Part IV Probability models for sequences

or: why ChatGPT is just another probability model trained mostly by likelihood maximization

QUESTION. What does GPT stand for?

Generative Pre-trained Transformer

1 prob-model parameters kavnt
by mk

A piece of text is a sequence of tokens from a finite alphabet.

ChatGPT-40 uses an alphabet of \approx 200k tokens.

```
The following is a classic Chinese poem from the Tang dynasty, translated
 into English.
The dawn light strikes the head of my bed
I see leaves
 TEXT
       TOKEN IDS
[464, 1708, 318, 257, 6833, 3999, 21247, 422, 262, 18816, 30968, 11,
14251, 656, 3594, 13, 198, 198, 464, 17577, 1657, 8956, 262, 1182, 286,
616, 3996, 198, 40, 766, 5667, 220]
 TEXT
       TOKEN IDS
```

GPT tokenizer: https://platform.openai.com/tokenizer

A piece of text is a sequence of tokens from a finite alphabet.

How might we generate a random piece of text that looks like English?

- Write a piece of text of length ℓ as $\underline{x} = x_0 x_1 x_2 \cdots x_{\ell}$
- We want code to generate a random text \underline{X}

def X():
 ???

- lacktriangle Our code should have learnable parameters, call them heta
- We'll collect a corpus of documents $\{\underline{x}^{(1)},\underline{x}^{(2)},...,\underline{x}^{(n)}\}$ and tune θ to make our code produce outputs similar to these documents
- def X(θ):
 ???

- This is a probability model, and the random variable X has a likelihood function $Pr_X(\underline{x}; \theta)$
- We can fit the model by likelihood maximization: $\max_{\theta} \sum_{i} \log \Pr_{\underline{X}}(\underline{x}^{(i)}; \theta)$

A piece of text is a sequence of tokens from a finite alphabet.

How might we generate a random piece of text that looks like English?

Why might this be interesting?

Text completion:

we give it initial text $\underline{x} = x_0 x_1 \cdots x_m$ and it completes the text.

In probability language, text completion is just sampling from a conditional distribution:

$$\left(\underline{X} \mid X_0 = x_0, \dots, X_m = x_m\right)$$

To make the perfect pasta sauce, first _

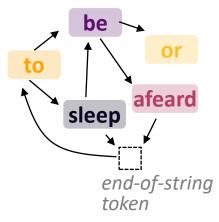
- This is how we talked with LLMs prior to ChatGPT.
- Current LLMs are still based on the same sort of probability models, fine-tuned to work better in chats.

- A piece of text is a sequence of tokens from a finite alphabet.
- How might we generate a random piece of text that looks like English?

Why might this be interesting?

So, what might this code look like?

- def X(θ): return ???
- We also want its likelihood $Pr_X(\underline{x}; \theta)$ for training



Markov model

Based on a graph of token-to-token transitions.

"to foreign princes lie in your blessing god who shall have the prince of rome $\square^{\prime\prime}$

Probability model: generate X by starting at \square and jumping from token to token until we hit \square again.

$$\square \to X_1 \to X_2 \to \cdots \to X_L \to \square$$

Choose the jumps according to a transition probability matrix $\theta \in \mathbb{R}^{W \times W}$:

$$\mathbb{P}(X_{n+1} = v | X_n = u) = \theta_{u,v}$$

The likelihood function is easy:

$$\Pr_{\underline{X}}(x_1x_2\cdots x_\ell;\theta) = \theta_{\square,x_1}\theta_{x_1,x_2}\cdots\theta_{x_{\ell-1},x_\ell}\theta_{x_\ell,\square}$$

Andrei Markov (1856–1922)

be contented **to be** what they who is **to be** executed this in him **to be** truly touched took occasion **to be** quickly woo'd

Markov's trigram model

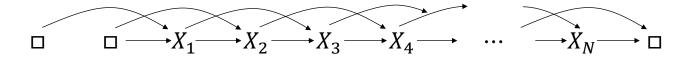
"to be wind-shaken we will be glad to receive at once for the example of thousands \square "

Probability model: Generate \underline{X} by starting with $\Box\Box$ and repeatedly generating the next word based on the preceding **two**, until we produce \Box .

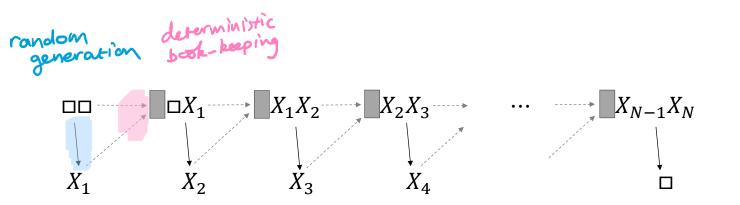
$$\Pr_{\underline{X}}(x_1x_2\cdots x_n) = \Pr(x_1|\Box\Box) \Pr(x_2|\Box x_1) \Pr(x_3|x_1x_2) \times \cdots \times \Pr(x_n|x_{n-2}x_{n-1}) \Pr(\Box|x_{n-1}x_n)$$

$$\square \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow X_4 \longrightarrow \cdots \longrightarrow X_N \longrightarrow \square$$

Different ways to write the trigram model:

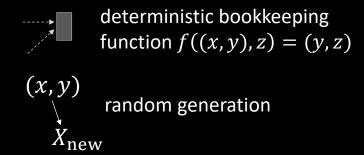


$$\square \square \longrightarrow \square X_1 \longrightarrow X_1 X_2 \longrightarrow X_2 X_3 \longrightarrow \cdots \longrightarrow X_{N-1} X_N \longrightarrow X_N \square$$

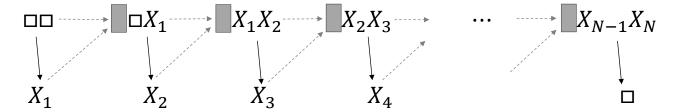


A *Markov Chain* is a sequence in which each item is generated based only on the preceding item.

The trigram model is a Markov chain, whose items are word-pairs.

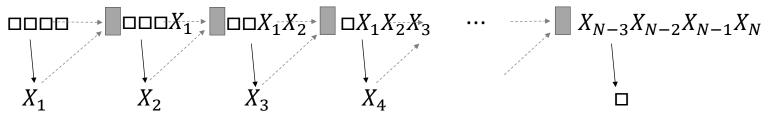


Can we get a better model by using more history?



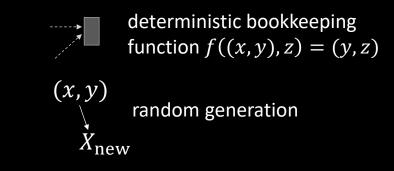
Trigram character-by-character model trained on Shakespeare:

"on youghtlee for vingiond do my not whow'd no crehout withal deepher forand a but thave a doses?"



5-gram character-by-character model trained on Shakespeare:

"once is pleasurely. though the the with them with comes in hand. good. give and she story tongue."

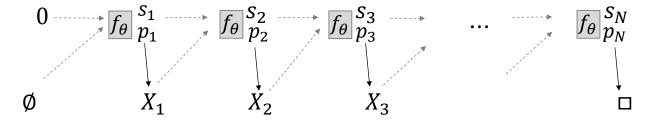


QUESTION. What are the advantages and disadvantages of a long history window?

QUESTION. Can we do better than using a fixed history window?

Recurrent Neural Network (RNN)

Let's use a neural network to learn an appropriate history digest. This is more flexible than choosing a fixed history window.



RNN character-by-character model trained on Shakespeare [due to Andrej Karpathy]:

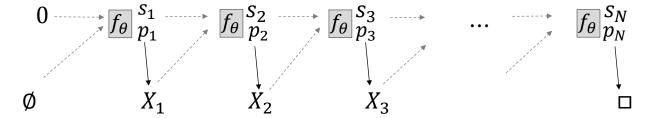
"PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep."

```
learnable function f_{\theta}(s,x) = (p,s_{\text{new}}) p random generation X_{\text{new}} \sim \text{Cat}(p) i.e. \mathbb{P}(X_{\text{new}} = x) = [p]_x
```

Recurrent Neural Network (RNN)

Let's use a neural network to learn an appropriate history digest. This is more flexible than choosing a fixed history window.



For training, we need a formula for the likelihood $Pr_{\underline{X}}(\underline{x}; \theta)$:

$$\Pr_{\underline{X}}(x_1,\ldots,x_n) = \Pr_{X_1}(x_1) \Pr_{X_2}(x_2|x_1) \\ \cdots \times \Pr_{X_n}(x_n|x_1\cdots x_{n-1}) \Pr_{X_{n+1}}(\square|x_1\cdots x_n)$$
 by the chain rule for probability
$$= [p_1]_{x_1} [p_2]_{x_2} \times \cdots \times [p_n]_{x_n} [p_{n+1}]_{\square}$$
 where each p_i is a function of $x_1\cdots x_{i-1}$

```
Random variable notation:
(X_i \sim \text{Cat}(p_i)) \text{ i.e. } \mathbb{P}(X_i = x) = [p_i]_x
(s_{i+1}, p_{i+1}) = f_{\theta}(s_i, X_i)
```

Chain rule for probability: $\mathbb{P}(A, B, C) = \mathbb{P}(A) \mathbb{P}(B|A) \mathbb{P}(C|A, B)$

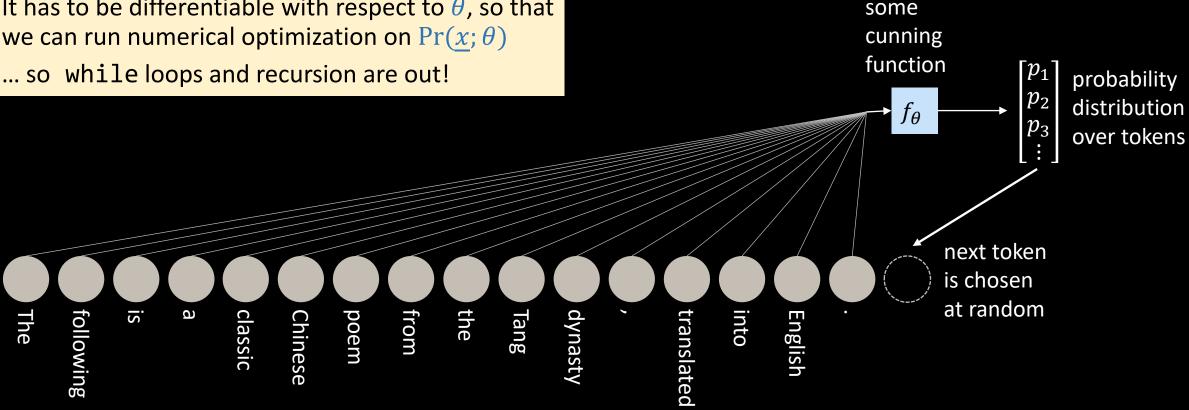
```
def loglik(xstr):
    res = 0
    s,x = 0,□
    for x<sub>next</sub> in xstr + "□":
        s,p = f<sub>θ</sub>(s,x)
        res += log(p[x<sub>next</sub>])
        x = x<sub>next</sub>
    return res
```

No one has managed to make RNNs produce coherent text longer than ≈20 tokens

Perhaps we'd do better with a model where the next token is allowed to depend on the entire sequence so far.

What would a suitable f_{θ} look like?

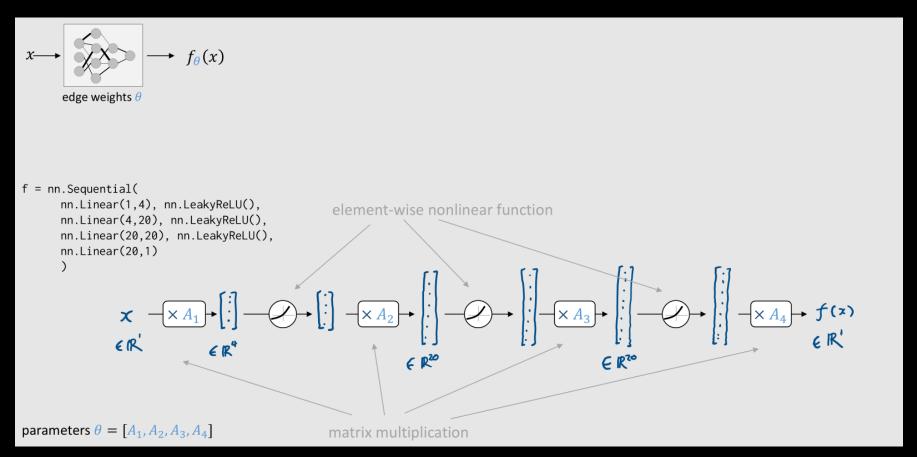
- It has to accept an input sequence of any length
- It has to be differentiable with respect to θ , so that we can run numerical optimization on $Pr(x; \theta)$



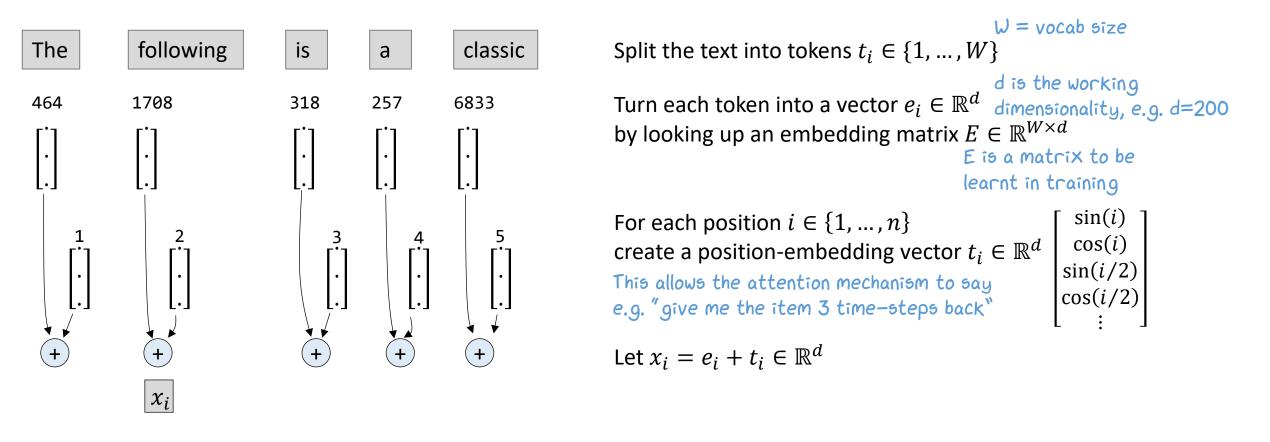
The following is a classic Chinese poem from the Tang dynasty, translated into English.

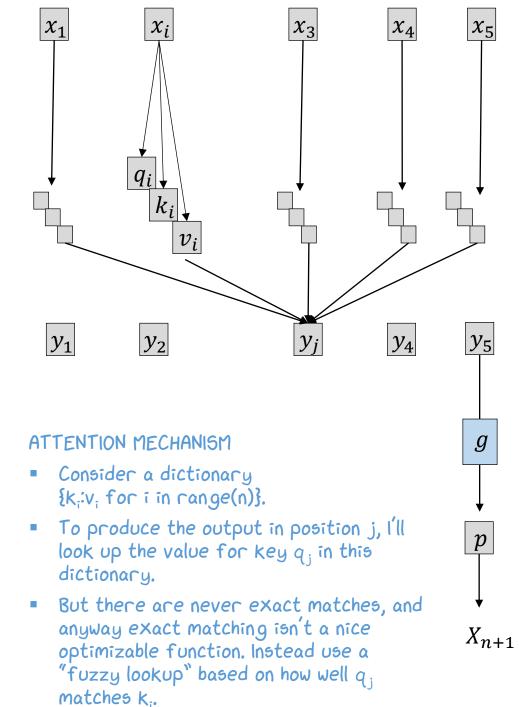
LECTURE 4

it's easy to work with functions made out of matrix multiplication and element-wise non-linear maps.



The Transformer architecture is a cleverly designed f function.





For each position $i \in \{1, \dots, n\}$, let $q_i = Qx_i$, let $k_i = Kx_i$, let $v_i = Vx_i$ Q,K,V are matrices to $\in \mathbb{R}^e$ $\in \mathbb{R}^e$ be learnt in training $q_i = q$ uery $k_i = key$ $v_i = v$ alue

The queries and keys say how much attention each position should pay to each other position. The values are some internal representation of "relevant content", like the state variable s in the RNN.

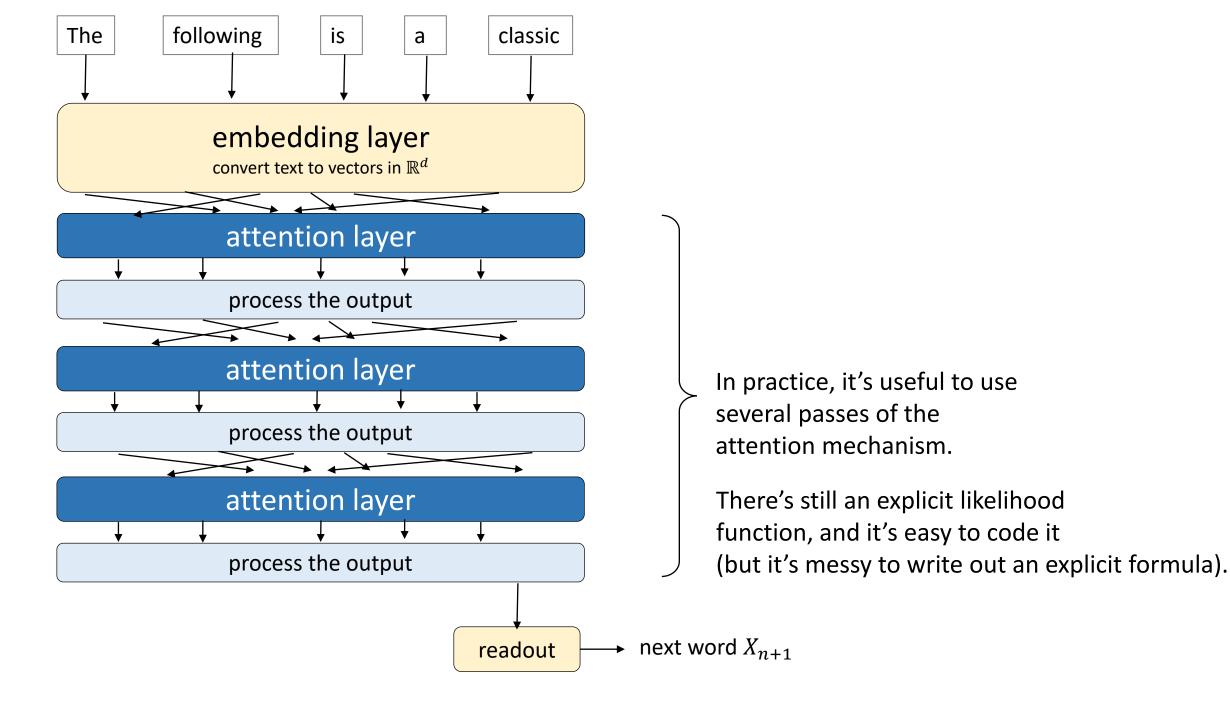
For each position $j \in \{1, ..., n\}$ we'll produce an output vector $y_j \in \mathbb{R}^d$, as follows:

1. let $s_{ji} = q_j \cdot k_i$ 1. producing output j

2. let $a_{j*} = \operatorname{softmax}(s_{j*}/\sqrt{e})$ convert the attention scores into a vector aj that sums to I

Convert the final value y_n into a distribution over tokens $p \in \mathbb{R}^W$ using some neural network $p = g(y_n; \theta)$

Generate the next token by $X_{n+1} \sim \text{Cat}(p)$



The history of random sequence models

