

DENOTATIONAL SEMANTICS

Ioannis Markakis

Lectures for Part II CST 2025/2026

- My mail: im496@cam.ac.uk.
- Do not hesitate to ask questions!
- Feel free to give me feedback at any point!

INTRODUCTION

WHAT IS THIS COURSE ABOUT?

- **Formal methods**: mathematical tools for the specification, development, analysis and verification of software and hardware systems.

WHAT IS THIS COURSE ABOUT?

- **Formal methods**: mathematical tools for the specification, development, analysis and verification of software and hardware systems.
- **Programming language theory**: design, implementation, tooling and reasoning for/about programming languages.

WHAT IS THIS COURSE ABOUT?

- **Formal methods**: mathematical tools for the specification, development, analysis and verification of software and hardware systems.
- **Programming language theory**: design, implementation, tooling and reasoning for/about programming languages.
- **Programming language semantics**: what is the (mathematical) meaning of a program?

WHAT IS THIS COURSE ABOUT?

- Formal methods: mathematical tools for the specification, development, analysis and verification of software and hardware systems.
- Programming language theory: design, implementation, tooling and reasoning for/about programming languages.
- Programming language semantics: what is the (mathematical) meaning of a program?

Goal: give an **abstract** and **compositional** (mathematical) model of programs.

WHY STUDY SEMANTICS?

- **Insight:** exposes the mathematical “essence” of programming language ideas.

WHY STUDY SEMANTICS?

- **Insight**: exposes the mathematical “essence” of programming language ideas.
- **Documentation**: precise but intuitive, machine-independent specification.

WHY STUDY SEMANTICS?

- **Insight**: exposes the mathematical “essence” of programming language ideas.
- **Documentation**: precise but intuitive, machine-independent specification.
- **Language design**: feedback from semantics (functional programming, monads & handlers, linearity...).

WHY STUDY SEMANTICS?

- **Insight**: exposes the mathematical “essence” of programming language ideas.
- **Documentation**: precise but intuitive, machine-independent specification.
- **Language design**: feedback from semantics (functional programming, monads & handlers, linearity...).
- **Rigour**: powerful way to justify formal methods.

STYLES OF FORMAL SEMANTICS

- Operational
- Axiomatic
- Denotational

- **Operational**: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).
- **Axiomatic**
- **Denotational**

- **Operational**: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).
- **Axiomatic**: meaning of a program in terms of a *program logic* to reason about it (see Part II Hoare Logic & Model Checking).
- **Denotational**

- **Operational**: meaning of a program in terms of the *steps of computation* it takes during execution (see Part IB Semantics).
- **Axiomatic**: meaning of a program in terms of a *program logic* to reason about it (see Part II Hoare Logic & Model Checking).
- **Denotational**: meaning of a program defined abstractly as object of some suitable *mathematical structure* (see this course).

DENOTATIONAL SEMANTICS IN A NUTSHELL

Syntax	$\xrightarrow{[\![\cdot]\!]}$	Semantics
Program P	\mapsto	Denotation $[\![P]\!]$
Arithmetic expression	\mapsto	Number
Boolean circuit	\mapsto	Boolean function
Recursive program	\mapsto	Partial recursive function
	\cdots	

DENOTATIONAL SEMANTICS IN A NUTSHELL

Syntax	$\xrightarrow{[-]}$	Semantics
Program P	\mapsto	Denotation $\llbracket P \rrbracket$
Arithmetic expression	\mapsto	Number
Boolean circuit	\mapsto	Boolean function
Recursive program	\mapsto	Partial recursive function
	\dots	
Type	\mapsto	Domain
Program	\mapsto	Continuous functions between domains

Abstraction

- mathematical object, implementation/machine independent;
- captures the concept of a programming language construct;
- should relate to practical implementations, though...

Abstraction

- mathematical object, implementation/machine independent;
- captures the concept of a programming language construct;
- should relate to practical implementations, though...

Compositionality

- The denotation of a whole is defined using the *denotations* of its parts;
- $\llbracket P \rrbracket$ represents the contribution of P to *any* program containing P ;
- More flexible and expressive than whole-program semantics.

INTRODUCTION

A BASIC EXAMPLE

Programs

$$C \in \mathbf{Prog} ::= \mathbf{skip} \mid L := A \mid C; C \mid \mathbf{if } B \mathbf{ then } C \mathbf{ else } C \mid \mathbf{while } B \mathbf{ do } C$$

Programs

ranges over a set \mathbb{L} of *locations*
$$C \in \text{Prog} ::= \text{skip} \mid L := A \mid C; C \mid \text{if } B \text{ then } C \text{ else } C \mid \text{while } B \text{ do } C$$

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A + A \mid \dots$$

Programs

$$C \in \mathbf{Prog} ::= \mathbf{skip} \mid L := A \mid C; C \mid \mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C \mid \mathbf{while} \ B \ \mathbf{do} \ C$$

IMP SYNTAX

Arithmetic expressions

ranges over *integers*

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A + A \mid \dots$$

Programs

$$C \in \mathbf{Prog} ::= \text{skip} \mid L := A \mid C; C \mid \text{if } B \text{ then } C \text{ else } C \mid \text{while } B \text{ do } C$$

IMP SYNTAX

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A + A \mid \dots$$

Boolean expressions

$$B \in \mathbf{Bexp} ::= \mathbf{true} \mid \mathbf{false} \mid A = A \mid \neg B \mid \dots$$

Programs

$$C \in \mathbf{Prog} ::= \mathbf{skip} \mid L := A \mid C; C \mid \mathbf{if} \ B \ \mathbf{then} \ C \ \mathbf{else} \ C \mid \mathbf{while} \ B \ \mathbf{do} \ C$$

DENOTATION FUNCTIONS – NAÏVELY

$$\mathcal{A} : \mathbf{Aexp} \rightarrow \mathbb{Z}$$

where

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$

DENOTATION FUNCTIONS – NAÏVELY

$$\begin{aligned}\mathcal{A} &: \mathbf{Aexp} \rightarrow \mathbb{Z} \\ \mathcal{B} &: \mathbf{Bexp} \rightarrow \mathbb{B}\end{aligned}$$

where

$$\begin{aligned}\mathbb{Z} &= \{\dots, -1, 0, 1, \dots\} \\ \mathbb{B} &= \{\text{true}, \text{false}\}\end{aligned}$$

ARITHMETIC EXPRESSIONS?

$$\mathcal{A}[\underline{n}] = n$$

$$\mathcal{A}[A_1 + A_2] = \mathcal{A}[A_1] + \mathcal{A}[A_2]$$

ARITHMETIC EXPRESSIONS?

$$\mathcal{A}[\underline{n}] = n$$

$$\mathcal{A}[A_1 + A_2] = \mathcal{A}[A_1] + \mathcal{A}[A_2]$$

$$\mathcal{A}[L] = ???$$

DENOTATION FUNCTIONS – LESS NAÏVELY

State = $(\mathbb{L} \rightarrow \mathbb{Z})$

DENOTATION FUNCTIONS – LESS NAÏVELY

$$\text{State} = (\mathbb{L} \rightarrow \mathbb{Z})$$

$$\mathcal{A} : \mathbf{Aexp} \rightarrow (\text{State} \rightarrow \mathbb{Z})$$

$$\mathcal{B} : \mathbf{Bexp} \rightarrow (\text{State} \rightarrow \mathbb{B})$$

where

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$

$$\mathbb{B} = \{\text{true}, \text{false}\}.$$

DENOTATION FUNCTIONS – LESS NAÏVELY

$$\text{State} = (\mathbb{L} \rightarrow \mathbb{Z})$$

$$\mathcal{A} : \mathbf{Aexp} \rightarrow (\text{State} \rightarrow \mathbb{Z})$$

$$\mathcal{B} : \mathbf{Bexp} \rightarrow (\text{State} \rightarrow \mathbb{B})$$

$$\mathcal{C} : \mathbf{Prog} \rightarrow (\text{State} \rightarrow \text{State})$$

where

$$\mathbb{Z} = \{\dots, -1, 0, 1, \dots\}$$

$$\mathbb{B} = \{\text{true}, \text{false}\}.$$

SEMANTICS OF ARITHMETIC EXPRESSIONS

$$\mathcal{A}[\underline{n}] = \lambda s \in \text{State} . n$$

$$\mathcal{A}[A_1 + A_2] = \lambda s \in \text{State} . \mathcal{A}[A_1](s) + \mathcal{A}[A_2](s)$$

SEMANTICS OF ARITHMETIC EXPRESSIONS

$$\mathcal{A}[\underline{n}] = \lambda s \in \text{State}. n$$

$$\mathcal{A}[A_1 + A_2] = \lambda s \in \text{State}. \mathcal{A}[A_1](s) + \mathcal{A}[A_2](s)$$

$$\mathcal{A}[L] = \lambda s \in \text{State}. s(L)$$

SEMANTICS OF BOOLEAN EXPRESSIONS

$$\mathcal{B}[\![\text{true}]\!] = \lambda s \in \text{State. true}$$

$$\mathcal{B}[\![\text{false}]\!] = \lambda s \in \text{State. false}$$

$$\mathcal{B}[\![A_1 = A_2]\!] = \lambda s \in \text{State. eq}(\mathcal{A}[\![A_1]\!](s), \mathcal{A}[\![A_2]\!](s))$$

where $\text{eq}(a, a') = \begin{cases} \text{true} & \text{if } a = a' \\ \text{false} & \text{if } a \neq a' \end{cases}$

$$\mathcal{C}[\text{skip}] = \lambda s \in \text{State}. s$$

$$\mathcal{C}[\text{skip}] = \lambda s \in \text{State}. s$$

$$\mathcal{C}[\text{if } B \text{ then } C \text{ else } C'] = \lambda s \in \text{State}. \text{if } (\mathcal{B}[B](s), \mathcal{C}[C](s), \mathcal{C}[C'](s))$$

where $\text{if } (b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases}$

$$\begin{aligned}\mathcal{C}[\text{skip}] &= \lambda s \in \text{State}. s \\ \mathcal{C}[\text{if } B \text{ then } C \text{ else } C'] &= \lambda s \in \text{State}. \text{if}(B[B](s), \mathcal{C}[C](s), \mathcal{C}[C'](s))\end{aligned}$$

This is compositionality!

$$\text{where } \text{if}(b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases}$$

$$\mathcal{C}[\text{skip}] = \lambda s \in \text{State}. s$$

$$\mathcal{C}[\text{if } B \text{ then } C \text{ else } C'] = \lambda s \in \text{State}. \text{if}(\mathcal{B}[B](s), \mathcal{C}[C](s), \mathcal{C}[C'](s))$$

where $\text{if}(b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases}$

$$\mathcal{C}[L := A] = \lambda s \in \text{State}. s[L \mapsto \mathcal{A}[A](s)]$$

where $s[L \mapsto n](L') = \begin{cases} n & \text{if } L' = L \\ s(L) & \text{otherwise} \end{cases}$

$$\mathcal{C}[\text{skip}] = \lambda s \in \text{State}. s$$

$$\mathcal{C}[\text{if } B \text{ then } C \text{ else } C'] = \lambda s \in \text{State}. \text{if}(\mathcal{B}[B](s), \mathcal{C}[C](s), \mathcal{C}[C'](s))$$

where $\text{if}(b, x, x') = \begin{cases} x & \text{if } b = \text{true} \\ x' & \text{if } b = \text{false} \end{cases}$

$$\mathcal{C}[L := A] = \lambda s \in \text{State}. s[L \mapsto \mathcal{A}[A](s)]$$

where $s[L \mapsto n](L') = \begin{cases} n & \text{if } L' = L \\ s(L) & \text{otherwise} \end{cases}$

$$\mathcal{C}[C; C'] = \mathcal{C}[C'] \circ \mathcal{C}[C] = \lambda s \in \text{State}. \mathcal{C}[C'](\mathcal{C}[C](s))$$

INTRODUCTION

A SEMANTICS FOR LOOPS

SEMANTICS OF LOOPS?

This is all very nice, but...

$\llbracket \text{while } B \text{ do } C \rrbracket = ???$

SEMANTICS OF LOOPS?

This is all very nice, but...

$\llbracket \text{while } B \text{ do } C \rrbracket = ???$

Remember:

- $\langle \text{while } B \text{ do } C, s \rangle \rightsquigarrow \langle \text{if } B \text{ then } (C; \text{while } B \text{ do } C) \text{ else skip}, s \rangle$
- we want **compositional** semantics: $\llbracket \text{while } B \text{ do } C \rrbracket$ in terms of $\llbracket C \rrbracket$ and $\llbracket B \rrbracket$
- we want denotational semantics **compatible** with the operational semantics

LOOP AS A FIXPOINT

$$\begin{aligned} \llbracket \text{while } B \text{ do } C \rrbracket &= \llbracket \text{if } B \text{ then } (C; \text{while } B \text{ do } C) \text{ else skip} \rrbracket \\ &= \lambda s \in \text{State. if } (\llbracket B \rrbracket(s), (\llbracket \text{while } B \text{ do } C \rrbracket \circ \llbracket C \rrbracket)(s), s) \end{aligned}$$

LOOP AS A FIXPOINT

$$\begin{aligned} \llbracket \text{while } B \text{ do } C \rrbracket &= \llbracket \text{if } B \text{ then } (C; \text{while } B \text{ do } C) \text{ else skip} \rrbracket \\ &= \lambda s \in \text{State. if } (\llbracket B \rrbracket(s), (\llbracket \text{while } B \text{ do } C \rrbracket \circ \llbracket C \rrbracket)(s), s) \end{aligned}$$

We don't have a direct definition for $\llbracket \text{while } B \text{ do } C \rrbracket$, but a **fixed point equation**!

$$\llbracket \text{while } B \text{ do } C \rrbracket = F_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \text{while } B \text{ do } C \rrbracket)$$

where

$$\begin{aligned} F_{b,c} : (\text{State} \rightarrow \text{State}) &\rightarrow (\text{State} \rightarrow \text{State}) \\ w &\mapsto \lambda s \in \text{State. if } (b(s), (w \circ c)(s), s) \end{aligned}$$

NOW WE HAVE A GOAL

- Why/when does $w = F_{b,c}(w)$ have a solution?
- What if it has several solutions? Which one should be our `while B do C`?

INTRODUCTION

A TASTE OF DOMAIN THEORY

TOTAL FUNCTIONS ARE NOT ENOUGH

Forget about State for a second, consider these equations ($f \in \mathbb{Z} \rightarrow \mathbb{Z}$) :

$$f(x) = f(x) + 1 \tag{1}$$

$$f(x) = f(x) \tag{2}$$

What about their fixed points?

TOTAL FUNCTIONS ARE NOT ENOUGH

Forget about State for a second, consider these equations ($f \in \mathbb{Z} \rightarrow \mathbb{Z}$):

$$f(x) = f(x) + 1 \tag{1}$$

$$f(x) = f(x) \tag{2}$$

What about their fixed points?

- **No** function satisfies equation (1)!
- **All** functions satisfy equation (2)!

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

New rule: We may use **partial** functions $f \in \mathbb{Z} \rightarrow \mathbb{Z}$

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

New rule: We may use partial functions $f \in \mathbb{Z} \rightarrow \mathbb{Z}$

$$f(x) = f(x) + 1$$

has a unique solution: the function \perp that is everywhere undefined

PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

New rule: We may use partial functions $f \in \mathbb{Z} \rightarrow \mathbb{Z}$

$$f(x) = f(x) + 1$$

has a unique solution: the function \perp that is everywhere undefined

But

$$f(x) = f(x)$$

has even more solutions now - all partial functions. Which one should we pick?

'INFORMATION ORDER' ON PARTIAL FUNCTIONS

Partial order on $\mathbb{Z} \rightarrow \mathbb{Z}$:

$w \sqsubseteq w'$ iff for all $s \in \mathbb{Z}$, if w is defined at s , so is w' and moreover $w(s) = w'(s)$
 iff the graph of w is included in the graph of w'

'INFORMATION ORDER' ON PARTIAL FUNCTIONS

Partial order on $\mathbb{Z} \rightarrow \mathbb{Z}$:

$w \sqsubseteq w'$ iff for all $s \in \mathbb{Z}$, if w is defined at s , so is w' and moreover $w(s) = w'(s)$
 iff the graph of w is included in the graph of w'

Least element $\perp \in \mathbb{Z} \rightarrow \mathbb{Z}$:

\perp = totally undefined partial function

'INFORMATION ORDER' ON PARTIAL FUNCTIONS

Partial order on $\mathbb{Z} \rightarrow \mathbb{Z}$:

$w \sqsubseteq w'$ iff for all $s \in \mathbb{Z}$, if w is defined at s , so is w' and moreover $w(s) = w'(s)$
 iff the graph of w is included in the graph of w'

Least element $\perp \in \mathbb{Z} \rightarrow \mathbb{Z}$:

\perp = totally undefined partial function

\perp is the **least** solution to $f(x) = f(x)$ making it a 'canonical' choice.

BACK TO LOOPS (AN EXAMPLE)

$$\mathcal{C} : \mathbf{Prog} \rightarrow (\mathbf{State} \xrightarrow{\quad} \mathbf{State})$$

$$\mathbf{State} = \{X, Y\} \rightarrow \mathbb{Z}$$

BACK TO LOOPS (AN EXAMPLE)

$$\mathcal{C} : \mathbf{Prog} \rightarrow (\mathbf{State} \xrightarrow{\quad} \mathbf{State}) \qquad \qquad \mathbf{State} = \{X, Y\} \rightarrow \mathbb{Z}$$

`[[while X > 0 do (Y := X * Y; X := X - 1)]]`

BACK TO LOOPS (AN EXAMPLE)

$$\mathcal{C} : \mathbf{Prog} \rightarrow (\text{State} \xrightarrow{\quad} \text{State}) \quad \text{State} = \{X, Y\} \rightarrow \mathbb{Z}$$

`[[while X > 0 do (Y := X * Y; X := X - 1)]]`

should be some w such that:

$$w = F_{[[X > 0]], [[Y := X * Y; X := X - 1]]}(w).$$

BACK TO LOOPS (AN EXAMPLE)

$$\mathcal{C} : \mathbf{Prog} \rightarrow (\text{State} \xrightarrow{\quad} \text{State}) \quad \text{State} = \{X, Y\} \rightarrow \mathbb{Z}$$

`[[while X > 0 do (Y := X * Y; X := X - 1)]]`

should be some w such that:

$$w = F_{[[X > 0], [Y := X * Y; X := X - 1]]}(w).$$

That is, we are looking for a fixed point of the following function F :

$$F : (\text{State} \rightarrow \text{State}) \rightarrow (\text{State} \rightarrow \text{State})$$

$$w \mapsto \lambda[X \mapsto x, Y \mapsto y]. \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

APPROXIMATING THE LEAST FIXED POINT

$$F(w) = \lambda[X \mapsto x, Y \mapsto y]. \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

Define recursively $w_n = F^n(w)$, that is $w_0 = \perp$ and $w_{n+1} = F(w_n)$.

APPROXIMATING THE LEAST FIXED POINT

$$F(w) = \lambda[X \mapsto x, Y \mapsto y]. \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

Define recursively $w_n = F^n(w)$, that is $w_0 = \perp$ and $w_{n+1} = F(w_n)$.

$$w_1[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ \text{undefined} & \text{if } x \geq 1 \end{cases}$$

APPROXIMATING THE LEAST FIXED POINT

$$F(w) = \lambda[X \mapsto x, Y \mapsto y]. \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

Define recursively $w_n = F^n(w)$, that is $w_0 = \perp$ and $w_{n+1} = F(w_n)$.

$$w_2[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto y] & \text{if } x = 1 \\ \text{undefined} & \text{if } x \geq 2 \end{cases}$$

APPROXIMATING THE LEAST FIXED POINT

$$F(w) = \lambda[X \mapsto x, Y \mapsto y]. \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

Define recursively $w_n = F^n(w)$, that is $w_0 = \perp$ and $w_{n+1} = F(w_n)$.

$$w_3[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto y] & \text{if } x = 1 \\ [X \mapsto 0, Y \mapsto 2y] & \text{if } x = 2 \\ \text{undefined} & \text{if } x \geq 3 \end{cases}$$

APPROXIMATING THE LEAST FIXED POINT

$$F(w) = \lambda[X \mapsto x, Y \mapsto y]. \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

Define recursively $w_n = F^n(w)$, that is $w_0 = \perp$ and $w_{n+1} = F(w_n)$.

$$w_n[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 < x < n \\ \text{undefined} & \text{if } x \geq n \end{cases}$$

$$w_0 \sqsubseteq w_1 \sqsubseteq \dots \sqsubseteq w_n \sqsubseteq \dots$$

APPROXIMATING THE LEAST FIXED POINT

$$F(w) = \lambda[X \mapsto x, Y \mapsto y]. \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

Define recursively $w_n = F^n(w)$, that is $w_0 = \perp$ and $w_{n+1} = F(w_n)$.

$$w_n[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 < x < n \\ \text{undefined} & \text{if } x \geq n \end{cases}$$

$$w_0 \sqsubseteq w_1 \sqsubseteq \dots \sqsubseteq w_n \sqsubseteq \dots \sqsubseteq w_\infty?$$

APPROXIMATING THE LEAST FIXED POINT

$$F(w) = \lambda[X \mapsto x, Y \mapsto y]. \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w([X \mapsto x - 1, Y \mapsto x \cdot y]) & \text{if } x > 0 \end{cases}$$

Define recursively $w_n = F^n(w)$, that is $w_0 = \perp$ and $w_{n+1} = F(w_n)$.

$$w_n[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } 0 < x < n \\ \text{undefined} & \text{if } x \geq n \end{cases}$$

$$w_0 \sqsubseteq w_1 \sqsubseteq \dots \sqsubseteq w_n \sqsubseteq \dots \sqsubseteq w_\infty$$

$$w_\infty[X \mapsto x, Y \mapsto y] = \bigsqcup_{n \in \mathbb{N}} w_n = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto (x!) \cdot y] & \text{if } x > 0 \end{cases}$$

WE HAVE OUR SEMANTICS

$$F(w_\infty)[X \mapsto x, Y \mapsto y]$$

WE HAVE OUR SEMANTICS

$$F(w_\infty)[X \mapsto x, Y \mapsto y] = \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w_\infty[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases} \quad (\text{definition of } F)$$

WE HAVE OUR SEMANTICS

$$\begin{aligned} F(w_\infty)[X \mapsto x, Y \mapsto y] &= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w_\infty[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases} \quad (\text{definition of } F) \\ &= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto 1 \cdot y] & \text{if } x = 1 \\ [X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases} \quad (\text{definition of } w_\infty) \end{aligned}$$

WE HAVE OUR SEMANTICS

$$\begin{aligned} F(w_\infty)[X \mapsto x, Y \mapsto y] &= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w_\infty[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases} \quad (\text{definition of } F) \\ &= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto 1 \cdot y] & \text{if } x = 1 \\ [X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases} \quad (\text{definition of } w_\infty) \\ &= w_\infty[X \mapsto x, Y \mapsto y] \end{aligned}$$

WE HAVE OUR SEMANTICS

$$\begin{aligned} F(w_\infty)[X \mapsto x, Y \mapsto y] &= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w_\infty[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases} \quad (\text{definition of } F) \\ &= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto 1 \cdot y] & \text{if } x = 1 \\ [X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases} \quad (\text{definition of } w_\infty) \\ &= w_\infty[X \mapsto x, Y \mapsto y] \end{aligned}$$

WE HAVE OUR SEMANTICS

$$\begin{aligned} F(w_\infty)[X \mapsto x, Y \mapsto y] &= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ w_\infty[X \mapsto x - 1, Y \mapsto x \cdot y] & \text{if } x > 0 \end{cases} \quad (\text{definition of } F) \\ &= \begin{cases} [X \mapsto x, Y \mapsto y] & \text{if } x \leq 0 \\ [X \mapsto 0, Y \mapsto 1 \cdot y] & \text{if } x = 1 \\ [X \mapsto 0, Y \mapsto (x - 1)! \cdot x \cdot y] & \text{if } x > 0 \end{cases} \quad (\text{definition of } w_\infty) \\ &= w_\infty[X \mapsto x, Y \mapsto y] \end{aligned}$$

- $F(w_\infty) = w_\infty$ i.e. w_∞ is a fixed point of F ;
- It is the least fixed point;
- Using w_∞ as the denotation of while is compatible with the operational semantics!

$$\llbracket \text{while } X > 0 \text{ do } (Y := X * Y; X := X - 1) \rrbracket = w_\infty$$

THE REST OF THIS COURSE

The course can be roughly divided into two parts:

I: domain theory

II: denotational semantics for the language PCF