Markov modelling Il

behaviour of Markov chains
§11.3—-§11.6



Example 11.1.2: dynamical system model of an
epidemic

Let X,, € N be the number of infected people on day n,
and let it evolve according to

Xn+1 = X, — Recoveries,, + Infections,,

(We’ll let the distributions of Recoveries,, and
Infections,, depend only on X,,, making this a Markov
model.)
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Example 11.1.3 dynamical system model of an online

platform
Let X,, € N be the number of users currently using an
online platform at timestep n, and let it evolve according to

Xn+1 = X, + Newusers,, — Departures,,

(We’ll let the distributions of Newusers,, and Departures,,
depend only on X,,, making this a Markov model.)
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Markov models can have very different behaviours,
depending on the distribution of (X,,,+1|X4,).
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Applications of Markov chains: better computational Bayes

Bayesian problem setup
Unknown parameter O, data model (X|® = 0)
We want the posterior belief about the parameter (0|X = x)

posterior

(8]x)

Markov Chain Monte Carlo
1. Devise a Markov chain ®; = 0, — --- whose stationary distribution is (O|X = x)
2. Simulate it—run it until it’s close to its stationary distribution—then sample it!

[see Part Il Machine Learning and Bayesian Inference]



NOTATIONAL ASIDE

The causal diagram for a Markov chain tells us that X,,, 1 is generated solely from X,,.
It’s useful to have notation to say how it’s generated.

STATE SPACE DIAGRAM TRANSITION PROBABILITY MATRIX
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A distribution T over the state space is
called a stationary distribution if
XO ~TT = X1 ~ TT

If T is a stationary distribution, and if X, ~ m,
then by induction X,, ~ m foralln > 0.
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A distribution T over the state space is ~
called a stationary distribution if For Markov chains with a finite state space,

Xo~m = X ~m = 1 € REY, where n is the number of states

= “X; ~n” means P(X; = x) = m, for all states x
If T is a stationary distribution, and if X, ~ m,

If the state space is continuous, let m be a likelihood instead.
then by induction X,, ~ m foralln > 0. — _/
Drst
‘;-éad:
QUESTION. What'’s the stationary 1z
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Example 11.4.1 (Stationary distribution)
Find the stationary distribution of Cambridge
weather, generated from this Markov chain:
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Example 11.4.1 (Stationary distribution)
Find the stationary distribution of Cambridge
weather, generated from this Markov chain:
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In matrix notation,
T = P or equivalently m(P —I) = 0 or (P — I)T T=20

m-1=1
Or, putting these two together, ~ N0 6
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# let states be rain=0, drizzle=1, grey=2

P = np.array([[.2,.6,.2], [.3,0,.7]1, [0,.5,.511)

A = np.concatenate([(P-numpy.eye(3)).T, [[1,1,1111)
nm = np.linalg.1lstsq(A, [0,0,0,11)[0]

» np.linalg.lstsq(A,b) seeks min|Ax — b|?. If Ax = b can be solved, it will find a
X

solution. It doesn’t care about redundant equations.

np.linalg.solve(A,b) solves Ax = b. It requires an exact system of equations,
i.e. A square with no redundant equations.



Stationarity equations

If 77 is a stationary distribution, then it " There might be a unique solution

= There might be multiple solutions

solves : _

T = 1P, — il =l = There might not even be any solutions (for co state spaces)
Conversely, if 77 is a distribution that For Markov Chain Monte Carlo, we aim to design a system that
solves m = mP then 1 is a stationary = has a unique stationary distribution
distribution. = settles down quickly to this distribution

whatever state we start at

Detailed balance equations

It doesn’t hurt to try to solve detailed balance!

= |f we're lucky, it tells us the stationary distribution
ﬂxny = T[ypyx forall x,y = |f not, we just have to slog through solving m = P

Lemma. If 77 is a vector that satisfies

then 77 solves m = 7tP.



Find all the stationary distributions of this
Markov chain:
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Let’s solve the stationarity equations
m=nP and m-1=1

We get multiple solutions:

Ta] 0] 0

Tp 0.5 0

e _ 0.5 +(1—p) 0 QUESTION. Interpret these solutions
ma| =Pl 0 P)10.2 in terms of the state space diagram.
Tte 0 0.4

Ty | L 0 10.4]

[There are routines in numpy for getting all solutions. Recall IA NST maths / linear algebra.]



Example 11.4.4
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Data Stoat has gone missing!

The GPS sensor that she normally carries has
stopped working. But she still has a low-res
camera with mobile uplink, so we know what
sort of scenery she’s in.

We also have full data from some of Data
Stoat’s friends, including Correlation Weasel
and Bayes Ferret.

Can you help find Data Stoat?
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Particle Filter to estimate Animal Q’s location

Submit your answer as a heatmap. 500
Your score will be the probability that you

assign to Data Stoat’s true location.

Winner will be announced on Christmas day. 400
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inventing probability

— / models
Hy Hy Hs ++ location Using a probability model linear mod Is
\ \ \ to describe data %a ramgtet(
identification
X4 X5 X3 +-+ observation Handling random variables causal dla rams
and likelihood statlonarlty
invent models for H and (X|H
PR (X|H) Fitting a model to the Likelihood maximization
choose between them dataset Likelihood as a measure of fit
Least squares
computational Bayes (particle filter) Brute force optimization
QUESTIONS—
CONFIDENCE Do my conclusions / confidence, model choice
=  what’s my spread of answers between runs? :
generalize beyond the
= what’s my holdout performance? dataset? APPROACHES—
ataset: holdout, Bayesian, frequentist

Bayes’s rule
Monte Carlo
Empirical distributions




THANK YOU!

Pick up a Data Stoat sticker

[on Handouts table tomorrow]

Office hours today
1-1.30pm in the cafe area
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