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PRACTICALITIES

• My mail: im496@cam.ac.uk.
• Do not hesitate to ask questions!
• Feel free to give me feedback at any point!
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INTRODUCTION



WHAT IS THIS COURSE ABOUT?

• Formal methods: mathematical tools for the specification, development, analysis
and verification of software and hardware systems.

• Programming language theory: design, implementation, tooling and reasoning
for/about programming languages.

• Programming language semantics: what is the (mathematical) meaning of a
program?

Goal: give an abstract and compositional (mathematical) model of programs.
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WHY STUDY SEMANTICS?

• Insight: exposes the mathematical “essence” of programming language ideas.

• Documentation: precise but intuitive, machine-independent specification.
• Language design: feedback from semantics (functional programming, monads &
handlers, linearity...).

• Rigour: powerful way to justify formal methods.
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STYLES OF FORMAL SEMANTICS

• Operational

: meaning of a program in terms of the steps of computation it takes
during execution (see Part IB Semantics).

• Axiomatic

: meaning of a program in terms of a program logic to reason about it (see
Part II Hoare Logic & Model Checking).

• Denotational

: meaning of a program defined abstractly as object of some suitable
mathematical structure (see this course).
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DENOTATIONAL SEMANTICS IN A NUTSHELL

Syntax
J−K⟶ Semantics

Program 𝑃 ↦ Denotation J𝑃K
Arithmetic expression ↦ Number

Boolean circuit ↦ Boolean function
Recursive program ↦ Partial recursive function

…

Type ↦ Domain
Program ↦ Continuous functions between domains
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PROPERTIES OF DENOTATIONAL SEMANTICS

Abstraction

• mathematical object, implementation/machine independent;
• captures the concept of a programming language construct;
• should relate to practical implementations, though...

Compositionality
• The denotation of a whole is defined using the denotations of its parts;
• J𝑃K represents the contribution of 𝑃 to any program containing 𝑃 ;
• More flexible and expressive than whole-program semantics.
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INTRODUCTION
A BASIC EXAMPLE



IMP SYNTAX

Arithmetic expressions

𝐴 ∈ 𝐀𝐞𝐱𝐩 ::= 𝑛 ∣ 𝐿 ∣ 𝐴 + 𝐴 ∣ …

ranges over integers

Boolean expressions

𝐵 ∈ 𝐁𝐞𝐱𝐩 ::= true ∣ false ∣ 𝐴 = 𝐴 ∣ ¬𝐵 ∣ …

Programs

𝐶 ∈ 𝐏𝐫𝐨𝐠 ::= skip ∣ 𝐿 := 𝐴 ∣ 𝐶; 𝐶 ∣ if 𝐵 then 𝐶 else 𝐶 ∣ while 𝐵 do 𝐶

ranges over a set 𝕃 of locations
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DENOTATION FUNCTIONS – NAÏVELY

A : 𝐀𝐞𝐱𝐩 → ℤ

B : 𝐁𝐞𝐱𝐩 → 𝔹

where
ℤ = {… , −1, 0, 1, …}

𝔹 = {true, false}
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ARITHMETIC EXPRESSIONS?

AJ𝑛K = 𝑛

AJ𝐴1 + 𝐴2K = AJ𝐴1K + AJ𝐴2K

AJ𝐿K = ???
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DENOTATION FUNCTIONS – LESS NAÏVELY

State = (𝕃 → ℤ)

A : 𝐀𝐞𝐱𝐩 → (State → ℤ)
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SEMANTICS OF ARITHMETIC EXPRESSIONS

AJ𝑛K = 𝜆𝑠 ∈ State . 𝑛

AJ𝐴1 + 𝐴2K = 𝜆𝑠 ∈ State . AJ𝐴1K(𝑠) + AJ𝐴2K(𝑠)

AJ𝐿K = 𝜆𝑠 ∈ State. 𝑠(𝐿)
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SEMANTICS OF BOOLEAN EXPRESSIONS

BJtrueK = 𝜆𝑠 ∈ State. true

BJfalseK = 𝜆𝑠 ∈ State. false

BJ𝐴1 = 𝐴2K = 𝜆𝑠 ∈ State. eq (AJ𝐴1K(𝑠),AJ𝐴2K(𝑠))
where eq (𝑎, 𝑎′) = {true if 𝑎 = 𝑎′

false if 𝑎 ≠ 𝑎′
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SEMANTICS OF PROGRAMS

CJskipK = 𝜆𝑠 ∈ State. 𝑠

CJif 𝐵 then 𝐶 else 𝐶′K = 𝜆𝑠 ∈ State. if (BJ𝐵K(𝑠), CJ𝐶K(𝑠), CJ𝐶′K(𝑠))
where if (𝑏, 𝑥, 𝑥′) = {𝑥 if 𝑏 = true

𝑥′ if 𝑏 = false

CJ𝐿 := 𝐴K = 𝜆𝑠 ∈ State. 𝑠[𝐿 ↦ AJ𝐴K(𝑠)]
where 𝑠[𝐿 ↦ 𝑛](𝐿′) = {𝑛 if 𝐿′ = 𝐿

𝑠(𝐿) otherwise

CJ𝐶; 𝐶′K = CJ𝐶′K ∘ CJ𝐶K = 𝜆𝑠 ∈ State. CJ𝐶′K (CJ𝐶K(𝑠))
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INTRODUCTION
A SEMANTICS FOR LOOPS



SEMANTICS OF LOOPS?

This is all very nice, but... Jwhile 𝐵 do 𝐶K = ???

Remember:

• ⟨while 𝐵 do 𝐶, 𝑠⟩ ⇝ ⟨if 𝐵 then (𝐶; while 𝐵 do 𝐶) else skip, 𝑠⟩
• we want compositional semantics: Jwhile 𝐵 do 𝐶K in terms of J𝐶K and J𝐵K
• we want denotational semantics compatible with the operational semantics
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LOOP AS A FIXPOINT

Jwhile 𝐵 do 𝐶K = Jif 𝐵 then (𝐶; while 𝐵 do 𝐶) else skipK
= 𝜆𝑠 ∈ State. if (J𝐵K(𝑠), (Jwhile 𝐵 do 𝐶K ∘ J𝐶K)(𝑠), 𝑠)

We don’t have a direct definition for Jwhile 𝐵 do 𝐶K, but a fixed point equation!
Jwhile 𝐵 do 𝐶K = 𝐹J𝐵K,J𝐶K(Jwhile 𝐵 do 𝐶K)

where 𝐹𝑏,𝑐 : (State → State) → (State → State)
𝑤 ↦ 𝜆𝑠 ∈ State. if (𝑏(𝑠), (𝑤 ∘ 𝑐)(𝑠), 𝑠)
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NOW WE HAVE A GOAL

• Why/when does 𝑤 = 𝐹𝑏,𝑐(𝑤) have a solution?
• What if it has several solutions? Which one should be our Jwhile 𝐵 do 𝐶K?

16



INTRODUCTION
A TASTE OF DOMAIN THEORY



TOTAL FUNCTIONS ARE NOT ENOUGH

Forget about State for a second, consider these equations (𝑓 ∈ ℤ → ℤ) :
𝑓 (𝑥) = 𝑓 (𝑥) + 1 (1)
𝑓 (𝑥) = 𝑓 (𝑥) (2)

What about their fixed points?

• No function satisfies equation (1)!
• All functions satisfy equation (2)!
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PARTIAL FUNCTIONS TO THE RESCUE

Both functions should diverge!

New rule: We may use partial functions 𝑓 ∈ ℤ ⇀ ℤ

𝑓 (𝑥) = 𝑓 (𝑥) + 1
has a unique solution: the function ⊥ that is everywhere undefined

But

𝑓 (𝑥) = 𝑓 (𝑥)
has even more solutions now - all partial functions. Which one should we pick?
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‘INFORMATION ORDER’ ON PARTIAL FUNCTIONS

Partial order on ℤ ⇀ ℤ:
𝑤 ⊑ 𝑤 ′ iff for all 𝑠 ∈ ℤ, if 𝑤 is defined at 𝑠, so is 𝑤 ′ and moreover 𝑤(𝑠) = 𝑤 ′(𝑠)

iff the graph of 𝑤 is included in the graph of 𝑤 ′

Least element ⊥ ∈ ℤ ⇀ ℤ:
⊥ = totally undefined partial function

⊥ is the least solution to 𝑓 (𝑥) = 𝑓 (𝑥) making it a ‘canonical’ choice.
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BACK TO LOOPS (AN EXAMPLE)

C : 𝐏𝐫𝐨𝐠 → (State ⇀ State) State = {𝑋 , 𝑌 } → ℤ

Jwhile 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)K
should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).
That is, we are looking for a fixed point of the following function 𝐹 :
𝐹 : (State ⇀ State) → (State ⇀ State)

𝑤 ↦ 𝜆[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]. {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0

20



BACK TO LOOPS (AN EXAMPLE)

C : 𝐏𝐫𝐨𝐠 → (State ⇀ State) State = {𝑋 , 𝑌 } → ℤ

Jwhile 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)K

should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).
That is, we are looking for a fixed point of the following function 𝐹 :
𝐹 : (State ⇀ State) → (State ⇀ State)

𝑤 ↦ 𝜆[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]. {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0

20



BACK TO LOOPS (AN EXAMPLE)

C : 𝐏𝐫𝐨𝐠 → (State ⇀ State) State = {𝑋 , 𝑌 } → ℤ

Jwhile 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)K
should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).

That is, we are looking for a fixed point of the following function 𝐹 :
𝐹 : (State ⇀ State) → (State ⇀ State)

𝑤 ↦ 𝜆[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]. {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0

20



BACK TO LOOPS (AN EXAMPLE)

C : 𝐏𝐫𝐨𝐠 → (State ⇀ State) State = {𝑋 , 𝑌 } → ℤ

Jwhile 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)K
should be some 𝑤 such that:

𝑤 = 𝐹J𝑋>0K,J𝑌 :=𝑋∗𝑌 ;𝑋 :=𝑋−1K(𝑤).
That is, we are looking for a fixed point of the following function 𝐹 :
𝐹 : (State ⇀ State) → (State ⇀ State)

𝑤 ↦ 𝜆[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]. {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0

20



APPROXIMATING THE LEAST FIXED POINT

𝐹(𝑤) = 𝜆[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]. {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤 ([𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦]) if 𝑥 > 0

Define recursively 𝑤𝑛 = 𝐹 𝑛(𝑤), that is 𝑤0 = ⊥ and 𝑤𝑛+1 = 𝐹(𝑤𝑛).

𝑤0 ⊑ 𝑤1 ⊑ … ⊑ 𝑤𝑛 ⊑ …

⊑ 𝑤∞

?

𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] = ⨆
𝑛∈ℕ

𝑤𝑛 = {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ (𝑥!) ⋅ 𝑦] if 𝑥 > 0
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WE HAVE OUR SEMANTICS

𝐹(𝑤∞)[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]

= {[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
𝑤∞[𝑋 ↦ 𝑥 − 1, 𝑌 ↦ 𝑥 ⋅ 𝑦] if 𝑥 > 0 (definition of 𝐹 )

= {
[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦] if 𝑥 ≤ 0
[𝑋 ↦ 0, 𝑌 ↦ 1 ⋅ 𝑦] if 𝑥 = 1
[𝑋 ↦ 0, 𝑌 ↦ (𝑥 − 1)! ⋅ 𝑥 ⋅ 𝑦] if 𝑥 > 0

(definition of 𝑤∞)

= 𝑤∞[𝑋 ↦ 𝑥, 𝑌 ↦ 𝑦]
• 𝐹(𝑤∞) = 𝑤∞ i.e. 𝑤∞ is a fixed point of 𝐹 ;
• It is the least fixed point;
• Using 𝑤∞ as the denotation of while is compatible with the operational semantics!

Jwhile 𝑋 > 0 do (𝑌 := 𝑋 ∗ 𝑌 ; 𝑋 := 𝑋 − 1)K = 𝑤∞
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THE REST OF THIS COURSE

The course can be roughly divided into two parts:

I: domain theory

II: denotational semantics for the language PCF
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