DENOTATIONAL SEMANTICS

loannis Markakis
Lectures for Part I CST 2025/2026

PRACTICALITIES

- My mail: im496@cam.ac.uk.
- Do not hesitate to ask questions!

- Feel free to give me feedback at any point!

mailto:mgapb2@cam.ac.uk

INTRODUCTION

WHAT IS THIS COURSE ABOUT?

- Formal methods: mathematical tools for the specification, development, analysis
and verification of software and hardware systems.

WHAT IS THIS COURSE ABOUT?

- Formal methods: mathematical tools for the specification, development, analysis
and verification of software and hardware systems.

- Programming language theory: design, implementation, tooling and reasoning
for/about programming languages.

WHAT IS THIS COURSE ABOUT?

- Formal methods: mathematical tools for the specification, development, analysis
and verification of software and hardware systems.

- Programming language theory: design, implementation, tooling and reasoning
for/about programming languages.

- Programming language semantics: what is the (mathematical) meaning of a
program?

WHAT IS THIS COURSE ABOUT?

- Formal methods: mathematical tools for the specification, development, analysis
and verification of software and hardware systems.
- Programming language theory: design, implementation, tooling and reasoning

for/about programming languages.
- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an abstract and compositional (mathematical) model of programs.

WHY STUDY SEMANTICS?

- Insight: exposes the mathematical “essence” of programming language ideas.

WHY STUDY SEMANTICS?

- Insight: exposes the mathematical “essence” of programming language ideas.

- Documentation: precise but intuitive, machine-independent specification.

WHY STUDY SEMANTICS?

- Insight: exposes the mathematical “essence” of programming language ideas.
- Documentation: precise but intuitive, machine-independent specification.

- Language design: feedback from semantics (functional programming, monads &
handlers, linearity...).

WHY STUDY SEMANTICS?

- Insight: exposes the mathematical “essence” of programming language ideas.
- Documentation: precise but intuitive, machine-independent specification.

- Language design: feedback from semantics (functional programming, monads &
handlers, linearity...).

- Rigour: powerful way to justify formal methods.

STYLES OF FORMAL SEMANTICS

- Operational
- Axiomatic

- Denotational

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic

- Denotational

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic: meaning of a program in terms of a program logic to reason about it (see
Part Il Hoare Logic & Model Checking).

- Denotational

STYLES OF FORMAL SEMANTICS

- Operational: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

- Axiomatic: meaning of a program in terms of a program logic to reason about it (see
Part Il Hoare Logic & Model Checking).

- Denotational: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).

DENOTATIONAL SEMANTICS IN A NUTSHELL

-] :
Syntax —> Semantics
Program P +— Denotation [P]

Number
Boolean function
Partial recursive function

Arithmetic expression
Boolean circuit
Recursive program

J 11

DENOTATIONAL SEMANTICS IN A NUTSHELL

Syntax —> Semantics
Program P +— Denotation [P]

Arithmetic expression = Number
Boolean circuit + Boolean function
Recursive program > Partial recursive function
Type +— Domain
Program +— Continuous functions between domains

PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction
- mathematical object, implementation/machine independent;
- captures the concept of a programming language construct;

- should relate to practical implementations, though...

PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction
- mathematical object, implementation/machine independent;
- captures the concept of a programming language construct;

- should relate to practical implementations, though...

Compositionality
- The denotation of a whole is defined using the denotations of its parts;
- [P] represents the contribution of P to any program containing P;
- More flexible and expressive than whole-program semantics.

INTRODUCTION
A BASIC EXAMPLE

IMP SYNTAX

Programs

C eProg :=skip |L:=A|C;C|if B then C else C |while Bdo C

IMP SYNTAX

K ranges over a set [of locations

C eProg :=skip |L:=A|C;C|if B then C else C |while Bdo C

IMP SYNTAX

’ Arithmetic expressions ‘

AcAexp:=n|L|A+A]..

Programs

C eProg :=skip |L:= A |C;C|if B then C else C |while Bdo C

IMP SYNTAX

ranges over integers

’ Arithmetic expressions ‘

A € Aexp |[L|A+A]..

| 3

Programs

C eProg :=skip |L:= A |C;C|if B then C else C |while Bdo C

IMP SYNTAX

’ Arithmetic expressions ‘

AcAexp:=n|L|A+A]..

’ Boolean expressions‘

B € Bexp == true | false | A=A |-B]|..

Programs

C eProg :=skip |L:= A |C;C|if B then C else C |while Bdo C

DENOTATION FUNCTIONS — NAIVELY

A: Aexp—>Z

where
7 = {...,—1,0, 1,...}

DENOTATION FUNCTIONS — NAIVELY

A: Aexp—>Z
B: Bexp— B

where
Z = {.,-1,0,1,..}
{true, false}

53]
I

ARITHMETIC EXPRESSIONS?

Aln] = n

AJA1 + Aj] A[A1] + A[Ag]

ARITHMETIC EXPRESSIONS?

Aln] = n

AJA1 + Aj] A[A1] + A[Ag]

A[L] = 222

DENOTATION FUNCTIONS — LESS NAIVELY

State = (L —» Z)

DENOTATION FUNCTIONS — LESS NAIVELY

State = (L —» Z)

A : Aexp — (State —» Z)
B : Bexp — (State — B)

where

Z=4.,-1,0,1,..}
B = {true, false}.

DENOTATION FUNCTIONS — LESS NAIVELY

State = (L —» Z)

A : Aexp — (State —» Z)
B : Bexp — (State — B)
C : Prog — (State — State)

where

Z=4.,-1,0,1,..}
B = {true, false}.

SEMANTICS OF ARITHMETIC EXPRESSIONS

As € State . n

Aln]

A[A; + Ay)] = As € State . A[A{](s) + A[A5](s)

1

SEMANTICS OF ARITHMETIC EXPRESSIONS

As € State . n

Aln]

A[A; + Ay)] = As € State . A[A{](s) + A[A5](s)

A[L] As € State. s(L)

1

SEMANTICS OF BOOLEAN EXPRESSIONS

Btrue]
B[false]

B[A; = Aj]

As € State. true
As € State. false

As € State. eq (A[A](s), A[A2](s))

true fa=4dad

uliee G)= false ifa+#a’

SEMANTICS OF PROGRAMS

C[skip] = As € State.s

SEMANTICS OF PROGRAMS

As € State. s

C[skip]
C[if B then C else C’] = As € State. if (B[B](s), C[C](s),C[C"](s))

ifb = true

x
here if (b, x,x") = .
where if (b, x,x') {x’ if b = false

SEMANTICS OF PROGRAMS

As € State. s

Clskip] This is compositionality!

C[if B then C else C’] = As € State. if (B[B](s),C[C](s),C[C"](s))

ifb = true

x
here if (b, x,x") = .
where if (b, x,x') {x’ if b = false

SEMANTICS OF PROGRAMS

C[skip]

C[if B then C else (']

C[L := A]

As € State. s
As € State. if (B[B](s), C[C](s),C[C’](s))

ifb = true

x
here if (b, x,x") = .
where if (b, x,x') {x’ if b = false

As € State. s[L — A[A](s)]

n ifL’ =L

h IL L) =
where s{L = (L") {S(L) otherwise

SEMANTICS OF PROGRAMS

C[skip]

C[if B then C else (']

C[L := A]

C[C;C']

As € State. s
As € State. if (B[B](s), C[C](s),C[C’](s))

ifb = true

x
here if N =
e G55) {x’ if b = false
As € State. s[L — A[A](s)]

n ifL’ =L

h IL L) =
where s{L = (L") {S(L) otherwise

C[C’] - C[C] = As € State. C[C’] (C[C](s))

INTRODUCTION
A SEMANTICS FOR LOOPS

SEMANTICS OF LOOPS?

This is all very nice, but...
[while B do C] = ???

14

SEMANTICS OF LOOPS?

This is all very nice, but...
[while B do C] = ???

Remember:

- (while B do C,s) ~ (if B then (C;while B do C) else skip,s)
- we want compositional semantics: [while B do C] in terms of [C] and [B]

- we want denotational semantics compatible with the operational semantics

14

LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if ([B](s), (while B do C] < [C])(s),s)

LOOP AS A FIXPOINT

[while B do C] = [if B then (C;while B do C) else skip]
= As € State. if ([B](s), (while B do C] < [C])(s),s)

We don't have a direct definition for [while B do CJ, but a fixed point equation!
[while B do C] = Fypj jcj([while B do CJ)

where
Fp.: (State — State) — (State — State)

w — As € State. if (b(s), (w o ¢)(s), s)

NOwW WE HAVE A GOAL

- Why/when does w = Fj, .(w) have a solution?
- What if it has several solutions? Which one should be our [while B do CJ]?

INTRODUCTION
A TASTE OF DOMAIN THEORY

TOTAL FUNCTIONS ARE NOT ENOUGH

Forget about State for a second, consider these equations (f € Z — Z):

f(x)=f(x)+1 (1)
flx) = f(x) 2)

What about their fixed points?

TOTAL FUNCTIONS ARE NOT ENOUGH

Forget about State for a second, consider these equations (f € Z — Z):

f(x)=f(x)+1 (1)
flx) = f(x) 2)

What about their fixed points?

- No function satisfies equation (1)!

- All functions satisfy equation (2)!

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

New rule: We may use partial functions f € Z — Z

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

New rule: We may use partial functions f € Z =~ Z

fG) = fl)+1

has a unique solution: the function L that is everywhere undefined

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

New rule: We may use partial functions f € Z =~ Z

fG) = fl)+1

has a unique solution: the function L that is everywhere undefined

But

fx) = f(x)

has even more solutions now - all partial functions. Which one should we pick?

‘INFORMATION ORDER’ ON PARTIAL FUNCTIONS

Partial orderon Z — Z:

wCw iff foralls € Z, if wisdefined at s, so is w’ and moreover w(s) = w’(s)
iff the graph of w is included in the graph of w’

19

‘INFORMATION ORDER’ ON PARTIAL FUNCTIONS

Partial orderon Z — Z:

wCw iff foralls € Z, if wisdefined at s, so is w’ and moreover w(s) = w’(s)
iff the graph of w is included in the graph of w’

Leastelement L € Z — Z:
1 = totally undefined partial function

19

‘INFORMATION ORDER’ ON PARTIAL FUNCTIONS

Partial orderon Z — Z:

wCw iff foralls € Z, if wisdefined at s, so is w’ and moreover w(s) = w’(s)
iff the graph of w is included in the graph of w’

Leastelement L € Z — Z:
1 = totally undefined partial function

L is the least solution to f(x) = f(x) making it a ‘canonical’ choice.

19

BACK TO LOOPS (AN EXAMPLE)

C : Prog — (State — State) State = {X,Y} > Z

20

BACK TO LOOPS (AN EXAMPLE)

C : Prog — (State — State) State = {X,Y} > Z

[while X >0do (Y :=X *Y; X =X —1)]

20

BACK TO LOOPS (AN EXAMPLE)

C : Prog — (State — State) State = {X,Y} > Z
[while X >0do (Y :=X *Y; X =X —1)]

should be some w such that:

w = Fixsopy:=X#Y;X:=X-1](W)-

20

BACK TO LOOPS (AN EXAMPLE)

C : Prog — (State — State) State = {X,Y} > Z

[while X >0do (Y := X *Y; X := X —1)]

should be some w such that:
w = Fixsopy:=X#Y;X:=X-1](W)-

That is, we are looking for a fixed point of the following function F:
F : (State — State) — (State — State)
[X - x, Y~ y] ifx<0

Al X Y .
W = AX e xYey) w([XHx—-1,Y>x-y]) ifx>0

20

APPROXIMATING THE LEAST FIXED POINT

[X - x,Y — y] ifx<0

F(W):A[Xl—)x,yi—)y]{W([XHX_LYHXy]) ifx>0

Define recursively w, = F™(w), that is wy = L and w1 = F(w,,).

21

APPROXIMATING THE LEAST FIXED POINT

[X - x,Y — y] ifx<0
w((XH»x—-1,Y>x-y]) ifx>0

Define recursively w, = F™(w), thatis wy = L and w11 = F(wy).

Flw)=A[X - x,Y — y]{

[X > x,Y > y] ifx<0

W Xi—)X,YI—) =
1[y] {undeﬁned ifx>1

21

APPROXIMATING THE LEAST FIXED POINT

[X - x,Y — y] ifx<0
w((XH»x—-1,Y>x-y]) ifx>0

Define recursively w, = F™(w), thatis wy = L and w11 = F(wy).

Flw)=A[X - x,Y — y]{

[X > x,Y > y] ifx<0
w[X > x,Y > y]=4{[X—0Y—y] ifx=1
undefined ifx>2

21

APPROXIMATING THE LEAST FIXED POINT

[X - x,Y — y] ifx<0
w((XH»x—-1,Y>x-y]) ifx>0

Define recursively w, = F™(w), thatis wy = L and w11 = F(wy).

Flw)=A[X - x,Y — y]{

[X x,Y>y] ifx<0
[X—0,Y—»y] ifx=1
[X —0,Y —» 2y] ifx=2
undefined ifx>3

w[X - x,Y - y] =

21

APPROXIMATING THE LEAST FIXED POINT

[X - x,Y — y] ifx<0
w((XH»x—-1,Y>x-y]) ifx>0

Define recursively w, = F™(w), thatis wy = L and w11 = F(wy).

Flw)=A[X - x,Y — y]{

(X - x,Y —] ifx <0
W X > x,Y > y]={[X—0,Y > (x!)-y] ifOo<x<n
undefined ifx>n

wyCwC...Cw, C ...

21

APPROXIMATING THE LEAST FIXED POINT

[X - x,Y — y] ifx<0
w((XH»x—-1,Y>x-y]) ifx>0

Define recursively w, = F™(w), thatis wy = L and w11 = F(wy).

Flw)=A[X - x,Y — y]{

(X - x,Y —] ifx <0
W X > x,Y > y]={[X—0,Y > (x!)-y] ifOo<x<n
undefined ifx>n

wyEw E..CEw, E.. Ewe?

21

APPROXIMATING THE LEAST FIXED POINT

[X = xY = y] ifx <0
w((XH»x—-1,Y>x-y]) ifx>0

Define recursively w, = F™(w), thatis wy = L and w11 = F(wy).

Flw)=A[X - x,Y — y]{

(X - x,Y —] ifx <0
W X > x,Y > y]={[X—0,Y > (x!)-y] ifOo<x<n
undefined ifx>n

W =
"X 0,Y e (x!)-y] ifx>0

21

WE HAVE OUR SEMANTICS

Fweo)[X - x,Y > y]

22

WE HAVE OUR SEMANTICS

[X — x,Y > y] ifx<0

) (definition of F)
WeolX > x—1,Y> x-y] ifx>0

Fw)[X - x,Y o y] = {

22

WE HAVE OUR SEMANTICS

{[XHx,YHy] ifx <0

F(weo)[X > x,Y = i
(Weo)[X = x,Y > y] Weol X > x—1,Y > x-y] ifx>0

(definition of F)

(X — x,Y > y] ifx <0
=4[X+—0,Y > 1-y] if x =1 (definition of wy,)
[X—>0,Y» (x—1!x-y] ifx>0

22

WE HAVE OUR SEMANTICS

{[XHx,YHy] ifx <0

F(weo)[X > x,Y i
(Weo)[X = x,Y > y] Weol X > x—1,Y > x-y] ifx>0

(definition of F)

(X — x,Y > y] ifx <0

=4[X+—0,Y > 1-y] if x =1 (definition of wy,)
[X—>0,Y» (x—1!x-y] ifx>0

= Weo| X P x,Y > y]

22

WE HAVE OUR SEMANTICS

{[XHx,YHy] ifx <0

F(weo)[X > x,Y i
(Weo)[X = x,Y > y] Weol X > x—1,Y > x-y] ifx>0

(definition of F)

(X — x,Y > y] ifx <0

=4[X+—0,Y > 1-y] if x =1 (definition of wy,)
[X—>0,Y» (x—1!x-y] ifx>0

= Weo| X P x,Y > y]

22

WE HAVE OUR SEMANTICS

{[= xY] xS (definition of F)

F(weo)[X > x,Y i
(Weo)[X = x,Y > y] Weol X > x—1,Y > x-y] ifx>0

(X — x,Y > y] ifx <0
=4[X+—0,Y > 1-y] if x =1 (definition of wy,)
[X—>0,Y» (x—1!x-y] ifx>0
= Weo| X P x,Y > y]
- F(Wao) = Weo I.6. Weo IS a fixed point of F;

- Itis the least fixed point;
- Using Wy, as the denotation of while is compatible with the operational semantics!

[while X >0do (Y ==X *Y;X =X —1)] = W

22

THE REST OF THIS COURSE

The course can be roughly divided into two parts:

I: domain theory

Il: denotational semantics for the language PcF

23

	Introduction
	A basic example
	A semantics for loops
	A taste of domain theory

