
Markov modelling III:
behaviour of Markov chains
§11.3 – §11.6



Example 11.1.2: dynamical system model of an 
epidemic
Let 𝑋𝑛 ∈ ℕ be the number of infected people on day 𝑛

Example 11.1.2: dynamical system model of an 
epidemic
Let 𝑋𝑛 ∈ ℕ be the number of infected people on day 𝑛, 
and let it evolve according to

𝑋𝑛+1 = 𝑋𝑛 − Recoveries𝑛 + Infections𝑛

(We’ll let the distributions of Recoveries𝑛 and 
Infections𝑛 depend only on 𝑋𝑛, making this a Markov 
model.)



time 𝑛

num. infected 𝑋𝑛

(5 simulation runs)

Example 11.1.2: dynamical system model of an 
epidemic
Let 𝑋𝑛 ∈ ℕ be the number of infected people on day 𝑛



Example 11.1.3 dynamical system model of an online 
platform
Let 𝑋𝑛 ∈ ℕ be the number of users currently using an 
online platform at timestep 𝑛, and let it evolve according to

𝑋𝑛+1 = 𝑋𝑛 + Newusers𝑛 − Departures𝑛

(We’ll let the distributions of Newusers𝑛 and Departures𝑛  
depend only on 𝑋𝑛, making this a Markov model.)

time 𝑛

num. users 𝑋𝑛

(2 simulation 
runs)



It might collapse or explode.

❖ How likely is it that the epidemic 
dies out?

❖ If it doesn’t die out, what’s the 
growth rate?

It might settle down to a stable 
stationary distribution.

❖ How can we calculate this 
distribution?

EPIDEMIC MODEL

ACTIVE USERS MODEL

Markov models can have very different behaviours, 
depending on the distribution of (𝑋𝑛+1|𝑋𝑛).

no longer 
on the 
syllabus



Applications of Markov chains: better computational Bayes

[see Part II Machine Learning and Bayesian Inference]

Bayesian problem setup
Unknown parameter Θ, data model (𝑋|Θ = 𝜃)
We want the posterior belief about the parameter (Θ|𝑋 = 𝑥)

Markov Chain Monte Carlo
1. Devise a Markov chain Θ1 → Θ2 → ⋯ whose stationary distribution is (Θ|𝑋 = 𝑥)
2. Simulate it—run it until it’s close to its stationary distribution—then sample it!

prior
Θ

data
𝑥

posterior
(Θ|𝑥)
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NOTATIONAL ASIDE

The causal diagram for a Markov chain tells us that 𝑋𝑛+1 is generated solely from 𝑋𝑛.
It’s useful to have notation to say how it’s generated.

STATE SPACE DIAGRAM TRANSITION PROBABILITY MATRIX

𝑃 =  
.2 .6 .2
.3 0 .7
0 .5 .5

rain

drizzle

grey

𝑃𝑖𝑗 = ℙ
next state

is 𝑗
in state

𝑖

state space = {rain, drizzle, grey}
𝑋𝑛 = state on day 𝑛

useful sanity check: 
rows sum to 1

𝑋𝑛+1 ∼ Cat(𝑃𝑋𝑛⦁)

row Xn of P



A distribution 𝜋 over the state space is 
called a stationary distribution if

𝑋0 ∼ 𝜋 ⇒  𝑋1 ∼ 𝜋

For Markov chains with a finite state space,

▪ 𝜋 ∈ ℝ≥0
𝑛  where 𝑛 is the number of states

▪ “𝑋𝑖 ∼ 𝜋” means ℙ 𝑋𝑖 = 𝑥 = 𝜋𝑥 for all states 𝑥

If the state space is continuous, let 𝜋 be a likelihood instead.If 𝜋 is a stationary distribution, and if 𝑋0 ∼ 𝜋, 
then by induction 𝑋𝑛 ∼ 𝜋 for all 𝑛 > 0.



A distribution 𝜋 over the state space is 
called a stationary distribution if

𝑋0 ∼ 𝜋 ⇒  𝑋1 ∼ 𝜋

For Markov chains with a finite state space,

▪ 𝜋 ∈ ℝ≥0
𝑛  where 𝑛 is the number of states

▪ “𝑋𝑖 ∼ 𝜋” means ℙ 𝑋𝑖 = 𝑥 = 𝜋𝑥 for all states 𝑥

If the state space is continuous, let 𝜋 be a likelihood instead.If 𝜋 is a stationary distribution, and if 𝑋0 ∼ 𝜋, 
then by induction 𝑋𝑛 ∼ 𝜋 for all 𝑛 > 0.
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QUESTION. What’s the stationary 
distribution of this Markov chain?





Example 11.4.1 (Stationary distribution)
Find the stationary distribution of Cambridge 
weather, generated from this Markov chain:
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Example 11.4.1 (Stationary distribution)
Find the stationary distribution of Cambridge 
weather, generated from this Markov chain:
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drizzle grey
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# let states be rain=0, drizzle=1, grey=2
P = np.array([[.2,.6,.2], [.3,0,.7], [0,.5,.5]])
A = np.concatenate([(P-numpy.eye(3)).T, [[1,1,1]]])
π = np.linalg.lstsq(A, [0,0,0,1])[0]

In matrix notation,
 𝜋 = 𝜋𝑃  
 𝜋 ⋅ 1 = 1
Or, putting these two together,
 𝐴𝜋 = 𝑏

▪ np.linalg.lstsq(A,b) seeks min
𝑥

𝐴𝑥 − 𝑏 2. If 𝐴𝑥 = 𝑏 can be solved, it will find a 

solution. It doesn’t care about redundant equations. 

▪ np.linalg.solve(A,b) solves 𝐴𝑥 = 𝑏. It requires an exact system of equations, 
i.e. 𝐴 square with no redundant equations.

or equivalently 𝜋 𝑃 − 𝐼 = 0 or 𝑃 − 𝐼 T 𝜋 = 0



Detailed balance equations

Lemma. If 𝜋 is a vector that satisfies

𝜋𝑥𝑃𝑥𝑦 = 𝜋𝑦𝑃𝑦𝑥 for all 𝑥, 𝑦

then 𝜋 solves 𝜋 = 𝜋𝑃.

Stationarity equations
If 𝜋 is a stationary distribution, then it 
solves

𝜋 = 𝜋𝑃, 𝜋 ⋅ 1 = 1

Conversely, if 𝜋 is a distribution that 
solves 𝜋 = 𝜋𝑃 then 𝜋 is a stationary 
distribution.

It doesn’t hurt to try to solve detailed balance!
▪ If we’re lucky, it tells us the stationary distribution
▪ If not, we just have to slog through solving 𝜋 = 𝜋𝑃

§11.4

▪ There might be a unique solution
▪ There might be multiple solutions
▪ There might not even be any solutions (for ∞ state spaces)

For Markov Chain Monte Carlo, we aim to design a system that
▪ has a unique stationary distribution
▪ settles down quickly to this distribution 

whatever state we start at



Example 11.4.2 (Stationary distribution)
Find all the stationary distributions of this 
Markov chain:

Let’s solve the stationarity equations
 𝜋 = 𝜋𝑃    and      𝜋 ⋅ 1 = 1

𝜋𝑎

𝜋𝑏
𝜋𝑐

𝜋𝑑

𝜋𝑒

𝜋𝑓

= 𝑝

0
0.5
0.5
0
0
0

+ (1 − 𝑝)

0
0
0

0.2
0.4
0.4

QUESTION. Interpret these solutions 
in terms of the state space diagram.

𝑎

𝑏𝑐 𝑑

𝑒

𝑓

0.4

1

1

1
1

0.5

0.5

0.6

We get multiple solutions:

[There are routines in numpy for getting all solutions. Recall IA NST maths / linear algebra.]



Example 11.4.4 
(Stationary distribution via detailed balance)
Find the stationary distribution of this Markov chain:

𝑎 𝑏 𝑐

𝛼 𝛼

𝛼

1 − 𝛼1 − 𝛼

1 − 𝛼

§11.4



Data Stoat

Challenge.
Data Stoat has gone missing! 

The GPS sensor that she normally carries has 
stopped working. But she still has a low-res 
camera with mobile uplink, so we know what 
sort of scenery she’s in. 

We also have full data from some of Data 
Stoat’s friends, including Correlation Weasel 
and Bayes Ferret.

Can you help find Data Stoat?





Submit your answer as a heatmap. 

Your score will be the probability that you 
assign to Data Stoat’s true location.

Winner will be announced on Christmas day.

Particle Filter to estimate Animal 0’s location



Using a probability model 
to describe data

Fitting a model to the 
dataset

Do my conclusions 
generalize beyond the 

dataset?

linear models

causal diagrams

inventing probability 
models

Likelihood maximization

𝐻1 𝐻2 𝐻3

𝑋1 𝑋2 𝑋3

⋯

⋯

location

observation

▪ invent models for 𝐻 and (𝑋|𝐻)
▪ fit them
▪ choose between them

▪ computational Bayes (particle filter)

CONFIDENCE
▪ what’s my spread of answers between runs?
▪ what’s my holdout performance?

Likelihood as a measure of fit

QUESTIONS— 
confidence, model choice

APPROACHES— 
holdout, Bayesian, frequentist

Bayes’s rule
Monte Carlo

Empirical distributions

Least squares
Brute force optimization

parameter 
identification

Handling random variables 
and likelihood stationarity



THANK YOU!

Pick up a Data Stoat sticker
[on Handouts table tomorrow]

Office hours today 
1–1.30pm in the cafe area
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