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DOMAINS AND FIXED POINTS



DOMAINS AND FIXED POINTS
POSETS AND MONOTONE FUNCTIONS



PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

antisymmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

REFL 𝑥 ⊑ 𝑥 TRANS
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑧

𝑥 ⊑ 𝑧 ASYM
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑥

𝑥 = 𝑦
A pair (𝐷, ⊑) is called a partially ordered set, or simply poset.
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EXAMPLE: PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Set: Partial functions 𝑓 : 𝑋 ⇀ 𝑌 , i.e.
Total functions 𝑓 : 𝐴 → 𝑌 where 𝐴 ⊆ 𝑋

Order: 𝑓 ⊑ 𝑔 when graph(𝑓 ) ⊆ graph(𝑔), i.e.
• dom(𝑓 ) ⊆ dom(𝑔) and
• 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ dom(𝑓 )

Properties: Check reflexivity, antisymmetry, transitivity!

The agrees with the order that
we defined on State ⇀ State
to give semantics for while
loops.
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MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if it preserves the order:

∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑𝐷 𝑑′ ⇒ 𝑓 (𝑑) ⊑𝐸 𝑓 (𝑑′).

MON
𝑥 ⊑ 𝑦

𝑓 (𝑥) ⊑ 𝑓 (𝑦)
Exercise: Check that the
function 𝐹𝑏,𝑐 is monotone.
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DOMAINS AND FIXED POINTS
LEAST ELEMENTS AND LEAST UPPER BOUNDS



LEAST ELEMENT

Let 𝑆 a subset of a poset 𝐷. An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

Such an element is unique if it exists, and is written as ⊥𝑆 or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

Note that ⊥𝑆 is always an element of 𝑆 !
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LEAST UPPER BOUND

Let 𝑆 be a subset of a poset 𝐷. An element 𝑑 ∈ 𝐷 (not necessarily in 𝑆) is an upper
bound of 𝑆 if it satisfies

∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑑.

A least upper bound (lub) of 𝑆 is the least element of the set of upper bounds of 𝑆 . If it
exists, it is unique and we will denote it by⨆𝑆 .

LUB-BOUND
𝑥 ∈ 𝑆

𝑥 ⊑ ⨆𝑆
LUB-LEAST

∀𝑥 ∈ 𝑆 . 𝑥 ⊑ 𝑦
⨆𝑆 ⊑ 𝑦

• Lubs are also known as joins, supremums or limits
• The lub of 𝑆 does not need to be in 𝑆!
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LEAST UPPER BOUNDS OF CHAINS

A (countable, increasing) chain in a poset 𝐷 is a sequence (𝑑𝑖)𝑖∈ℕ in 𝐷 such that

𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ …

The least upper bound of {𝑑𝑛 : 𝑛 ∈ ℕ} will be denoted by⨆𝑛∈ℕ 𝑑𝑛 or simply⨆𝑛 𝑑𝑛 . It
satisfies:

LUB-BOUND
∀𝑖 ∈ ℕ . 𝑑𝑖 ⊑ ⨆

𝑛∈ℕ
𝑑𝑛

LUB-LEAST
∀𝑖 ∈ ℕ . 𝑑𝑖 ⊑ 𝑑

⨆
𝑛∈ℕ

𝑑𝑛 ⊑ 𝑑

The lub of a sequence does not need to be an element of the sequence!
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SOME PROPERTIES OF LUBS

• Lubs are unique if they exist (being least elements of some set)

• Forming lubs is monotone: if ∀𝑛 ∈ ℕ . 𝑑𝑛 ⊑ 𝑒𝑛 then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛

• We can discard elements: ⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑘 for any 𝑘 ∈ ℕ

• If 𝑑𝑘 = 𝑑𝑘+1 = 𝑑𝑘+2 = … for some 𝑘 ∈ ℕ, then⨆𝑛∈ℕ 𝑑𝑛 = 𝑑𝑘

7



SOME PROPERTIES OF LUBS

• Lubs are unique if they exist (being least elements of some set)

• Forming lubs is monotone: if ∀𝑛 ∈ ℕ . 𝑑𝑛 ⊑ 𝑒𝑛 then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛

• We can discard elements: ⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑘 for any 𝑘 ∈ ℕ

• If 𝑑𝑘 = 𝑑𝑘+1 = 𝑑𝑘+2 = … for some 𝑘 ∈ ℕ, then⨆𝑛∈ℕ 𝑑𝑛 = 𝑑𝑘

7



SOME PROPERTIES OF LUBS

• Lubs are unique if they exist (being least elements of some set)

• Forming lubs is monotone: if ∀𝑛 ∈ ℕ . 𝑑𝑛 ⊑ 𝑒𝑛 then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛

• We can discard elements: ⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑘 for any 𝑘 ∈ ℕ

• If 𝑑𝑘 = 𝑑𝑘+1 = 𝑑𝑘+2 = … for some 𝑘 ∈ ℕ, then⨆𝑛∈ℕ 𝑑𝑛 = 𝑑𝑘

7



SOME PROPERTIES OF LUBS

• Lubs are unique if they exist (being least elements of some set)

• Forming lubs is monotone: if ∀𝑛 ∈ ℕ . 𝑑𝑛 ⊑ 𝑒𝑛 then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛

• We can discard elements: ⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑘 for any 𝑘 ∈ ℕ

• If 𝑑𝑘 = 𝑑𝑘+1 = 𝑑𝑘+2 = … for some 𝑘 ∈ ℕ, then⨆𝑛∈ℕ 𝑑𝑛 = 𝑑𝑘

7



DIAGONALISATION

Let 𝐷 be a poset and (𝑑𝑚,𝑛)𝑚,𝑛∈ℕ be an increasing doubly-indexed sequence in 𝐷:
𝑚 ≤ 𝑚′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚,𝑛′

Then, assuming they exist, the lubs form two chains

⨆
𝑛∈ℕ

𝑑0,𝑛 ⊑ ⨆
𝑛∈ℕ

𝑑1,𝑛 ⊑ ⨆
𝑛∈ℕ

𝑑2,𝑛 ⊑ …

and
⨆
𝑚∈ℕ

𝑑𝑚,0 ⊑ ⨆
𝑚∈ℕ

𝑑𝑚,1 ⊑ ⨆
𝑚∈ℕ

𝑑𝑚,2 ⊑ …

Moreover, again assuming the lubs of these chains exist,

⨆
𝑚∈ℕ

(⨆
𝑛∈ℕ

𝑑𝑚,𝑛) = ⨆
𝑛∈ℕ

( ⨆
𝑚∈ℕ

𝑑𝑚,𝑛) = ⨆
𝑘∈ℕ

𝑑𝑘,𝑘
Show the equality by proving
that they are all lubs for the
set {𝑑𝑚,𝑛 : 𝑚, 𝑛 ∈ ℕ}
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Show the equality by proving
that they are all lubs for the
set {𝑑𝑚,𝑛 : 𝑚, 𝑛 ∈ ℕ}
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DIAGONALISATION

Let 𝐷 be a poset and (𝑑𝑚,𝑛)𝑚,𝑛∈ℕ be an increasing doubly-indexed sequence in 𝐷:
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DOMAINS AND FIXED POINTS
COMPLETE PARTIAL ORDERS AND DOMAINS



CPOS AND DOMAINS

A poset (𝐷, ⊑) is called chain complete or a cpo when every (increasing, countable)
chain has a least upper bound.

We will call (𝐷, ⊑) a domain when it is a cpo with a least element ⊥.

We will see that these are the ingredients we need to construct least fixed points.
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EXAMPLE: PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Least element: ⊥ is the everywhere undefined function.

Lub of a chain: The lub of a chain 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … is the partial function 𝑓 defined by

𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise

Equivalently, the partial function 𝑓 has graph the union of the graphs of the
𝑓𝑛 .

Beware: the definition of⨆𝑛 𝑓𝑛 is a partial function only if the 𝑓𝑛 form a chain!
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EXAMPLE: FINITE CPOS

Every finite poset is a cpo. Why?

Are they always domains?
•

• •

← ←
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EXAMPLE: THE FLAT NATURAL NUMBERS ℕ⊥

0 1 2 ⋯ 𝑛 𝑛 + 1 ⋯

⊥←←←
⋯ ←← ⋯

Every chain in ℕ⊥ is eventually constant.
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EXAMPLE: VERTICAL NATURAL NUMBERS

Is (ℕ, ≤) a domain?

𝑛 + 1
𝑛

1
0

←
←

←
←

No! (Why?)
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EXAMPLE: VERTICAL NATURAL NUMBERS

What if we add a greatest element?
𝜔

𝑛 + 1
𝑛

1
0

←
←

←
←

Yes!
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EXAMPLE: VERTICAL NATURAL NUMBERS

What if we add two greatest elements?

𝜔1 𝜔2

⋮
𝑛 + 1
𝑛

1
0

←←

← ←←
←

←
←

No! (Why?)

13



DOMAINS AND FIXED POINTS
CONTINUOUS FUNCTIONS



MONOTONE FUNCTIONS AND LUBS

Let 𝑓 : 𝐷 → 𝐸 monotone function between cpos and (𝑑𝑛)𝑛∈ℕ a chain in 𝐷.
⨆𝑑𝑛 ⨆𝑓 (𝑑𝑛) 𝑓 (⨆(𝑑𝑛))

⋮
𝑑𝑛+1 𝑓 (𝑑𝑛+1)

𝑑𝑛 𝑓 (𝑑𝑛)

𝑑1 𝑓 (𝑑1)

𝑑0 𝑓 (𝑑0)

?

←←← ← ←←

← ←

← ←

← ←
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CONTINUITY AND STRICTNESS

Given two cpos 𝐷 and 𝐸, a function 𝑓 : 𝐷 → 𝐸 is called continuous if

• it is monotone, and
• it preserves lubs of chains, i.e. for all chains 𝑑0 ⊑ 𝑑1 ⊑ … in 𝐷, we have

⨆𝑓(𝑑𝑛) = 𝑓 (⨆𝑑𝑛) ( ⊑ is automatic)

A continuous function 𝑓 : 𝐷 → 𝐸 between domains is strict when 𝑓 (⊥𝐷) = ⊥𝐸 .
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THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? (ℕ ⇀ 𝔹) ⇀ 𝔹
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1

0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥

0 0 0 0 0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 ↦ 0
Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: we show the thesis... by giving a denotational semantics.
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DOMAINS AND FIXED POINTS
FIXED POINTS



FIXED AND PRE-FIXED POINTS

A fixed point of a function 𝑓 : 𝐷 → 𝐷 is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) = 𝑑 .

A pre-fixed point of a function 𝑓 : 𝐷 → 𝐷 on a poset is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) ⊑ 𝑑 .
The least pre-fixed point of 𝑓 , if it exists, will be written fix(𝑓 ).
It is (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

• fix(𝑓 ) is a pre-fixed point
• To prove fix(𝑓 ) ⊑ 𝑑 , it is enough to show 𝑓 (𝑑) ⊑ 𝑑 .
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fix(𝑓 ) IS A FIXED POINT

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 ) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓 ) ⊑ 𝑑

Application: If 𝑓 : 𝐷 → 𝐷 is monotone, then fix(𝑓 ) is a fixed point (if it exists)

ASYM

LFP-FIX

𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
𝑓 (𝑓 (fix(𝑓 ))) ⊑ 𝑓 (fix(𝑓 ))

fix(𝑓 ) ⊑ 𝑓 (fix(𝑓 ))
𝑓 (fix(𝑓 )) = fix(𝑓 )

18
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DOMAINS AND FIXED POINTS
KLEENE’S FIXED POINT THEOREM



KLEENE’S FIXED POINT THEOREM

Theorem
Let 𝑓 : 𝐷 → 𝐷 be a continuous function on a domain 𝐷. Then 𝑓 possesses a least
pre-fixed point, given by

fix(𝑓 ) = ⨆
𝑛∈ℕ

𝑓 𝑛(⊥).

It is also the least fixed point of 𝑓 !
We need to check that:
• 𝑓 𝑛(⊥) is increasing
• 𝑓 (fix(𝑓 )) ⊑ fix(𝑓 )
• 𝑓 (𝑑) ⊑ 𝑑 ⇒ fix(𝑓 ) ⊑ 𝑑

Question: What is fix(𝑓 ) when 𝑓 is strict?
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CONSTRUCTIONS ON DOMAINS



CONSTRUCTIONS ON DOMAINS
FLAT DOMAINS



FLAT DOMAIN ON 𝑋

The flat domain on a set 𝑋 is defined by:

• its underlying set 𝑋 ⨄ {⊥} i.e. 𝑋 extended with a new element ⊥;
• 𝑥 ⊑ 𝑥′ if either 𝑥 = ⊥ or 𝑥 = 𝑥′.

𝑋

⊥
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FLAT DOMAIN LIFTING

Let 𝑓 : 𝑋 ⇀ 𝑌 be a partial function between two sets. Then

𝑓⊥ : 𝑋⊥ → 𝑌⊥

𝑑 ↦ {
𝑓 (𝑑) if 𝑑 ∈ 𝑋 and 𝑓 is defined at 𝑑
⊥ if 𝑑 ∈ 𝑋 and 𝑓 is not defined at 𝑑
⊥ if 𝑑 = ⊥

defines a strict continuous function.
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CONSTRUCTIONS ON DOMAINS
BINARY PRODUCTS



BINARY PRODUCT OF POSETS

The product of two posets (𝐷1, ⊑1) and (𝐷2, ⊑2) has underlying set
𝐷1 × 𝐷2 = {(𝑑1, 𝑑2) ∣ 𝑑1 ∈ 𝐷1 ∧ 𝑑2 ∈ 𝐷2}

and partial order ⊑ defined componentwise:

(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)
def⇔ 𝑑1 ⊑1 𝑑′1 ∧ 𝑑2 ⊑2 𝑑′2

PO×
𝑑1 ⊑1 𝑑′1 𝑑2 ⊑2 𝑑′2
(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)

22



BINARY PRODUCT OF POSETS

The product of two posets (𝐷1, ⊑1) and (𝐷2, ⊑2) has underlying set
𝐷1 × 𝐷2 = {(𝑑1, 𝑑2) ∣ 𝑑1 ∈ 𝐷1 ∧ 𝑑2 ∈ 𝐷2}

and partial order ⊑ defined componentwise:

(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)
def⇔ 𝑑1 ⊑1 𝑑′1 ∧ 𝑑2 ⊑2 𝑑′2

PO×
𝑑1 ⊑1 𝑑′1 𝑑2 ⊑2 𝑑′2
(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)

22



BINARY PRODUCT OF CPOS AND DOMAINS

Lubs of chains are computed componentwise:

⨆𝑛(𝑑1,𝑛, 𝑑2,𝑛) = (⨆𝑖 𝑑1,𝑖,⨆𝑗 𝑑2,𝑗) .

Bottom elements are computed componentwise:

⊥𝐷1×𝐷2 = (⊥𝐷1 , ⊥𝐷2)

Therefore, products of cpos are cpos, and products of domains are domains.
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FUNCTIONS OF TWO ARGUMENTS

A function 𝑓 : (𝐷 × 𝐸) → 𝐹 is monotone exaclty when it is monotone in each argument:

∀𝑑, 𝑑′ ∈ 𝐷, 𝑒 ∈ 𝐸. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑′, 𝑒)
∀𝑑 ∈ 𝐷, 𝑒, 𝑒′ ∈ 𝐸. 𝑒 ⊑ 𝑒′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑, 𝑒′).

It is continuous if and only if it preserves lubs in each argument separately:

𝑓 (⨆𝑚 𝑑𝑚 , 𝑒) = ⨆𝑚 𝑓 (𝑑𝑚, 𝑒) 𝑓 (𝑑 , ⨆𝑛 𝑒𝑛) = ⨆𝑛 𝑓 (𝑑, 𝑒𝑛).
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DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

MON×
𝑓 monotone 𝑥 ⊑ 𝑥′ 𝑦 ⊑ 𝑦 ′

𝑓 (𝑥, 𝑦) ⊑ 𝑓 (𝑥′, 𝑦 ′)

𝑓 (⨆
𝑚

𝑥𝑚,⨆
𝑛

𝑦𝑛) = ⨆
𝑚

⨆
𝑛

𝑓 (𝑥𝑚, 𝑦𝑛) = ⨆
𝑘

𝑓 (𝑥𝑘 , 𝑦𝑘)
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PROJECTIONS AND PAIRING

Let 𝐷1 and 𝐷2 be cpos (domains). The projections

𝜋1 : 𝐷1 × 𝐷2 → 𝐷1
(𝑑1, 𝑑2) ↦ 𝑑1

𝜋2 : 𝐷1 × 𝐷2 → 𝐷2
(𝑑1, 𝑑2) ↦ 𝑑2

are (strict) continuous functions.

If 𝑓1 : 𝐷 → 𝐷1 and 𝑓2 : 𝐷 → 𝐷2 are (strict) continuous functions from a cpo (domain)
𝐷, then their pairing:

⟨𝑓1, 𝑓2⟩ : 𝐷 → 𝐷1 × 𝐷2
𝑑 ↦ (𝑓1(𝑑), 𝑓2(𝑑))

is (strict) continuous.
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APPLICATION: DOMAIN CONDITIONAL

For any domain 𝐷, the conditional function
if : 𝔹⊥ × (𝐷 × 𝐷) → 𝐷

(𝑥, 𝑑) ↦ {
𝜋1(𝑑) if 𝑥 = true
𝜋2(𝑑) if 𝑥 = false
⊥𝐷 if 𝑥 = ⊥𝔹

is (strict) continuous.
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GENERAL PRODUCTS



GENERAL PRODUCT

The (cartesian) product of a family of sets (𝑋𝑖)𝑖∈𝐼 indexed by a set 𝐼 is the set

∏
𝑖∈𝐼

𝑋𝑖 = {𝑝: 𝐼 → ⋃
𝑖∈𝐼

𝑋𝑖 ∣ ∀𝑖 ∈ 𝐼 . 𝑝(𝑖) ∈ 𝑋𝑖}

We can think of its elements equivalently either as

• 𝐼 -indexed tuples: (… , 𝑥𝑖, … )𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑋𝑖;
• heterogeneous functions: 𝑝 defined on 𝐼 such that 𝑝(𝑖) ∈ 𝑋𝑖.

Special case: ∏𝑖∈𝔹 𝐷𝑖 is canonicall bijective to 𝐷true × 𝐷false.
It is equipped with projection functions (for any 𝑖 ∈ 𝐼 ) and pairing:

𝜋𝑖 : (∏
𝑖∈𝐼

𝑋𝑖) → 𝑋𝑖 ⟨−⟩𝑖∈𝐼 : ∏
𝑖∈𝐼

(𝑋 → 𝑋𝑖) → (𝑋 → ∏
𝑖∈𝐼

𝑋𝑖)
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GENERAL PRODUCT OF DOMAINS

The product of a family (𝐷𝑖, ⊑𝑖)𝑖∈𝐼 of posets indexed by a set 𝐼 is the poset with
• underlying set∏𝑖∈𝐼 𝐷𝑖;

• componentwise order

𝑝 ⊑ 𝑝′ def⇔ ∀𝑖 ∈ 𝐼 . 𝑝(𝑖) ⊑𝑖 𝑝′(𝑖).
Lubs of chains and bottom elements are computed componentwise, so the product of
cpos (domains) is again a cpo (domain)

The projections are (strict) continuous and the pairing of (strict) continuous functions is
(strict) continuous.
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CONSTRUCTIONS ON DOMAINS
FUNCTION DOMAINS



CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (domains) (𝐷, ⊑𝐷) and (𝐸, ⊑𝐸), the function cpo (𝐷 → 𝐸, ⊑) has
underlying set

{𝑓 : 𝐷 → 𝐸 ∣ 𝑓 is a continuous function}
equipped with the pointwise order:

𝑓 ⊑ 𝑓 ′ def⇔ ∀𝑑 ∈ 𝐷. 𝑓 (𝑑) ⊑𝐸 𝑓 ′(𝑑).

𝑓 ⊑𝐷→𝐸 𝑔 𝑥 ⊑𝐷 𝑦
𝑓 (𝑥) ⊑𝐸 𝑔(𝑦)

Argumentwise least elements and lubs:

⊥𝐷→𝐸(𝑑) = ⊥𝐸 (⨆
𝑛∈ℕ

𝑓𝑛) (𝑑) = ⨆
𝑛∈ℕ

𝑓𝑛(𝑑)
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