
Part IV
Probability models for sequences

or: why ChatGPT is just another probability model
trained mostly by likelihood maximization
QUESTION. What does GPT stand for?

[Lecture notes for this part are available on the course website]

A piece of text is a sequence of tokens from a finite alphabet.

GPT tokenizer: https://platform.openai.com/tokenizer

ChatGPT-4o uses an alphabet of ≈200k tokens.

https://platform.openai.com/tokenizer

A piece of text is a sequence of tokens from a finite alphabet.

▪ Write a piece of text of length ℓ as 𝑥 = 𝑥0𝑥1𝑥2 ⋯ 𝑥ℓ

▪ We want code to generate a random text 𝑋

How might we generate a random piece of text that looks like English?

def X():
 ???

▪ Our code should have learnable parameters, call them 𝜃

▪ We’ll collect a corpus of documents {𝑥(1), 𝑥(2), … , 𝑥(𝑛)}

and tune 𝜃 to make our code produce outputs similar to these documents

▪ This is a probability model, and the random variable 𝑋 has a likelihood function Pr𝑋(𝑥; 𝜃)

▪ We can fit the model by likelihood maximization: max
𝜃

σ𝑖 log Pr𝑋 𝑥(𝑖); 𝜃

def X(θ):
 ???

A piece of text is a sequence of tokens from a finite alphabet.

How might we generate a random piece of text that looks like English?

Why might this be interesting?

Text completion:
we give it initial text 𝑥 = 𝑥0𝑥1 ⋯ 𝑥𝑚 and it completes the text. To make the perfect

pasta sauce, first ␣

In probability language, text completion is just
sampling from a conditional distribution:

𝑋 𝑋0 = 𝑥0, … , 𝑋𝑚 = 𝑥𝑚)

▪ This is how we talked with LLMs
prior to ChatGPT.

▪ Current LLMs are still based on the
same sort of probability models,
fine-tuned to work better in chats.

A piece of text is a sequence of tokens from a finite alphabet.

How might we generate a random piece of text that looks like English?

Why might this be interesting?

So, what might this code look like?

▪ def X(θ): return ???

▪ We also want its likelihood Pr𝑋(𝑥; 𝜃) for training

Markov model
Based on a graph of token-to-token transitions.

“to foreign princes lie in your blessing god who

shall have the prince of rome □”

to

be
or

sleep
afeard

Probability model: generate 𝑋 by starting at □ and jumping from token to token until we hit □ again.

□ → 𝑋1 → 𝑋2 → ⋯ → 𝑋𝐿 → □

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥ℓ; 𝜃 = 𝜃□,𝑥1
𝜃𝑥1,𝑥2

⋯ 𝜃𝑥ℓ−1,𝑥ℓ
𝜃𝑥ℓ,□

Choose the jumps according to a transition probability matrix 𝜃 ∈ ℝ𝑊×𝑊:

end-of-string
token

§12.2

ℙ 𝑋𝑛+1 = 𝑣 𝑋𝑛 = 𝑢 = 𝜃𝑢,𝑣

The likelihood function is easy:

Andrei Markov (1856–1922)

Markov’s trigram model
“to be wind-shaken we will be glad to receive at

once for the example of thousands □”

be contented to be what they

who is to be executed this

in him to be truly touched

took occasion to be quickly woo’d

Probability model: Generate 𝑋 by starting with □□ and repeatedly generating the next
word based on the preceding two, until we produce □.

Pr𝑋 𝑥1𝑥2 ⋯ 𝑥𝑛 = Pr 𝑥1 □□ Pr 𝑥2 □𝑥1 Pr 𝑥3 𝑥1𝑥2 × ⋯ × Pr 𝑥𝑛 𝑥𝑛−2𝑥𝑛−1 Pr(□|𝑥𝑛−1𝑥𝑛)

𝑋1 𝑋2 𝑋3 𝑋4 𝑋𝑁 □⋯□ □

§12.2

Different ways to write the trigram model:

𝑋1 𝑋2 𝑋3 𝑋4 𝑋𝑁 □⋯□ □

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁 𝑋𝑁□⋯

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯
deterministic bookkeeping
function 𝑓 (𝑥, 𝑦), 𝑧 = (𝑦, 𝑧)

(𝑥, 𝑦)

𝑋new

random generation

A Markov Chain is a sequence in which
each item is generated based only on
the preceding item.

The trigram model is a Markov chain,
whose items are word-pairs.

§12.2

Trigram character-by-character model trained on Shakespeare:
“on youghtlee for vingiond do my not whow’d no crehout withal

deepher forand a but thave a doses?”

5-gram character-by-character model trained on Shakespeare:
“once is pleasurely. though the the with them with

comes in hand. good. give and she story tongue.”

□□ □𝑋1 𝑋1𝑋2 𝑋2𝑋3 𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯
deterministic bookkeeping
function 𝑓 (𝑥, 𝑦), 𝑧 = (𝑦, 𝑧)

(𝑥, 𝑦)

𝑋new

random generation

QUESTION. What are the advantages and disadvantages
of a long history window?

QUESTION. Can we do better than using a fixed history
window?

□□□□ □□□𝑋1 □□𝑋1𝑋2 □𝑋1𝑋2𝑋3 𝑋𝑁−3𝑋𝑁−2𝑋𝑁−1𝑋𝑁

𝑋1 𝑋2 𝑋3 □𝑋4

⋯

Can we get a better model by
using more history?

§12.2

learnable function
𝑓𝜃 𝑠, 𝑥 = (𝑝, 𝑠new)

𝑝

𝑋new

random generation
𝑋new ∼ Cat(𝑝)

i.e. ℙ 𝑋new = 𝑥 = 𝑝 𝑥

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

RNN character-by-character model trained on Shakespeare
[due to Andrej Karpathy]:

“PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.”

Recurrent Neural Network (RNN)
Let’s use a neural network to learn an appropriate history digest.
This is more flexible than choosing a fixed history window.

§12.2

0 𝑠1 𝑠2 𝑠3 𝑠𝑁𝑓𝜃

∅ 𝑋1 𝑋2 □𝑋3

⋯𝑓𝜃 𝑓𝜃 𝑓𝜃𝑝1 𝑝2 𝑝3 𝑝𝑁

Recurrent Neural Network (RNN)
Let’s use a neural network to learn an appropriate history digest. This is
more flexible than choosing a fixed history window.

§12.2

For training, we need a formula for the likelihood Pr𝑋 𝑥; 𝜃 :

Pr𝑋 𝑥1, … , 𝑥𝑛 = Pr𝑋1
𝑥1 Pr𝑋2

𝑥2 𝑥1

 ⋯ × Pr𝑋𝑛
𝑥𝑛 𝑥1 ⋯ 𝑥𝑛−1 Pr𝑋𝑛+1

(□|𝑥1 ⋯ 𝑥𝑛)

= 𝑝1 𝑥1
𝑝2 𝑥2

× ⋯ × 𝑝𝑛 𝑥𝑛
𝑝𝑛+1 □

where each 𝑝𝑖 is a function of 𝑥1 ⋯ 𝑥𝑖−1

by the chain rule for probability

def loglik(xstr):
 res = 0
 s,x = 0,□
 for xnext in xstr + “□”:
 s,p = 𝑓𝜃(s,x)
 res += log(p[xnext])
 x = xnext
 return res

Random variable notation:

𝑋𝑖 ∼ Cat(𝑝𝑖) i.e. ℙ 𝑋𝑖 = 𝑥 = 𝑝𝑖 𝑥

𝑠𝑖+1, 𝑝𝑖+1 = 𝑓𝜃(𝑠𝑖 , 𝑋𝑖)

Chain rule for probability:
ℙ 𝐴, 𝐵, 𝐶 = ℙ 𝐴 ℙ 𝐵 𝐴 ℙ(𝐶|𝐴, 𝐵)

No one has managed to make RNNs produce coherent text longer than ≈20 tokens

Perhaps we’d do better with a model where the next token is allowed to depend on the entire sequence so far.

Th
e

fo
llo

w
in

g

is a classic

C
h

in
ese

p
o

em

fro
m

th
e

Tan
g

d
yn

asty

, tran
slated

in
to

En
glish

.

some
cunning
function

𝑓𝜃

𝑝1

𝑝2

𝑝3

⋮

probability
distribution
over tokens

next token
is chosen
at random

What would a suitable 𝑓𝜃 look like?

▪ It has to accept an input sequence of any length

▪ It has to be differentiable with respect to 𝜃, so that
we can run numerical optimization on Pr(𝑥; 𝜃)

▪ … so while loops and recursion are out!

LECTURE 4
it’s easy to work with functions made out of matrix multiplication
and element-wise non-linear maps.

The Transformer architecture is a cleverly designed 𝑓 function.

The following is a classic

464 1708 318 257 6833

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

Split the text into tokens 𝑡𝑖 ∈ {1, … , 𝑊}

Turn each token into a vector 𝑒𝑖 ∈ ℝ𝑑

by looking up an embedding matrix 𝐸 ∈ ℝ𝑊×𝑑

1 2 3 4 5
⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

For each position 𝑖 ∈ 1, … , 𝑛
create a position-embedding vector 𝑡𝑖 ∈ ℝ𝑑

sin 𝑖
cos 𝑖

sin Τ𝑖 2
cos Τ𝑖 2

⋮

Let 𝑥𝑖 = 𝑒𝑖 + 𝑡𝑖 ∈ ℝ𝑑+ + + + +

𝑥𝑖

This allows the attention mechanism to say
e.g. “give me the item 3 time-steps back”

W = vocab size

d is the working
dimensionality, e.g. d=200

E is a matrix to be
learnt in training

What does 𝑓 look like? How is it built out of differentiable functions?

The following is a classic

464 1708 318 257 6833

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

Split the text into tokens 𝑡𝑖 ∈ {1, … , 𝑊}

Turn each token into a vector 𝑒𝑖 ∈ ℝ𝑑

by looking up an embedding matrix 𝐸 ∈ ℝ𝑊×𝑑

1 2 3 4 5
⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

⋅
⋅
⋅

For each position 𝑖 ∈ 1, … , 𝑛
create a position-embedding vector 𝑡𝑖 ∈ ℝ𝑑

sin 𝑖
cos 𝑖

sin Τ𝑖 2
cos Τ𝑖 2

⋮

Let 𝑥𝑖 = 𝑒𝑖 + 𝑡𝑖 ∈ ℝ𝑑+ + + + +

𝑥𝑖

𝑞𝑖

𝑘𝑖

𝑣𝑖

For each position 𝑖 ∈ {1, … , 𝑛},
let 𝑞𝑖 = 𝑄𝑥𝑖, let 𝑘𝑖 = 𝐾𝑥𝑖, let 𝑣𝑖 = 𝑉𝑥𝑖

∈ ℝ𝑒 ∈ ℝ𝑒 ∈ ℝ𝑑

𝑦1 𝑦2 𝑦𝑗 𝑦4 𝑦5
For each position 𝑗 ∈ {1, … , 𝑛} we’ll produce

an output vector 𝑦𝑗 ∈ ℝ𝑑, as follows:

1. let 𝑠𝑗𝑖 = 𝑞𝑗 ⋅ 𝑘𝑖

2. let 𝑎𝑗∗ = softmax Τ𝑠𝑗∗ 𝑒

3. let 𝑦𝑗 = Σ𝑖𝑎𝑗𝑖𝑣𝑖
𝑔

Convert the final value 𝑦𝑛 into a distribution over tokens
𝑝 ∈ ℝ𝑊 using some neural network 𝑝 = 𝑔 𝑦𝑛; 𝜃

𝑝

𝑋𝑛+1 Generate the next token by 𝑋𝑛+1 ∼ Cat(𝑝)

𝑥1 𝑥3 𝑥4 𝑥5

Q,K,V are matrices to
be learnt in training

qi = query ki = key vi = value

ATTENTION MECHANISM

▪ Consider a dictionary
{ki:vi for i in range(n)}.

▪ To produce the output in position j, I’ll
look up the value for key qj in this
dictionary.

▪ But there are never exact matches, and
anyway exact matching isn’t a nice
optimizable function. Instead use a
“fuzzy lookup” based on how well qj
matches ki.

convert the attention
scores into a vector
aj that sums to 1

sji = attention to pay
to position I when
producing output j

The queries and keys say how much attention each position should pay
to each other position. The values are some internal representation
of “relevant content”, like the state variable s in the RNN.

In practice, it’s useful to use
several passes of the
attention mechanism.

The following is a classic

embedding layer
convert text to vectors in ℝ𝑑

attention layer

process the output

attention layer

process the output

attention layer

process the output

readout next word 𝑋𝑛+1

There’s still an explicit likelihood
function, and it’s easy to code it
(but it’s messy to write out an explicit formula).

The history of random sequence models

Markov
chains TransformersRNN

1913 1986 2017

LSTM

1997

pure statistical
language modelling:
invent a probability
model, then fit it
with MLE

linguistic
theories

non-
probabilistic
metrics

larger
scale

Hidden
Markov
models

1966 2022

+ fine-tuning

reasoning?

	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Different ways to write the trigram model:
	Slide 15: Can we get a better model by using more history?
	Slide 16: Recurrent Neural Network (RNN)
	Slide 17: Recurrent Neural Network (RNN)
	Slide 18
	Slide 19
	Slide 21: The Transformer architecture is a cleverly designed f function.
	Slide 22: What does f look like? How is it built out of differentiable functions?
	Slide 23
	Slide 24: The history of random sequence models

