
QUESTION. What’s wrong 
with this argument?

At first glance, this looks like a 
simple periodic model will fit.

Haven’t you heard of global  
warming ?! I’ll add a linear trend, say 
γ°C/century. The mle is ො𝛾=3.0196.

Is your model really better than 
mine, or is it just your choice? 

Mine has a higher likelihood, which means 
it fits the data better. 

I’m 95% confident that 1.7≤ ො𝛾 ≤4.3, so
I’m confident there’s a trend. 

Also, when I try a quadratic, I’m not 
confident the extra term is non-zero. 
So I’ll stick with linear. 

OK, but maybe there’s something 
else you haven’t thought of . 
Why do you think your model is 
right?

QUESTION. Why is 
this a silly question?

Iterative model 
development

Overfitting! A more complex model 
always scores a higher likelihood on the 
training dataset. But that doesn’t mean 
it’s closer to the true distribution.
Remedies: holdout comparison, or 
Bayesian model choice, frequentist 
confidence intervals ... anything that 
addresses the difference between the 
data and the truth.



OVERFITTING AND HOLDOUT EVALUATION

model complexity

likelihood of 
training data

likelihood of
holdout data

A too-complex model will typically fit the dataset well, 
but generalize poorly because it doesn’t match the true probability model.

LECTURE 11

TRUE PROBABILITY MODEL

in-the-
wilddataset

We can measure this by using holdout data 
to approximate the true distribution.







Once we’ve tried all the models we can think of 
and chosen the best, what next? 

1. Eyeball our model’s fit, to see if we can spot any specific improvements

▪ Compute the residuals 𝜀𝑖 = 𝑦𝑖 − pred(𝑥𝑖) and look for patterns

▪ More generally, compute the likelihood of each datapoint, and investigate 
datapoints that our model thinks are unlikely

2. Ask: is it plausible that our model might have generated the dataset?

this is Hypothesis Testing



RESEARCH QUESTION
Can you taste the difference between 
milk-first versus tea-first? 

EXPERIMENT
Make 4 cups of each style, shuffle them, 
and ask taster to label them

§9.3



tea firstmilk first

milk first

milk first

milk first milk first

tea first

tea first

tea first

tea first

 

 

 

 

§9.3
RESEARCH QUESTION
Can you taste the difference between 
milk-first versus tea-first? 

EXPERIMENT
Make 4 cups of each style, shuffle them, 
and ask the taster to label them

DATASET
8 pairs of (truth,label)

HYPOTHESIS / MODEL
There’s no difference. Thus the dataset 
arose by chance, from purely random 
choice



Consider a hypothesis 𝐻0

▪ If 𝐻0 were true, we 
would expect …

▪ What really 
happened is …

We must reject 𝐻0

Is reality 
consistent 
with 𝐻0?No Yes𝑝 < 5% 𝑝 ≥ 5%

I shall
QUESTION. 
Can we conclude 
that 𝐻0 is true?

❖ Because of noise, this isn’t a simple yes/no 

decision.

❖ It’s about degree of consistency, which we 

measure by the 𝑝-value. Instead of yes/no, 

we can go by 𝑝 < 5% / 𝑝 ≥ 5%.

❖ The 𝑝-value is the probability, according to 

the model 𝐻0, of seeing something at 

least as extreme as what we actually saw.

histogram of what 
we’d expect to see 
if H0 were true

what we 
actually saw

𝑝-value

Hypothesis testing asks whether a proposed probability 
model 𝐻0 is consistent with the dataset.



“ Every genuine scientific theory must 

be falsifiable. It is easy to obtain 

evidence in support of virtually any 

theory; the evidence only counts if it 

is the positive result of a genuinely 

risky prediction.”

Karl Popper (1902–1994)



Fisher’s hypothesis testing

Let 𝑥 be the dataset.

State a null hypothesis 𝐻0, i.e. a probability 
model for the dataset

1. Choose a test statistic 
𝑡 ∶ dataset ↦ ℝ

2. Define a random synthetic dataset 𝑋∗, 
what we might see if 𝐻0 were true.

3. Look at the histogram of 𝑡 𝑋∗ .
Let 𝑝 be the probability of seeing a value as 
extreme or more so than the observed 𝑡(𝑥).

A low 𝑝-value is a sign that 𝐻0 should be 
rejected. 

§9.3

x = taster’s assignment of labels

H0: the taster can’t tell the difference 
and just assigned labels randomly

t(x) = #correct

def X*(): return random permutation of {t,t,t,t,m,m,m,m}

What would be the 
distribution of the test 
statistic if H0 were true?

p<5% so we shall reject H0.
“The evidence against H0 is statistically significant (p=1.4%)”

cup id truth taster

1 milk milk

2 tea tea

⋮



Example 9.6.2.
I have a dataset with readings from 
two groups, 𝑥 = [𝑥1, … , 𝑥𝑚] and 
𝑦 = [𝑦1, … , 𝑦𝑛]. Test whether the two 
groups are significantly different, 
using the test statistic ത𝑦 − ത𝑥.

1  # 1. Define the test statistic
 2  def t(x,y): return np.mean(y) - np.mean(x)

 3  # 2. To generate a synthetic dataset, assuming H0, ...
 4  xy = np.concatenate([x,y])
 5  def rxy_star(): 
 6      return (np.random.choice(xy, size=len(x)),
 7              np.random.choice(xy, size=len(y)))

 8  # 3. Sample the test statistic under H0; find p-value for observed data
 9  t_ = np.array([t(*rxy_star()) for _ in range(10000)])
10  𝑝 = …



Example 9.3.1.
I have a dataset with readings from 
two groups, 𝑥 = [𝑥1, … , 𝑥𝑚] and 
𝑦 = [𝑦1, … , 𝑦𝑛]. Test whether the two 
groups are significantly different, 
using the test statistic ത𝑦 − ത𝑥.

1  # 1. Define the test statistic
 2  def t(x,y): return np.mean(y) - np.mean(x)

 3  # 2. To generate a synthetic dataset, assuming H0, ...
 4  xy = np.concatenate([x,y])
 5  Ƹ𝜇 = np.mean(xy)
 6  ො𝜎 = np.sqrt(np.mean((xy - Ƹ𝜇)**2))
 7  def rxy_star(): 
 8      return (np.random.normal(loc= Ƹ𝜇, scale= ො𝜎, size=len(x)),
 9              np.random.normal(loc= Ƹ𝜇, scale= ො𝜎, size=len(y)))

10  # 3. Sample the test statistic under H0; find p-value for observed data
11  t_ = np.array([t(*rxy_star()) for _ in range(10000)])
12  𝑝 = 2 * min(np.mean(t_ >= t(x,y)), np.mean(t_ <= t(x,y)))



What counts as ‘more extreme’?
▪ Plot the histogram for 𝑡(𝑋∗), assuming 𝐻0 is true

▪ Also plot the histogram for some scenarios 
where 𝐻0 is false

▪ Do the alternatives push 𝑡(𝑋∗) bigger, or smaller, or 
either? This determines what ‘more extreme’ means — 
either one-tailed or two-tailed.

§9.3

If the observed t lies 
at either extreme, 
it’s evidence against
H0: δ=0

observed t



How do we compute 𝑝 for a two-tailed test?
The 𝑝-value is

ℙ
𝑡(𝑋∗) at least

as extreme as 𝑡(𝑥)
 𝐻0 is true

𝑝 = 2 * min(np.mean(t_ >= t(x,y)), np.mean(t_ <= t(x,y)))

“6 of my samples of t(X*,Y*) 
are more extreme than t(x,y).”

§9.3

observed t



Where do test statistics come from?

—this is answered in §9.4 of lecture notes.

Indeed, why do we even need test statistics?
We want to know if the dataset is plausible according to 𝐻0,
so why not simply measure its likelihood under 𝐻0?



In some problems, it’s natural to express 𝐻0 as a constraint 
on the parameters of a more general model 𝐻1.

❖ For the test statistic:
estimate the parameters under 𝐻1, and let 𝑡 measure 
how close they are to meeting the constraint.

❖ For resampling:
Fit 𝐻0 by maximizing the likelihood of the parameters 
under the constraint. Then, sample from this fitted 
model.

Example 9.3.1.
I have a dataset with readings from 
two groups, 𝑥 = [𝑥1, … , 𝑥𝑚] and 
𝑦 = [𝑦1, … , 𝑦𝑛]. Test whether the two 
groups are significantly different, 
using the test statistic ത𝑦 − ത𝑥.



Exercise 9.3.2 (Equality of group means).
We are given three groups of observations from 
three different systems

𝑥 = 7.2, 7.3, 7.8, 8.2, 8.8, 9.5
𝑦 = 8.3, 8.5, 9.2
𝑧 = [7.4, 8.5, 9.0]

Do all three groups have the same mean?

1  # 1. Define test statistic
 2  def t(x,y,z):
 3      μ = np.mean(np.concatenate([x,y,z]))
 4      a,b,c = [np.mean(v) for v in [x,y,z]]
 5      return (a-μ)**2 + (b-μ)**2 + (c-μ)**2

 6  # 2. To generate a synthetic dataset, assuming H0 ...
 7  xyz = np.concatenate([x,y,z])
 8  Ƹ𝜇 = np.mean(xyz)
 9  ො𝜎 = np.sqrt(np.mean((xyz- Ƹ𝜇)**2))
10  def rxyz_star():
11      return (np.random.normal(size=len(x), loc= Ƹ𝜇, scale= ො𝜎),
12              np.random.normal(size=len(y), loc= Ƹ𝜇, scale= ො𝜎),
13              np.random.normal(size=len(z), loc= Ƹ𝜇, scale= ො𝜎))

14  # 3. Sample the test statistic, find the p-value
15  t_ = np.array([t(*rxyz_star()) for _ in range(10000)])
16  𝑝 = np.mean(t_>=t(x,y,z))



I wish to consider a 
hypothesis 𝐻0

▪ If 𝐻0 were true, we 
would expect …

▪ What really 
happened is …

I shall reject 𝐻0

Is reality 
consistent 
with 𝐻0?

𝑝 < 5% 𝑝 ≥ 5%

We only get a definite publishable 
conclusion if we reject 𝐻0.

Anything we want to argue, we have to 
phrase it as “reject 𝐻0” for a suitable 𝐻0.

“Data science is 
quantitative rhetoric”



EXERCISE.
Here are marks for IA Algorithms questions.
I think there might be a gender bias.
What 𝐻0 do I choose?

𝐻1: I think gender affects marks

𝐻0: I think everyone gets pretty much 
the same marks, regardless of gender

gender mark

F 17

F 14

M 18

O 11

M 17

⋮ ⋮

Let’s introduce a richer model, 𝐻1: Mark ∼ 𝜇gender + 𝑁(0, 𝜎2)
and express 𝐻0 as a constraint: 𝜇𝐹 = 𝜇𝑀 = 𝜇𝑂

Test statistic: 𝑡 = Ƹ𝜇𝐹 − Ƹ𝜇 2 + 𝜇𝑀 − Ƹ𝜇 2 + Ƹ𝜇𝑂 − Ƹ𝜇 2

Resampling: Fit 𝐻0 which says Mark ∼ 𝑁(𝜇, 𝜎2) then sample from this fitted 𝑁( Ƹ𝜇, ො𝜎2)

where Ƹ𝜇𝐹 , Ƹ𝜇𝑀, Ƹ𝜇𝑂 are MLE under 𝐻1

and Ƹ𝜇 is MLE under 𝐻0

Null hypothesis:



Here are marks for IA Algorithms questions.
I think there might be a gender bias.
What 𝐻0 do I choose?

gender mark

F 17

F 14

M 18

O 11

M 17

⋮ ⋮

Under the general 𝐻1 model
Mark ∼ 𝜇gender + 𝑁(0, 𝜎2)

I propose 𝐻0: 𝜇𝑀 = 𝜇𝐹 = 𝜇𝑂

QUESTION. Suppose we reject 𝐻0. Does this mean 
we believe that the means 𝜇𝑔 are not all equal?

❖ Our 𝐻0 claims several things at the same time:
(means are equal) & (variances are equal) & (all are Gaussian) & (all are independent)

❖ If we reject 𝐻0, we reject it in its entirety.
We might be rejecting it because of evidence against any one or more of its subclaims.



What makes a good hypothesis test?
❖ Your 𝐻0 is credible to your audience.

If you propose a non-credible 𝐻0 and then reject it — who cares?

❖ Your 𝐻0 matches the research question you want to answer,
and doesn’t bring in contentious subclaims.

❖ Your resampling method assumes 𝐻0 and nothing more. 

Under the general 𝐻1 model
Mark ∼ 𝜇gender + 𝑁(0, 𝜎2)

I propose 𝐻0: 𝜇𝑀 = 𝜇𝐹 = 𝜇𝑂

𝐻0: the marks have the same distribution, for 
each gender.

Now imagine a parallel universe where every 
student gets assigned a random gender (with the 
same totals as in our observed dataset 𝑥). 
Simulate this by creating a dataset 𝑋∗ with a 
randomly permuted Gender column.

If 𝐻0 is true, then 𝑡(𝑥) is a sample from 𝑡(𝑋∗).
This lets me test 𝐻0.



I shall reject 𝐻0

𝑝 < 5% 𝑝 ≥ 5%

Our original goal today was to decide 
whether a model is adequate.

QUESTION. Can I at least conclude 
that “𝐻0 could plausibly have 
generated the dataset”?

Choose a test statistic 𝑡

Compute 𝑝 for this 𝑡

Consider a hypothesis 𝐻0

▪ If 𝐻0 were true, we 
would expect …

▪ What really 
happened is …

Is reality 
consistent 
with 𝐻0?



I shall reject 𝐻0

𝑝 < 5% 𝑝 ≥ 5%

𝐻0 is plausible wrt 𝑡

Different 𝑡 are sensitive to different 
violations of 𝐻0.

If I settle for my 𝐻0 and then 
someone comes up with a better 
model, I lose. So it’s on me to test 
𝐻0 using several test statistics.

Choose a test statistic 𝑡

Compute 𝑝 for this 𝑡

Consider a hypothesis 𝐻0

▪ If 𝐻0 were true, we 
would expect …

▪ What really 
happened is …

Is reality 
consistent 
with 𝐻0?



NEXT LECTURE

T H E  G R E AT  G E N E R A L I Z AT I O N

BAY ESIANIST V FREQUENTIST
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