [ [, D;;
- componentwise order

pCp C}:ef Vie L p(i) G; p’(i).

Lubs of chains and bottom elements are computed componentwise, so the product of
cpos (domains) is again a cpo (domain)

The projections are (strict) continuous and the pairing of (strict) continuous functions is
(strict) continuous.

29



CONSTRUCTIONS ON DOMAINS

FUNCTION DOMAINS



CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (domains) (D,Cp) and (E,Cg), the function cpo (D — E,C) has
underlying set
{f : D — E| fisa continuous function}

equipped with the pointwise order:

FC 7 SvdeD. f(d) g ().
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CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (domains) (D,Cp) and (E,Cg), the function cpo (D — E,C) has
underlying set
{f : D — E| fisa continuous function}

equipped with the pointwise order:

FC 7 SvdeD. f(d) g ().

fCpseg& xCpy

f(x) Cg g(»)
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CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (domains) (D,Cp) and (E,Cg), the function cpo (D — E,C) has
underlying set
{f : D — E| fisa continuous function}

equipped with the pointwise order:

FC 7 SvdeD. f(d) g ().

fCpseg& xCpy

f(x) Cg g(»)

Argumentwise least elements and lubs:

Lpop(d) = 1g (l_l fn> @ = || ful@

neN neN
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