Part IV
Probability models for sequences

or: why ChatGPT is just another probability model
trained mostly by likelihood maximization

' - : s
QUESTION. What does GPT stand for? G enenat Ve P"’e <r ot ned\ T'G“Sﬁ'\“

1
prob- mocked Por amehvy eovinsgt
by Ml

[Lecture notes for this part are available on the course website]

A piece of text is a sequence of tokens from a finite alphabet.

ChatGPT-40 uses an alphabet of 200k tokens.

The following is a classic Chinese poem from the Tang dynasty, translated
into English.

The dawn light strikes the head of my bed
I see leaves

[464, 1708, 318, 257, 6833, 3999, 21247, 422, 262, 18816, 30968, 11,
14251, 656, 3594, 13, 198, 198, 464, 17577, 1657, 8956, 262, 1182, 286,
616, 3996, 198, 40, 766, 5667, 220]

TOKEN IDS

GPT tokenizer: https://platform.openai.com/tokenizer

https://platform.openai.com/tokenizer

A piece of text is a sequence of tokens from a finite alphabet.

How might we generate a random piece of text that looks like English?

= Write a piece of text of length £ as x = xyx1Xx5 - X def X():

???

" We want code to generate a random text X

= Qur code should have learnable parameters, call them 6 def X(0):

= We’ll collect a corpus of documents {£(1),£(2), ___,E(n)} P??

and tune 6 to make our code produce outputs similar to these documents

= This is a probability model, and the random variable X has a likelihood function Pry (x; 6)

= We can fit the model by likelihood maximization: max Y.;log Prg(g(i); 9)

A piece of text is a sequence of tokens from a finite alphabet.

How might we generate a random piece of text that looks like English?

Why might this be interesting?

Text completion:

e e el B : To make the perfect
we give it initial text x = xyx; --- x,;, and it completes the text. vasta sauce, first

» This is how we talked with LLMs

In probability language, text completion is just prior to ChatGPT.
sampling from a conditional distribution: = Current LLMs are still based on the
N . same sort of probability models,
(K |XO = XQy +y Xm — xm) fine-tuned to work better in chats.

A piece of text is a sequence of tokens from a finite alphabet.

How might we generate a random piece of text that looks like English?

Why might this be interesting?

So, what might this code look like?

= def X(0): return ???
" We also want its likelihood Pry(x; 6) for training

ena:of-string
token

Markov model
Based on a graph of token-to-token transitions.

“to foreign princes lie in your blessing god who
shall have the prince of rome O”

Probability model: generate X by starting at 0 and jumping from token to token until we hit O again.

O->X{ > X, > > X, >0

Choose the jumps according to a transition probability matrix 6 € RWV>*W: @ %9, 1
(oW Syms =
P(Xp41 = v|X, =u) = O

The likelihood function is easy:

Pl‘g(?ﬁxz e Xp 0) = Hm,xl Hxl,xz ng_l,Xngg,D

R VR
Rt 2, Andrei Markov (1856-1922)

be contented to be what they Markov’s trlgram model
who is to be executed this
in him to be truly touched “to be wind-shaken we will be glad to receive at

took occasion to be quickly woo'd once for the example of thousands 0O”

Probability model: Generate X by starting with OO and repeatedly generating the next
word based on the preceding two, until we produce 0O.

Prg(ﬁxz - Xp) = Pr(xg|00) Pr(x;|Oxq) Prxs|xgx;) X - X Prx,|x,_2xn—1) Pr(0)x,_1x,)

WX\

O O 4’X14'X24'X3%X4 . N

Different ways to write the trigram model:

O O Xi—X;——X3—X, —Xy—— O
o0 ——0X;—— X X, —— Xy Xs—— - —Xy_1Xy——XyO
r‘anolc’;‘r"at_lw\
X
D\u fffff Dm\ﬁ ****** WX :szi% ****** SR IR

X, X, X; X, 0

A Markov Chain is a sequence in which
each item is generated based only on
the preceding item.

The trigram model is a Markov chain,
whose items are word-pairs.

deterministic bookkeeping
function f((x,y),2) = (y,2)

(x,y)

\ random generation

Xnew

Can we get a better model by
using more history?

______ deterministic bookkeeping
. [ox, XX, X X5 Xy_1Xy function £((x,y),2) = (v, 2)
\ X X \ X (x,¥) .
X1 X5 X3 X4 O \ random generation
Trigram character-by-character model trained on Shakespeare: XneW

“on youghtlee for vingiond do my not whow’d no crehout withal
deepher forand a but thave a doses?”

O0O0oa DDDDXl DDDX1X2 DDX1X2X3 °e DXN—3XN—2XN—1XN
X, X, Xz X, O

5-gram character-by-character model trained on Shakespeare:
“once 1s pleasurely. though the the with them with
comes in hand. good. give and she story tongue.”

QUESTION. What are the advantages and disadvantages
of a long history window?

QUESTION. Can we do better than using a fixed history
window?

Recurrent Neural Network (RNN)

Let’s use a neural network to learn an appropriate history digest.
This is more flexible than choosing a fixed history window.

learnable function

() — > S1 > Sy > S3 . P — > SN r _
el ey, ey T L ey fo(s,x) = (P Snew)
- / / * \ X P random generation
? X X2 X3 . Xoow Xnew ~ Cat(p)

i.e. P(Xpew = x) = [plx

RNN character-by-character model trained on Shakespeare
[due to Andrej Karpathy]:

“PANDARUS:
Alas, I think he shall be come approached and the day

When little srain would be attain’d into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.”

Recurrent Neural Network (RNN)

Let’s use a neural network to learn an appropriate history digest. This is

more flexible than choosing a fixed history window.) ,
Random variable notation:

,,,,,,,,, CEST . . -
0 ’pll fol 7 zi fol ¥ (Si+1,Pi+1) = fo(si, Xi)

? X, X, X, 0

Chain rule for probability:
P(A,B,C) = IP(A) P(B|A) P(C|A, B)

For training, we need a formula for the likelihood Prz(g; 8):

Pry(x1, ..., xn) = Pry (x1) Pry, (xp]x4)
@& Pry (xplxq - xp_1)Pry . (Olxq - xp) def loglik(xstr):
by the chain rule for probability res = 0
S,X = 0,0
for X, in xstr + “O”:

= [Pl [P2le, X - & [Prlx, NP1l ;P = fo(s,X%)
res += log(p[xmmt])

where each p; is a function of x; -~ x;_4 ¥ = x
— “next

return res

No one has managed to make RNNs produce coherent text longer than =20 tokens

Perhaps we’d do better with a model where the next token is allowed to depend on the entire sequence so far.

What would a suitable f4 look like?

= |t has to accept an input sequence of any length

= |t has to be differentiable with respect to £, so that some

we can run numerical optimization on Pr(x; 0) cunning
function 28

= ..so while loops and recursion are out! probability
o P2 distribution

P3| over tokens

. hext token
{ | ischosen
""" at random

3yl
S|
e

woJy
a2y}
due|

J1SSe|d
9sauIY)D
waod
Ayseulp
paje|sues

—h
o
5]
2.
>
oQ

The following is a classic Chinese poem from the Tang dynasty, translated

into English.

LECTURE 4
it’s easy to work with functions made out of matrix multiplication
and element-wise non-linear maps.

4
X—>) X\‘ —_— (v
s fo(x)

edge weights

f = nn.Sequential(
nn.Linear(1,4), nn.LeakyRelLU(),
nn.Linear(4,20), nn.LeakyRelLU(),
nn.Linear(20,20), nn.LeakyRelLU(Q),
nn.Linear(20,1)

) : l:]

« £l €[} o [l - |2

€ R <Ry
® € R’ €R®

parameters ¢ = |

The Transformer architecture is a cleverly designed f function.

The following is a classic Split the text into tokens t; € {1, ..., W}
464 1708 318 257 6833 Turn each token into a vector e; € R¢
” ” ” ” ” by looking up an embedding matrix E € RW*4
For each position i € {1, ..., n} [sin(i)]
1 2 3 4 > -, - d | cos(i)
create a position-embedding vector t; € R
. : : . . sin(i/2)
k . & . . . & cos(i/2)
/ J / J v P
® ©, ® ® ® letx; = e; + t; € R?

Xi

ATTENTION MECHANISM

Consider a dictionary
§k:v; for i in range(n)l.

To produce the output in position j, Il
look up the value for key q; in this
dictionary.

But there are never exact matches, and
anyway eXact matching isnt a nice
optimizable function. Instead uvse a
“fuzzy lookup™ based on how well g
matches K.

|

|

Xn+1

For each position i € {1, ...,n},

let q; = Qx;, let ki = Kx;, let v; =Vx; Q,K,V are matrices to
€ R® € R¢ € R% be learnt in training

q: = query Kk, =Kkey v, = value

The queries and keys say how much attention each position should pay
to each other position. The values are some internal representation
of “relevant content”, like the state variable s in the RNN,

For each position j € {1, ..., n} we’ll produce

d . 5 ji = attention to pay
an output vector y; € R, as follow to position | when
1. let Sji = qj - ki producmg output j
2. letaj, = Softmax(sj* / \/E) «—— convert the attention

3. letv: =X:a::v: scores into a vector
Yj = St aj that sums to |

Convert the final value y,, into a distribution over tokens
p € R" using some neural network p = g(y,; 9)

Generate the next token by X,,,; ~ Cat(p)

The following is a classic

l [

embedding layer

convert text to vectors in]Rd

attention layer

[process the output]

4>A-><
attention layer

[process the output]

4—>‘—/\

attention layer

[process the output]

l

In practice, it’s useful to use
several passes of the
attention mechanism.

There’s still an explicit likelihood
function, and it’s easy to code it
(but it’s messy to write out an explicit formula).

[readout]—> next word X,

The history of random sequence models

Hidden
Markov Markov
chains models RNN LSTM Transformers + fine-tuning
1913 1966 1986 1997 2017 2022
linguistic non- larger reasoning?
theories probabilistic scale

metrics

pure statistical
language modelling:
invent a probability
model, then fit it
with MLE

	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Different ways to write the trigram model:
	Slide 15: Can we get a better model by using more history?
	Slide 16: Recurrent Neural Network (RNN)
	Slide 17: Recurrent Neural Network (RNN)
	Slide 18
	Slide 19
	Slide 21: The Transformer architecture is a cleverly designed f function.
	Slide 22: What does f look like? How is it built out of differentiable functions?
	Slide 23
	Slide 24: The history of random sequence models

