
DENOTATIONAL SEMANTICS

Ioannis Markakis
Lectures for Part II CST 2025/2026

DOMAINS AND FIXED POINTS

DOMAINS AND FIXED POINTS
POSETS AND MONOTONE FUNCTIONS

PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

antisymmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

REFL 𝑥 ⊑ 𝑥 TRANS
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑧

𝑥 ⊑ 𝑧 ASYM
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑥

𝑥 = 𝑦
A pair (𝐷, ⊑) is called a partially ordered set, or simply poset.

1

PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

antisymmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

REFL 𝑥 ⊑ 𝑥 TRANS
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑧

𝑥 ⊑ 𝑧 ASYM
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑥

𝑥 = 𝑦

A pair (𝐷, ⊑) is called a partially ordered set, or simply poset.

1

PARTIALLY ORDERED SET

A partial order on a set 𝐷 is a binary relation ⊑ that is

reflexive: ∀𝑑 ∈ 𝐷. 𝑑 ⊑ 𝑑
transitive: ∀𝑑, 𝑑′, 𝑑″ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑″ ⇒ 𝑑 ⊑ 𝑑″

antisymmetric: ∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑ 𝑑′ ⊑ 𝑑 ⇒ 𝑑 = 𝑑′.

REFL 𝑥 ⊑ 𝑥 TRANS
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑧

𝑥 ⊑ 𝑧 ASYM
𝑥 ⊑ 𝑦 𝑦 ⊑ 𝑥

𝑥 = 𝑦
A pair (𝐷, ⊑) is called a partially ordered set, or simply poset.

1

EXAMPLE: PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Set: Partial functions 𝑓 : 𝑋 ⇀ 𝑌 , i.e.
Total functions 𝑓 : 𝐴 → 𝑌 where 𝐴 ⊆ 𝑋

Order: 𝑓 ⊑ 𝑔 when graph(𝑓) ⊆ graph(𝑔), i.e.
• dom(𝑓) ⊆ dom(𝑔) and
• 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ dom(𝑓)

Properties: Check reflexivity, antisymmetry, transitivity!

The agrees with the order that
we defined on State ⇀ State
to give semantics for while
loops.

2

EXAMPLE: PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Set: Partial functions 𝑓 : 𝑋 ⇀ 𝑌 , i.e.
Total functions 𝑓 : 𝐴 → 𝑌 where 𝐴 ⊆ 𝑋

Order: 𝑓 ⊑ 𝑔 when graph(𝑓) ⊆ graph(𝑔), i.e.
• dom(𝑓) ⊆ dom(𝑔) and
• 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ dom(𝑓)

Properties: Check reflexivity, antisymmetry, transitivity!

The agrees with the order that
we defined on State ⇀ State
to give semantics for while
loops.

2

EXAMPLE: PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Set: Partial functions 𝑓 : 𝑋 ⇀ 𝑌 , i.e.
Total functions 𝑓 : 𝐴 → 𝑌 where 𝐴 ⊆ 𝑋

Order: 𝑓 ⊑ 𝑔 when graph(𝑓) ⊆ graph(𝑔), i.e.
• dom(𝑓) ⊆ dom(𝑔) and
• 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ dom(𝑓)

Properties: Check reflexivity, antisymmetry, transitivity!

The agrees with the order that
we defined on State ⇀ State
to give semantics for while
loops.

2

EXAMPLE: PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Set: Partial functions 𝑓 : 𝑋 ⇀ 𝑌 , i.e.
Total functions 𝑓 : 𝐴 → 𝑌 where 𝐴 ⊆ 𝑋

Order: 𝑓 ⊑ 𝑔 when graph(𝑓) ⊆ graph(𝑔), i.e.
• dom(𝑓) ⊆ dom(𝑔) and
• 𝑓 (𝑥) = 𝑔(𝑥) for all 𝑥 ∈ dom(𝑓)

Properties: Check reflexivity, antisymmetry, transitivity!

The agrees with the order that
we defined on State ⇀ State
to give semantics for while
loops.

2

MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if it preserves the order:

∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑𝐷 𝑑′ ⇒ 𝑓 (𝑑) ⊑𝐸 𝑓 (𝑑′).

MON
𝑥 ⊑ 𝑦

𝑓 (𝑥) ⊑ 𝑓 (𝑦)
Exercise: Check that the
function 𝐹𝑏,𝑐 is monotone.

3

MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if it preserves the order:

∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑𝐷 𝑑′ ⇒ 𝑓 (𝑑) ⊑𝐸 𝑓 (𝑑′).

MON
𝑥 ⊑ 𝑦

𝑓 (𝑥) ⊑ 𝑓 (𝑦)

Exercise: Check that the
function 𝐹𝑏,𝑐 is monotone.

3

MONOTONICITY

A function 𝑓 : 𝐷 → 𝐸 between posets is monotone if it preserves the order:

∀𝑑, 𝑑′ ∈ 𝐷. 𝑑 ⊑𝐷 𝑑′ ⇒ 𝑓 (𝑑) ⊑𝐸 𝑓 (𝑑′).

MON
𝑥 ⊑ 𝑦

𝑓 (𝑥) ⊑ 𝑓 (𝑦)
Exercise: Check that the
function 𝐹𝑏,𝑐 is monotone.

3

DOMAINS AND FIXED POINTS
LEAST ELEMENTS AND LEAST UPPER BOUNDS

LEAST ELEMENT

Let 𝑆 a subset of a poset 𝐷. An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

Such an element is unique if it exists, and is written as ⊥𝑆 or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

Note that ⊥𝑆 is always an element of 𝑆 !

4

LEAST ELEMENT

Let 𝑆 a subset of a poset 𝐷. An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

Such an element is unique if it exists, and is written as ⊥𝑆 or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

Note that ⊥𝑆 is always an element of 𝑆 !

4

LEAST ELEMENT

Let 𝑆 a subset of a poset 𝐷. An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

Such an element is unique if it exists, and is written as ⊥𝑆 or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

Note that ⊥𝑆 is always an element of 𝑆 !

4

LEAST ELEMENT

Let 𝑆 a subset of a poset 𝐷. An element 𝑑 ∈ 𝑆 is the least element of 𝑆 if it satisfies
∀𝑥 ∈ 𝑆. 𝑑 ⊑ 𝑥.

Such an element is unique if it exists, and is written as ⊥𝑆 or simply ⊥.

LEAST
𝑥 ∈ 𝑆
⊥𝑆 ⊑ 𝑥

ASYM

LEAST
⊥′𝑆 ∈ 𝑆
⊥𝑆 ⊑ ⊥′𝑆

LEAST
⊥𝑆 ∈ 𝑆
⊥′𝑆 ⊑ ⊥𝑆

⊥𝑆 = ⊥′𝑆

Note that ⊥𝑆 is always an element of 𝑆 !
4

LEAST UPPER BOUND

Let 𝑆 be a subset of a poset 𝐷. An element 𝑑 ∈ 𝐷 (not necessarily in 𝑆) is an upper
bound of 𝑆 if it satisfies

∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑑.

A least upper bound (lub) of 𝑆 is the least element of the set of upper bounds of 𝑆 . If it
exists, it is unique and we will denote it by⨆𝑆 .

LUB-BOUND
𝑥 ∈ 𝑆

𝑥 ⊑ ⨆𝑆
LUB-LEAST

∀𝑥 ∈ 𝑆 . 𝑥 ⊑ 𝑦
⨆𝑆 ⊑ 𝑦

• Lubs are also known as joins, supremums or limits
• The lub of 𝑆 does not need to be in 𝑆!

5

LEAST UPPER BOUND

Let 𝑆 be a subset of a poset 𝐷. An element 𝑑 ∈ 𝐷 (not necessarily in 𝑆) is an upper
bound of 𝑆 if it satisfies

∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑑.
A least upper bound (lub) of 𝑆 is the least element of the set of upper bounds of 𝑆 . If it
exists, it is unique and we will denote it by⨆𝑆 .

LUB-BOUND
𝑥 ∈ 𝑆

𝑥 ⊑ ⨆𝑆
LUB-LEAST

∀𝑥 ∈ 𝑆 . 𝑥 ⊑ 𝑦
⨆𝑆 ⊑ 𝑦

• Lubs are also known as joins, supremums or limits
• The lub of 𝑆 does not need to be in 𝑆!

5

LEAST UPPER BOUND

Let 𝑆 be a subset of a poset 𝐷. An element 𝑑 ∈ 𝐷 (not necessarily in 𝑆) is an upper
bound of 𝑆 if it satisfies

∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑑.
A least upper bound (lub) of 𝑆 is the least element of the set of upper bounds of 𝑆 . If it
exists, it is unique and we will denote it by⨆𝑆 .

LUB-BOUND
𝑥 ∈ 𝑆

𝑥 ⊑ ⨆𝑆
LUB-LEAST

∀𝑥 ∈ 𝑆 . 𝑥 ⊑ 𝑦
⨆𝑆 ⊑ 𝑦

• Lubs are also known as joins, supremums or limits
• The lub of 𝑆 does not need to be in 𝑆!

5

LEAST UPPER BOUND

Let 𝑆 be a subset of a poset 𝐷. An element 𝑑 ∈ 𝐷 (not necessarily in 𝑆) is an upper
bound of 𝑆 if it satisfies

∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑑.
A least upper bound (lub) of 𝑆 is the least element of the set of upper bounds of 𝑆 . If it
exists, it is unique and we will denote it by⨆𝑆 .

LUB-BOUND
𝑥 ∈ 𝑆

𝑥 ⊑ ⨆𝑆
LUB-LEAST

∀𝑥 ∈ 𝑆 . 𝑥 ⊑ 𝑦
⨆𝑆 ⊑ 𝑦

• Lubs are also known as joins, supremums or limits
• The lub of 𝑆 does not need to be in 𝑆 !

5

LEAST UPPER BOUNDS OF CHAINS

A (countable, increasing) chain in a poset 𝐷 is a sequence (𝑑𝑖)𝑖∈ℕ in 𝐷 such that

𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ …

The least upper bound of {𝑑𝑛 : 𝑛 ∈ ℕ} will be denoted by⨆𝑛∈ℕ 𝑑𝑛 or simply⨆𝑛 𝑑𝑛 . It
satisfies:

LUB-BOUND
∀𝑖 ∈ ℕ . 𝑑𝑖 ⊑ ⨆

𝑛∈ℕ
𝑑𝑛

LUB-LEAST
∀𝑖 ∈ ℕ . 𝑑𝑖 ⊑ 𝑑

⨆
𝑛∈ℕ

𝑑𝑛 ⊑ 𝑑

The lub of a sequence does not need to be an element of the sequence!

6

LEAST UPPER BOUNDS OF CHAINS

A (countable, increasing) chain in a poset 𝐷 is a sequence (𝑑𝑖)𝑖∈ℕ in 𝐷 such that

𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ …
The least upper bound of {𝑑𝑛 : 𝑛 ∈ ℕ} will be denoted by⨆𝑛∈ℕ 𝑑𝑛 or simply⨆𝑛 𝑑𝑛 . It
satisfies:

LUB-BOUND
∀𝑖 ∈ ℕ . 𝑑𝑖 ⊑ ⨆

𝑛∈ℕ
𝑑𝑛

LUB-LEAST
∀𝑖 ∈ ℕ . 𝑑𝑖 ⊑ 𝑑

⨆
𝑛∈ℕ

𝑑𝑛 ⊑ 𝑑

The lub of a sequence does not need to be an element of the sequence!

6

LEAST UPPER BOUNDS OF CHAINS

A (countable, increasing) chain in a poset 𝐷 is a sequence (𝑑𝑖)𝑖∈ℕ in 𝐷 such that

𝑑0 ⊑ 𝑑1 ⊑ 𝑑2 ⊑ …
The least upper bound of {𝑑𝑛 : 𝑛 ∈ ℕ} will be denoted by⨆𝑛∈ℕ 𝑑𝑛 or simply⨆𝑛 𝑑𝑛 . It
satisfies:

LUB-BOUND
∀𝑖 ∈ ℕ . 𝑑𝑖 ⊑ ⨆

𝑛∈ℕ
𝑑𝑛

LUB-LEAST
∀𝑖 ∈ ℕ . 𝑑𝑖 ⊑ 𝑑

⨆
𝑛∈ℕ

𝑑𝑛 ⊑ 𝑑

The lub of a sequence does not need to be an element of the sequence!

6

SOME PROPERTIES OF LUBS

• Lubs are unique if they exist (being least elements of some set)

• Forming lubs is monotone: if ∀𝑛 ∈ ℕ . 𝑑𝑛 ⊑ 𝑒𝑛 then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛

• We can discard elements: ⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑘 for any 𝑘 ∈ ℕ

• If 𝑑𝑘 = 𝑑𝑘+1 = 𝑑𝑘+2 = … for some 𝑘 ∈ ℕ, then⨆𝑛∈ℕ 𝑑𝑛 = 𝑑𝑘

7

SOME PROPERTIES OF LUBS

• Lubs are unique if they exist (being least elements of some set)

• Forming lubs is monotone: if ∀𝑛 ∈ ℕ . 𝑑𝑛 ⊑ 𝑒𝑛 then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛

• We can discard elements: ⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑘 for any 𝑘 ∈ ℕ

• If 𝑑𝑘 = 𝑑𝑘+1 = 𝑑𝑘+2 = … for some 𝑘 ∈ ℕ, then⨆𝑛∈ℕ 𝑑𝑛 = 𝑑𝑘

7

SOME PROPERTIES OF LUBS

• Lubs are unique if they exist (being least elements of some set)

• Forming lubs is monotone: if ∀𝑛 ∈ ℕ . 𝑑𝑛 ⊑ 𝑒𝑛 then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛

• We can discard elements: ⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑘 for any 𝑘 ∈ ℕ

• If 𝑑𝑘 = 𝑑𝑘+1 = 𝑑𝑘+2 = … for some 𝑘 ∈ ℕ, then⨆𝑛∈ℕ 𝑑𝑛 = 𝑑𝑘

7

SOME PROPERTIES OF LUBS

• Lubs are unique if they exist (being least elements of some set)

• Forming lubs is monotone: if ∀𝑛 ∈ ℕ . 𝑑𝑛 ⊑ 𝑒𝑛 then⨆𝑛 𝑑𝑛 ⊑ ⨆𝑛 𝑒𝑛

• We can discard elements: ⨆𝑛 𝑑𝑛 = ⨆𝑛 𝑑𝑛+𝑘 for any 𝑘 ∈ ℕ

• If 𝑑𝑘 = 𝑑𝑘+1 = 𝑑𝑘+2 = … for some 𝑘 ∈ ℕ, then⨆𝑛∈ℕ 𝑑𝑛 = 𝑑𝑘

7

DIAGONALISATION

Let 𝐷 be a poset and (𝑑𝑚,𝑛)𝑚,𝑛∈ℕ be an increasing doubly-indexed sequence in 𝐷:
𝑚 ≤ 𝑚′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚,𝑛′

Then, assuming they exist, the lubs form two chains

⨆
𝑛∈ℕ

𝑑0,𝑛 ⊑ ⨆
𝑛∈ℕ

𝑑1,𝑛 ⊑ ⨆
𝑛∈ℕ

𝑑2,𝑛 ⊑ …

and
⨆
𝑚∈ℕ

𝑑𝑚,0 ⊑ ⨆
𝑚∈ℕ

𝑑𝑚,1 ⊑ ⨆
𝑚∈ℕ

𝑑𝑚,2 ⊑ …

Moreover, again assuming the lubs of these chains exist,

⨆
𝑚∈ℕ

(⨆
𝑛∈ℕ

𝑑𝑚,𝑛) = ⨆
𝑛∈ℕ

(⨆
𝑚∈ℕ

𝑑𝑚,𝑛) = ⨆
𝑘∈ℕ

𝑑𝑘,𝑘
Show the equality by proving
that they are all lubs for the
set {𝑑𝑚,𝑛 : 𝑚, 𝑛 ∈ ℕ}

8

DIAGONALISATION

Let 𝐷 be a poset and (𝑑𝑚,𝑛)𝑚,𝑛∈ℕ be an increasing doubly-indexed sequence in 𝐷:
𝑚 ≤ 𝑚′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚,𝑛′

Then, assuming they exist, the lubs form two chains

⨆
𝑛∈ℕ

𝑑0,𝑛 ⊑ ⨆
𝑛∈ℕ

𝑑1,𝑛 ⊑ ⨆
𝑛∈ℕ

𝑑2,𝑛 ⊑ …

and
⨆
𝑚∈ℕ

𝑑𝑚,0 ⊑ ⨆
𝑚∈ℕ

𝑑𝑚,1 ⊑ ⨆
𝑚∈ℕ

𝑑𝑚,2 ⊑ …

Moreover, again assuming the lubs of these chains exist,

⨆
𝑚∈ℕ

(⨆
𝑛∈ℕ

𝑑𝑚,𝑛) = ⨆
𝑛∈ℕ

(⨆
𝑚∈ℕ

𝑑𝑚,𝑛) = ⨆
𝑘∈ℕ

𝑑𝑘,𝑘
Show the equality by proving
that they are all lubs for the
set {𝑑𝑚,𝑛 : 𝑚, 𝑛 ∈ ℕ}

8

DIAGONALISATION

Let 𝐷 be a poset and (𝑑𝑚,𝑛)𝑚,𝑛∈ℕ be an increasing doubly-indexed sequence in 𝐷:
𝑚 ≤ 𝑚′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚,𝑛′

Then, assuming they exist, the lubs form two chains

⨆
𝑛∈ℕ

𝑑0,𝑛 ⊑ ⨆
𝑛∈ℕ

𝑑1,𝑛 ⊑ ⨆
𝑛∈ℕ

𝑑2,𝑛 ⊑ …

and
⨆
𝑚∈ℕ

𝑑𝑚,0 ⊑ ⨆
𝑚∈ℕ

𝑑𝑚,1 ⊑ ⨆
𝑚∈ℕ

𝑑𝑚,2 ⊑ …

Moreover, again assuming the lubs of these chains exist,

⨆
𝑚∈ℕ

(⨆
𝑛∈ℕ

𝑑𝑚,𝑛) = ⨆
𝑛∈ℕ

(⨆
𝑚∈ℕ

𝑑𝑚,𝑛) = ⨆
𝑘∈ℕ

𝑑𝑘,𝑘

Show the equality by proving
that they are all lubs for the
set {𝑑𝑚,𝑛 : 𝑚, 𝑛 ∈ ℕ}

8

DIAGONALISATION

Let 𝐷 be a poset and (𝑑𝑚,𝑛)𝑚,𝑛∈ℕ be an increasing doubly-indexed sequence in 𝐷:
𝑚 ≤ 𝑚′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚′,𝑛 𝑛 ≤ 𝑛′ ⇒ 𝑑𝑚,𝑛 ⊑ 𝑑𝑚,𝑛′

Then, assuming they exist, the lubs form two chains

⨆
𝑛∈ℕ

𝑑0,𝑛 ⊑ ⨆
𝑛∈ℕ

𝑑1,𝑛 ⊑ ⨆
𝑛∈ℕ

𝑑2,𝑛 ⊑ …

and
⨆
𝑚∈ℕ

𝑑𝑚,0 ⊑ ⨆
𝑚∈ℕ

𝑑𝑚,1 ⊑ ⨆
𝑚∈ℕ

𝑑𝑚,2 ⊑ …

Moreover, again assuming the lubs of these chains exist,

⨆
𝑚∈ℕ

(⨆
𝑛∈ℕ

𝑑𝑚,𝑛) = ⨆
𝑛∈ℕ

(⨆
𝑚∈ℕ

𝑑𝑚,𝑛) = ⨆
𝑘∈ℕ

𝑑𝑘,𝑘
Show the equality by proving
that they are all lubs for the
set {𝑑𝑚,𝑛 : 𝑚, 𝑛 ∈ ℕ}

8

DOMAINS AND FIXED POINTS
COMPLETE PARTIAL ORDERS AND DOMAINS

CPOS AND DOMAINS

A poset (𝐷, ⊑) is called chain complete or a cpo when every (increasing, countable)
chain has a least upper bound.

We will call (𝐷, ⊑) a domain when it is a cpo with a least element ⊥.

We will see that these are the ingredients we need to construct least fixed points.

9

CPOS AND DOMAINS

A poset (𝐷, ⊑) is called chain complete or a cpo when every (increasing, countable)
chain has a least upper bound.

We will call (𝐷, ⊑) a domain when it is a cpo with a least element ⊥.

We will see that these are the ingredients we need to construct least fixed points.

9

CPOS AND DOMAINS

A poset (𝐷, ⊑) is called chain complete or a cpo when every (increasing, countable)
chain has a least upper bound.

We will call (𝐷, ⊑) a domain when it is a cpo with a least element ⊥.

We will see that these are the ingredients we need to construct least fixed points.

9

EXAMPLE: PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Least element: ⊥ is the everywhere undefined function.

Lub of a chain: The lub of a chain 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … is the partial function 𝑓 defined by

𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise

Equivalently, the partial function 𝑓 has graph the union of the graphs of the
𝑓𝑛 .

Beware: the definition of⨆𝑛 𝑓𝑛 is a partial function only if the 𝑓𝑛 form a chain!

10

EXAMPLE: PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Least element: ⊥ is the everywhere undefined function.

Lub of a chain: The lub of a chain 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … is the partial function 𝑓 defined by

𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise

Equivalently, the partial function 𝑓 has graph the union of the graphs of the
𝑓𝑛 .

Beware: the definition of⨆𝑛 𝑓𝑛 is a partial function only if the 𝑓𝑛 form a chain!

10

EXAMPLE: PARTIAL FUNCTIONS 𝑋 ⇀ 𝑌

Least element: ⊥ is the everywhere undefined function.

Lub of a chain: The lub of a chain 𝑓0 ⊑ 𝑓1 ⊑ 𝑓2 ⊑ … is the partial function 𝑓 defined by

𝑓 (𝑥) = {𝑓𝑛(𝑥) if 𝑥 ∈ dom(𝑓𝑛) for some 𝑛
undefined otherwise

Equivalently, the partial function 𝑓 has graph the union of the graphs of the
𝑓𝑛 .

Beware: the definition of⨆𝑛 𝑓𝑛 is a partial function only if the 𝑓𝑛 form a chain!

10

EXAMPLE: FINITE CPOS

Every finite poset is a cpo. Why?

Are they always domains?
•

• •

← ←

11

EXAMPLE: FINITE CPOS

Every finite poset is a cpo. Why?

Are they always domains?

•

• •

← ←

11

EXAMPLE: FINITE CPOS

Every finite poset is a cpo. Why?

Are they always domains?
•

• •

← ←

11

EXAMPLE: THE FLAT NATURAL NUMBERS ℕ⊥

0 1 2 ⋯ 𝑛 𝑛 + 1 ⋯

⊥←←←
⋯ ←← ⋯

Every chain in ℕ⊥ is eventually constant.

12

EXAMPLE: THE FLAT NATURAL NUMBERS ℕ⊥

0 1 2 ⋯ 𝑛 𝑛 + 1 ⋯

⊥←←←
⋯ ←← ⋯

Every chain in ℕ⊥ is eventually constant.

12

EXAMPLE: VERTICAL NATURAL NUMBERS

Is (ℕ, ≤) a domain?

𝑛 + 1
𝑛

1
0

←
←

←
←

No! (Why?)

13

EXAMPLE: VERTICAL NATURAL NUMBERS

What if we add a greatest element?
𝜔

𝑛 + 1
𝑛

1
0

←
←

←
←

Yes!

13

EXAMPLE: VERTICAL NATURAL NUMBERS

What if we add two greatest elements?

𝜔1 𝜔2

⋮
𝑛 + 1
𝑛

1
0

←←

← ←←
←

←
←

No! (Why?)

13

DOMAINS AND FIXED POINTS
CONTINUOUS FUNCTIONS

MONOTONE FUNCTIONS AND LUBS

Let 𝑓 : 𝐷 → 𝐸 monotone function between cpos and (𝑑𝑛)𝑛∈ℕ a chain in 𝐷.
⨆𝑑𝑛 ⨆𝑓 (𝑑𝑛) 𝑓 (⨆(𝑑𝑛))

⋮
𝑑𝑛+1 𝑓 (𝑑𝑛+1)

𝑑𝑛 𝑓 (𝑑𝑛)

𝑑1 𝑓 (𝑑1)

𝑑0 𝑓 (𝑑0)

?

←←← ← ←←

← ←

← ←

← ←

14

MONOTONE FUNCTIONS AND LUBS

Let 𝑓 : 𝐷 → 𝐸 monotone function between cpos and (𝑑𝑛)𝑛∈ℕ a chain in 𝐷.
⨆𝑑𝑛 ⨆𝑓 (𝑑𝑛) 𝑓 (⨆(𝑑𝑛))

⋮
𝑑𝑛+1 𝑓 (𝑑𝑛+1)

𝑑𝑛 𝑓 (𝑑𝑛)

𝑑1 𝑓 (𝑑1)

𝑑0 𝑓 (𝑑0)
←

←←← ← ←←

← ←

← ←

← ←

14

CONTINUITY AND STRICTNESS

Given two cpos 𝐷 and 𝐸, a function 𝑓 : 𝐷 → 𝐸 is called continuous if

• it is monotone, and
• it preserves lubs of chains, i.e. for all chains 𝑑0 ⊑ 𝑑1 ⊑ … in 𝐷, we have

⨆𝑓(𝑑𝑛) = 𝑓 (⨆𝑑𝑛) (⊑ is automatic)

A continuous function 𝑓 : 𝐷 → 𝐸 between domains is strict when 𝑓 (⊥𝐷) = ⊥𝐸 .

15

CONTINUITY AND STRICTNESS

Given two cpos 𝐷 and 𝐸, a function 𝑓 : 𝐷 → 𝐸 is called continuous if

• it is monotone, and
• it preserves lubs of chains, i.e. for all chains 𝑑0 ⊑ 𝑑1 ⊑ … in 𝐷, we have

⨆𝑓(𝑑𝑛) = 𝑓 (⨆𝑑𝑛) (⊑ is automatic)

A continuous function 𝑓 : 𝐷 → 𝐸 between domains is strict when 𝑓 (⊥𝐷) = ⊥𝐸 .

15

THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? (ℕ ⇀ 𝔹) ⇀ 𝔹
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1

0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥

0 0 0 0 0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 ↦ 0
Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: we show the thesis... by giving a denotational semantics.

16

THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? (ℕ ⇀ 𝔹) ⇀ 𝔹
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1

0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥

0 0 0 0 0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 ↦ 0
Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: we show the thesis... by giving a denotational semantics.

16

THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? (ℕ ⇀ 𝔹) ⇀ 𝔹
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1

0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥

0 0 0 0 0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 ↦ 0

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: we show the thesis... by giving a denotational semantics.

16

THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? (ℕ ⇀ 𝔹) ⇀ 𝔹
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1
0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 0 0 0 … ↦ ?

0 0 0 0 0 0 ↦ 0

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: we show the thesis... by giving a denotational semantics.

16

THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? (ℕ ⇀ 𝔹) ⇀ 𝔹
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1
0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥
0 0 0 0 0 0 0 0 0 … ↦ ?
0 0 0 0 0 0 ↦ 0

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: we show the thesis... by giving a denotational semantics.

16

THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? (ℕ ⇀ 𝔹) ⇀ 𝔹
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1
0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥
0 0 0 0 0 0 0 0 0 … ↦ ?
0 0 0 0 0 0 ↦ 0

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: we show the thesis... by giving a denotational semantics.

16

THESIS

All computable functions are continuous.

Typical non-continuous function: “is a sequence the constant 0”? (ℕ ⇀ 𝔹) ⇀ 𝔹
0 0 ⊥ … ↦ ⊥
0 0 0 0 1 … ↦ 1
0 0 0 0 0 0 0 0 ⊥ … ↦ ⊥
0 0 0 0 0 0 0 0 0 … ↦ ?
0 0 0 0 0 0 ↦ 0

Intuition: non-continuity ≈ “jump at infinity” ≈ non-computability

Later in the course: we show the thesis... by giving a denotational semantics.

16

DOMAINS AND FIXED POINTS
FIXED POINTS

FIXED AND PRE-FIXED POINTS

A fixed point of a function 𝑓 : 𝐷 → 𝐷 is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) = 𝑑 .

A pre-fixed point of a function 𝑓 : 𝐷 → 𝐷 on a poset is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) ⊑ 𝑑 .
The least pre-fixed point of 𝑓 , if it exists, will be written fix(𝑓).
It is (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓) ⊑ 𝑑

• fix(𝑓) is a pre-fixed point
• To prove fix(𝑓) ⊑ 𝑑 , it is enough to show 𝑓 (𝑑) ⊑ 𝑑 .

17

FIXED AND PRE-FIXED POINTS

A fixed point of a function 𝑓 : 𝐷 → 𝐷 is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) = 𝑑 .
A pre-fixed point of a function 𝑓 : 𝐷 → 𝐷 on a poset is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) ⊑ 𝑑 .

The least pre-fixed point of 𝑓 , if it exists, will be written fix(𝑓).
It is (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓) ⊑ 𝑑

• fix(𝑓) is a pre-fixed point
• To prove fix(𝑓) ⊑ 𝑑 , it is enough to show 𝑓 (𝑑) ⊑ 𝑑 .

17

FIXED AND PRE-FIXED POINTS

A fixed point of a function 𝑓 : 𝐷 → 𝐷 is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) = 𝑑 .
A pre-fixed point of a function 𝑓 : 𝐷 → 𝐷 on a poset is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) ⊑ 𝑑 .
The least pre-fixed point of 𝑓 , if it exists, will be written fix(𝑓).

It is (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓) ⊑ 𝑑

• fix(𝑓) is a pre-fixed point
• To prove fix(𝑓) ⊑ 𝑑 , it is enough to show 𝑓 (𝑑) ⊑ 𝑑 .

17

FIXED AND PRE-FIXED POINTS

A fixed point of a function 𝑓 : 𝐷 → 𝐷 is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) = 𝑑 .
A pre-fixed point of a function 𝑓 : 𝐷 → 𝐷 on a poset is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) ⊑ 𝑑 .
The least pre-fixed point of 𝑓 , if it exists, will be written fix(𝑓).
It is (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓) ⊑ 𝑑

• fix(𝑓) is a pre-fixed point
• To prove fix(𝑓) ⊑ 𝑑 , it is enough to show 𝑓 (𝑑) ⊑ 𝑑 .

17

FIXED AND PRE-FIXED POINTS

A fixed point of a function 𝑓 : 𝐷 → 𝐷 is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) = 𝑑 .
A pre-fixed point of a function 𝑓 : 𝐷 → 𝐷 on a poset is some 𝑑 ∈ 𝐷 satisfying 𝑓 (𝑑) ⊑ 𝑑 .
The least pre-fixed point of 𝑓 , if it exists, will be written fix(𝑓).
It is (uniquely) specified by the two properties:

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓) ⊑ 𝑑

• fix(𝑓) is a pre-fixed point
• To prove fix(𝑓) ⊑ 𝑑 , it is enough to show 𝑓 (𝑑) ⊑ 𝑑 .

17

fix(𝑓) IS A FIXED POINT

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓) ⊑ 𝑑

Application: If 𝑓 : 𝐷 → 𝐷 is monotone, then fix(𝑓) is a fixed point (if it exists)

ASYM

LFP-FIX

𝑓 (fix(𝑓)) ⊑ fix(𝑓)

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓)
𝑓 (𝑓 (fix(𝑓))) ⊑ 𝑓 (fix(𝑓))

fix(𝑓) ⊑ 𝑓 (fix(𝑓))
𝑓 (fix(𝑓)) = fix(𝑓)

18

fix(𝑓) IS A FIXED POINT

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓) ⊑ 𝑑

Application: If 𝑓 : 𝐷 → 𝐷 is monotone, then fix(𝑓) is a fixed point (if it exists)

ASYM

LFP-FIX

𝑓 (fix(𝑓)) ⊑ fix(𝑓)

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓)
𝑓 (𝑓 (fix(𝑓))) ⊑ 𝑓 (fix(𝑓))

fix(𝑓) ⊑ 𝑓 (fix(𝑓))
𝑓 (fix(𝑓)) = fix(𝑓)

18

fix(𝑓) IS A FIXED POINT

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓) ⊑ 𝑑

Application: If 𝑓 : 𝐷 → 𝐷 is monotone, then fix(𝑓) is a fixed point (if it exists)

ASYM

LFP-FIX

𝑓 (fix(𝑓)) ⊑ fix(𝑓)

LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓)
𝑓 (𝑓 (fix(𝑓))) ⊑ 𝑓 (fix(𝑓))

fix(𝑓) ⊑ 𝑓 (fix(𝑓))
𝑓 (fix(𝑓)) = fix(𝑓)

18

fix(𝑓) IS A FIXED POINT

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓) LFP-LEAST
𝑓 (𝑑) ⊑ 𝑑
fix(𝑓) ⊑ 𝑑

Application: If 𝑓 : 𝐷 → 𝐷 is monotone, then fix(𝑓) is a fixed point (if it exists)

ASYM
LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓) LFP-LEAST

MON

LFP-FIX 𝑓 (fix(𝑓)) ⊑ fix(𝑓)
𝑓 (𝑓 (fix(𝑓))) ⊑ 𝑓 (fix(𝑓))
fix(𝑓) ⊑ 𝑓 (fix(𝑓))

𝑓 (fix(𝑓)) = fix(𝑓)

18

DOMAINS AND FIXED POINTS
KLEENE’S FIXED POINT THEOREM

KLEENE’S FIXED POINT THEOREM

Theorem
Let 𝑓 : 𝐷 → 𝐷 be a continuous function on a domain 𝐷. Then 𝑓 possesses a least
pre-fixed point, given by

fix(𝑓) = ⨆
𝑛∈ℕ

𝑓 𝑛(⊥).

It is also the least fixed point of 𝑓 !
We need to check that:
• 𝑓 𝑛(⊥) is increasing
• 𝑓 (fix(𝑓)) ⊑ fix(𝑓)
• 𝑓 (𝑑) ⊑ 𝑑 ⇒ fix(𝑓) ⊑ 𝑑

Question: What is fix(𝑓) when 𝑓 is strict?

19

KLEENE’S FIXED POINT THEOREM

Theorem
Let 𝑓 : 𝐷 → 𝐷 be a continuous function on a domain 𝐷. Then 𝑓 possesses a least
pre-fixed point, given by

fix(𝑓) = ⨆
𝑛∈ℕ

𝑓 𝑛(⊥).

It is also the least fixed point of 𝑓 !

We need to check that:
• 𝑓 𝑛(⊥) is increasing
• 𝑓 (fix(𝑓)) ⊑ fix(𝑓)
• 𝑓 (𝑑) ⊑ 𝑑 ⇒ fix(𝑓) ⊑ 𝑑

Question: What is fix(𝑓) when 𝑓 is strict?

19

KLEENE’S FIXED POINT THEOREM

Theorem
Let 𝑓 : 𝐷 → 𝐷 be a continuous function on a domain 𝐷. Then 𝑓 possesses a least
pre-fixed point, given by

fix(𝑓) = ⨆
𝑛∈ℕ

𝑓 𝑛(⊥).

It is also the least fixed point of 𝑓 !
We need to check that:
• 𝑓 𝑛(⊥) is increasing
• 𝑓 (fix(𝑓)) ⊑ fix(𝑓)
• 𝑓 (𝑑) ⊑ 𝑑 ⇒ fix(𝑓) ⊑ 𝑑

Question: What is fix(𝑓) when 𝑓 is strict?

19

KLEENE’S FIXED POINT THEOREM

Theorem
Let 𝑓 : 𝐷 → 𝐷 be a continuous function on a domain 𝐷. Then 𝑓 possesses a least
pre-fixed point, given by

fix(𝑓) = ⨆
𝑛∈ℕ

𝑓 𝑛(⊥).

It is also the least fixed point of 𝑓 !
We need to check that:
• 𝑓 𝑛(⊥) is increasing
• 𝑓 (fix(𝑓)) ⊑ fix(𝑓)
• 𝑓 (𝑑) ⊑ 𝑑 ⇒ fix(𝑓) ⊑ 𝑑

Question: What is fix(𝑓) when 𝑓 is strict?

19

CONSTRUCTIONS ON DOMAINS

CONSTRUCTIONS ON DOMAINS
FLAT DOMAINS

FLAT DOMAIN ON 𝑋

The flat domain on a set 𝑋 is defined by:

• its underlying set 𝑋 ⨄ {⊥} i.e. 𝑋 extended with a new element ⊥;
• 𝑥 ⊑ 𝑥′ if either 𝑥 = ⊥ or 𝑥 = 𝑥′.

𝑋

⊥

20

FLAT DOMAIN LIFTING

Let 𝑓 : 𝑋 ⇀ 𝑌 be a partial function between two sets. Then

𝑓⊥ : 𝑋⊥ → 𝑌⊥

𝑑 ↦ {
𝑓 (𝑑) if 𝑑 ∈ 𝑋 and 𝑓 is defined at 𝑑
⊥ if 𝑑 ∈ 𝑋 and 𝑓 is not defined at 𝑑
⊥ if 𝑑 = ⊥

defines a strict continuous function.

21

CONSTRUCTIONS ON DOMAINS
BINARY PRODUCTS

BINARY PRODUCT OF POSETS

The product of two posets (𝐷1, ⊑1) and (𝐷2, ⊑2) has underlying set
𝐷1 × 𝐷2 = {(𝑑1, 𝑑2) ∣ 𝑑1 ∈ 𝐷1 ∧ 𝑑2 ∈ 𝐷2}

and partial order ⊑ defined componentwise:

(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)
def⇔ 𝑑1 ⊑1 𝑑′1 ∧ 𝑑2 ⊑2 𝑑′2

PO×
𝑑1 ⊑1 𝑑′1 𝑑2 ⊑2 𝑑′2
(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)

22

BINARY PRODUCT OF POSETS

The product of two posets (𝐷1, ⊑1) and (𝐷2, ⊑2) has underlying set
𝐷1 × 𝐷2 = {(𝑑1, 𝑑2) ∣ 𝑑1 ∈ 𝐷1 ∧ 𝑑2 ∈ 𝐷2}

and partial order ⊑ defined componentwise:

(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)
def⇔ 𝑑1 ⊑1 𝑑′1 ∧ 𝑑2 ⊑2 𝑑′2

PO×
𝑑1 ⊑1 𝑑′1 𝑑2 ⊑2 𝑑′2
(𝑑1, 𝑑2) ⊑ (𝑑′1, 𝑑′2)

22

BINARY PRODUCT OF CPOS AND DOMAINS

Lubs of chains are computed componentwise:

⨆𝑛(𝑑1,𝑛, 𝑑2,𝑛) = (⨆𝑖 𝑑1,𝑖,⨆𝑗 𝑑2,𝑗) .

Bottom elements are computed componentwise:

⊥𝐷1×𝐷2 = (⊥𝐷1 , ⊥𝐷2)

Therefore, products of cpos are cpos, and products of domains are domains.

23

BINARY PRODUCT OF CPOS AND DOMAINS

Lubs of chains are computed componentwise:

⨆𝑛(𝑑1,𝑛, 𝑑2,𝑛) = (⨆𝑖 𝑑1,𝑖,⨆𝑗 𝑑2,𝑗) .

Bottom elements are computed componentwise:

⊥𝐷1×𝐷2 = (⊥𝐷1 , ⊥𝐷2)

Therefore, products of cpos are cpos, and products of domains are domains.

23

BINARY PRODUCT OF CPOS AND DOMAINS

Lubs of chains are computed componentwise:

⨆𝑛(𝑑1,𝑛, 𝑑2,𝑛) = (⨆𝑖 𝑑1,𝑖,⨆𝑗 𝑑2,𝑗) .

Bottom elements are computed componentwise:

⊥𝐷1×𝐷2 = (⊥𝐷1 , ⊥𝐷2)

Therefore, products of cpos are cpos, and products of domains are domains.

23

FUNCTIONS OF TWO ARGUMENTS

A function 𝑓 : (𝐷 × 𝐸) → 𝐹 is monotone exaclty when it is monotone in each argument:

∀𝑑, 𝑑′ ∈ 𝐷, 𝑒 ∈ 𝐸. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑′, 𝑒)
∀𝑑 ∈ 𝐷, 𝑒, 𝑒′ ∈ 𝐸. 𝑒 ⊑ 𝑒′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑, 𝑒′).

It is continuous if and only if it preserves lubs in each argument separately:

𝑓 (⨆𝑚 𝑑𝑚 , 𝑒) = ⨆𝑚 𝑓 (𝑑𝑚, 𝑒) 𝑓 (𝑑 , ⨆𝑛 𝑒𝑛) = ⨆𝑛 𝑓 (𝑑, 𝑒𝑛).

24

FUNCTIONS OF TWO ARGUMENTS

A function 𝑓 : (𝐷 × 𝐸) → 𝐹 is monotone exaclty when it is monotone in each argument:

∀𝑑, 𝑑′ ∈ 𝐷, 𝑒 ∈ 𝐸. 𝑑 ⊑ 𝑑′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑′, 𝑒)
∀𝑑 ∈ 𝐷, 𝑒, 𝑒′ ∈ 𝐸. 𝑒 ⊑ 𝑒′ ⇒ 𝑓 (𝑑, 𝑒) ⊑ 𝑓 (𝑑, 𝑒′).

It is continuous if and only if it preserves lubs in each argument separately:

𝑓 (⨆𝑚 𝑑𝑚 , 𝑒) = ⨆𝑚 𝑓 (𝑑𝑚, 𝑒) 𝑓 (𝑑 , ⨆𝑛 𝑒𝑛) = ⨆𝑛 𝑓 (𝑑, 𝑒𝑛).

24

DERIVED RULES FOR FUNCTIONS OF TWO ARGUMENTS

MON×
𝑓 monotone 𝑥 ⊑ 𝑥′ 𝑦 ⊑ 𝑦 ′

𝑓 (𝑥, 𝑦) ⊑ 𝑓 (𝑥′, 𝑦 ′)

𝑓 (⨆
𝑚

𝑥𝑚,⨆
𝑛

𝑦𝑛) = ⨆
𝑚

⨆
𝑛

𝑓 (𝑥𝑚, 𝑦𝑛) = ⨆
𝑘

𝑓 (𝑥𝑘 , 𝑦𝑘)

25

PROJECTIONS AND PAIRING

Let 𝐷1 and 𝐷2 be cpos (domains). The projections

𝜋1 : 𝐷1 × 𝐷2 → 𝐷1
(𝑑1, 𝑑2) ↦ 𝑑1

𝜋2 : 𝐷1 × 𝐷2 → 𝐷2
(𝑑1, 𝑑2) ↦ 𝑑2

are (strict) continuous functions.

If 𝑓1 : 𝐷 → 𝐷1 and 𝑓2 : 𝐷 → 𝐷2 are (strict) continuous functions from a cpo (domain)
𝐷, then their pairing:

⟨𝑓1, 𝑓2⟩ : 𝐷 → 𝐷1 × 𝐷2
𝑑 ↦ (𝑓1(𝑑), 𝑓2(𝑑))

is (strict) continuous.

26

PROJECTIONS AND PAIRING

Let 𝐷1 and 𝐷2 be cpos (domains). The projections

𝜋1 : 𝐷1 × 𝐷2 → 𝐷1
(𝑑1, 𝑑2) ↦ 𝑑1

𝜋2 : 𝐷1 × 𝐷2 → 𝐷2
(𝑑1, 𝑑2) ↦ 𝑑2

are (strict) continuous functions.

If 𝑓1 : 𝐷 → 𝐷1 and 𝑓2 : 𝐷 → 𝐷2 are (strict) continuous functions from a cpo (domain)
𝐷, then their pairing:

⟨𝑓1, 𝑓2⟩ : 𝐷 → 𝐷1 × 𝐷2
𝑑 ↦ (𝑓1(𝑑), 𝑓2(𝑑))

is (strict) continuous.

26

APPLICATION: DOMAIN CONDITIONAL

For any domain 𝐷, the conditional function
if : 𝔹⊥ × (𝐷 × 𝐷) → 𝐷

(𝑥, 𝑑) ↦ {
𝜋1(𝑑) if 𝑥 = true
𝜋2(𝑑) if 𝑥 = false
⊥𝐷 if 𝑥 = ⊥𝔹

is (strict) continuous.

27

CONSTRUCTIONS ON DOMAINS
GENERAL PRODUCTS

GENERAL PRODUCT

The (cartesian) product of a family of sets (𝑋𝑖)𝑖∈𝐼 indexed by a set 𝐼 is the set

∏
𝑖∈𝐼

𝑋𝑖 = {𝑝: 𝐼 → ⋃
𝑖∈𝐼

𝑋𝑖 ∣ ∀𝑖 ∈ 𝐼 . 𝑝(𝑖) ∈ 𝑋𝑖}

We can think of its elements equivalently either as

• 𝐼 -indexed tuples: (… , 𝑥𝑖, …)𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑋𝑖;
• heterogeneous functions: 𝑝 defined on 𝐼 such that 𝑝(𝑖) ∈ 𝑋𝑖.

Special case: ∏𝑖∈𝔹 𝐷𝑖 is canonicall bijective to 𝐷true × 𝐷false.
It is equipped with projection functions (for any 𝑖 ∈ 𝐼) and pairing:

𝜋𝑖 : (∏
𝑖∈𝐼

𝑋𝑖) → 𝑋𝑖 ⟨−⟩𝑖∈𝐼 : ∏
𝑖∈𝐼

(𝑋 → 𝑋𝑖) → (𝑋 → ∏
𝑖∈𝐼

𝑋𝑖)

28

GENERAL PRODUCT

The (cartesian) product of a family of sets (𝑋𝑖)𝑖∈𝐼 indexed by a set 𝐼 is the set

∏
𝑖∈𝐼

𝑋𝑖 = {𝑝: 𝐼 → ⋃
𝑖∈𝐼

𝑋𝑖 ∣ ∀𝑖 ∈ 𝐼 . 𝑝(𝑖) ∈ 𝑋𝑖}

We can think of its elements equivalently either as

• 𝐼 -indexed tuples: (… , 𝑥𝑖, …)𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑋𝑖;
• heterogeneous functions: 𝑝 defined on 𝐼 such that 𝑝(𝑖) ∈ 𝑋𝑖.

Special case: ∏𝑖∈𝔹 𝐷𝑖 is canonicall bijective to 𝐷true × 𝐷false.
It is equipped with projection functions (for any 𝑖 ∈ 𝐼) and pairing:

𝜋𝑖 : (∏
𝑖∈𝐼

𝑋𝑖) → 𝑋𝑖 ⟨−⟩𝑖∈𝐼 : ∏
𝑖∈𝐼

(𝑋 → 𝑋𝑖) → (𝑋 → ∏
𝑖∈𝐼

𝑋𝑖)

28

GENERAL PRODUCT

The (cartesian) product of a family of sets (𝑋𝑖)𝑖∈𝐼 indexed by a set 𝐼 is the set

∏
𝑖∈𝐼

𝑋𝑖 = {𝑝: 𝐼 → ⋃
𝑖∈𝐼

𝑋𝑖 ∣ ∀𝑖 ∈ 𝐼 . 𝑝(𝑖) ∈ 𝑋𝑖}

We can think of its elements equivalently either as

• 𝐼 -indexed tuples: (… , 𝑥𝑖, …)𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑋𝑖;
• heterogeneous functions: 𝑝 defined on 𝐼 such that 𝑝(𝑖) ∈ 𝑋𝑖.

Special case: ∏𝑖∈𝔹 𝐷𝑖 is canonicall bijective to 𝐷true × 𝐷false.

It is equipped with projection functions (for any 𝑖 ∈ 𝐼) and pairing:

𝜋𝑖 : (∏
𝑖∈𝐼

𝑋𝑖) → 𝑋𝑖 ⟨−⟩𝑖∈𝐼 : ∏
𝑖∈𝐼

(𝑋 → 𝑋𝑖) → (𝑋 → ∏
𝑖∈𝐼

𝑋𝑖)

28

GENERAL PRODUCT

The (cartesian) product of a family of sets (𝑋𝑖)𝑖∈𝐼 indexed by a set 𝐼 is the set

∏
𝑖∈𝐼

𝑋𝑖 = {𝑝: 𝐼 → ⋃
𝑖∈𝐼

𝑋𝑖 ∣ ∀𝑖 ∈ 𝐼 . 𝑝(𝑖) ∈ 𝑋𝑖}

We can think of its elements equivalently either as

• 𝐼 -indexed tuples: (… , 𝑥𝑖, …)𝑖∈𝐼 such that 𝑥𝑖 ∈ 𝑋𝑖;
• heterogeneous functions: 𝑝 defined on 𝐼 such that 𝑝(𝑖) ∈ 𝑋𝑖.

Special case: ∏𝑖∈𝔹 𝐷𝑖 is canonicall bijective to 𝐷true × 𝐷false.
It is equipped with projection functions (for any 𝑖 ∈ 𝐼) and pairing:

𝜋𝑖 : (∏
𝑖∈𝐼

𝑋𝑖) → 𝑋𝑖 ⟨−⟩𝑖∈𝐼 : ∏
𝑖∈𝐼

(𝑋 → 𝑋𝑖) → (𝑋 → ∏
𝑖∈𝐼

𝑋𝑖)

28

GENERAL PRODUCT OF DOMAINS

The product of a family (𝐷𝑖, ⊑𝑖)𝑖∈𝐼 of posets indexed by a set 𝐼 is the poset with
• underlying set∏𝑖∈𝐼 𝐷𝑖;

• componentwise order

𝑝 ⊑ 𝑝′ def⇔ ∀𝑖 ∈ 𝐼 . 𝑝(𝑖) ⊑𝑖 𝑝′(𝑖).
Lubs of chains and bottom elements are computed componentwise, so the product of
cpos (domains) is again a cpo (domain)

The projections are (strict) continuous and the pairing of (strict) continuous functions is
(strict) continuous.

29

GENERAL PRODUCT OF DOMAINS

The product of a family (𝐷𝑖, ⊑𝑖)𝑖∈𝐼 of posets indexed by a set 𝐼 is the poset with
• underlying set∏𝑖∈𝐼 𝐷𝑖;
• componentwise order

𝑝 ⊑ 𝑝′ def⇔ ∀𝑖 ∈ 𝐼 . 𝑝(𝑖) ⊑𝑖 𝑝′(𝑖).
Lubs of chains and bottom elements are computed componentwise, so the product of
cpos (domains) is again a cpo (domain)

The projections are (strict) continuous and the pairing of (strict) continuous functions is
(strict) continuous.

29

GENERAL PRODUCT OF DOMAINS

The product of a family (𝐷𝑖, ⊑𝑖)𝑖∈𝐼 of posets indexed by a set 𝐼 is the poset with
• underlying set∏𝑖∈𝐼 𝐷𝑖;
• componentwise order

𝑝 ⊑ 𝑝′ def⇔ ∀𝑖 ∈ 𝐼 . 𝑝(𝑖) ⊑𝑖 𝑝′(𝑖).
Lubs of chains and bottom elements are computed componentwise, so the product of
cpos (domains) is again a cpo (domain)

The projections are (strict) continuous and the pairing of (strict) continuous functions is
(strict) continuous.

29

CONSTRUCTIONS ON DOMAINS
FUNCTION DOMAINS

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (domains) (𝐷, ⊑𝐷) and (𝐸, ⊑𝐸), the function cpo (𝐷 → 𝐸, ⊑) has
underlying set

{𝑓 : 𝐷 → 𝐸 ∣ 𝑓 is a continuous function}
equipped with the pointwise order:

𝑓 ⊑ 𝑓 ′ def⇔ ∀𝑑 ∈ 𝐷. 𝑓 (𝑑) ⊑𝐸 𝑓 ′(𝑑).

𝑓 ⊑𝐷→𝐸 𝑔 𝑥 ⊑𝐷 𝑦
𝑓 (𝑥) ⊑𝐸 𝑔(𝑦)

Argumentwise least elements and lubs:

⊥𝐷→𝐸(𝑑) = ⊥𝐸 (⨆
𝑛∈ℕ

𝑓𝑛) (𝑑) = ⨆
𝑛∈ℕ

𝑓𝑛(𝑑)

30

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (domains) (𝐷, ⊑𝐷) and (𝐸, ⊑𝐸), the function cpo (𝐷 → 𝐸, ⊑) has
underlying set

{𝑓 : 𝐷 → 𝐸 ∣ 𝑓 is a continuous function}
equipped with the pointwise order:

𝑓 ⊑ 𝑓 ′ def⇔ ∀𝑑 ∈ 𝐷. 𝑓 (𝑑) ⊑𝐸 𝑓 ′(𝑑).

𝑓 ⊑𝐷→𝐸 𝑔 𝑥 ⊑𝐷 𝑦
𝑓 (𝑥) ⊑𝐸 𝑔(𝑦)

Argumentwise least elements and lubs:

⊥𝐷→𝐸(𝑑) = ⊥𝐸 (⨆
𝑛∈ℕ

𝑓𝑛) (𝑑) = ⨆
𝑛∈ℕ

𝑓𝑛(𝑑)

30

CPO/DOMAIN OF CONTINUOUS FUNCTIONS

Given two cpos (domains) (𝐷, ⊑𝐷) and (𝐸, ⊑𝐸), the function cpo (𝐷 → 𝐸, ⊑) has
underlying set

{𝑓 : 𝐷 → 𝐸 ∣ 𝑓 is a continuous function}
equipped with the pointwise order:

𝑓 ⊑ 𝑓 ′ def⇔ ∀𝑑 ∈ 𝐷. 𝑓 (𝑑) ⊑𝐸 𝑓 ′(𝑑).

𝑓 ⊑𝐷→𝐸 𝑔 𝑥 ⊑𝐷 𝑦
𝑓 (𝑥) ⊑𝐸 𝑔(𝑦)

Argumentwise least elements and lubs:

⊥𝐷→𝐸(𝑑) = ⊥𝐸 (⨆
𝑛∈ℕ

𝑓𝑛) (𝑑) = ⨆
𝑛∈ℕ

𝑓𝑛(𝑑)

30

	Domains and Fixed Points
	Posets and monotone functions
	Least elements and least upper bounds
	Complete partial orders and domains
	Continuous functions
	Fixed points
	Kleene's fixed point theorem

	Constructions on Domains
	Flat domains
	Binary products
	General products
	Function domains

