lterative model

development

At first glance, this looks like a
] simple periodic model will fit. @

¥

Haven't you heard of global

warming & ?!'ll add a linear trend, say
y°C/century. The mle is $=3.0196. &

E your model really better than

mine, or is it just your choice? @

Mine has a higher likelihood, which means QUESTION. What’s wrong

it fite the data better. lo B with this argument?
I'm 95% confident that 1.7< 7 <4.3, s0
|'m Conf‘;dent therelﬁ a trend @ Overfitting! A more complex model
.l always scores a higher likelihood on the
= training dataset. But that doesn’t mean
Al50, When l trg a quadrabc, I m ﬂ it’s closer to the true distribution.
confident the extra term is non—zero. Remedies: holdout comparison, or
] _ _ _ Bayesian model choice, frequentist
60 l “ 5thK Wlth llnear. g confidence intervals ... anything that
‘ - addresses the difference between the
UESTION. Why i OK, but maybe lthere 5 something o
GLIES IO, By I else you haven't thought of 1.
this a silly question? Why do you think your model is

cight? @




LECTURE 11

OVERFITTING AND HOLDOUT EVALUATION

A too-complex model will typically fit the dataset well,
but generalize poorly because it doesn’t match the true probability model.

‘TRUE PROBABILITY MODEL

in-the-

r—-—-—-—------

We can measure this by using holdout data
. c .. . likelihood of
to approximate the true distribution. "
training data

model complexity

\ likelihood of

holdout data




# Periodic mod

model® = sklearn.linear_model.lLinearRegression()

def Xe@(t): return np.column_stack([np.sin(2*mn*t), np.cos(2*n*t)])
model®.fit(Xe(df.t), df.temp)

»

# Model with Linear trend
modell = sklearn.linear_model.lLinearRegression()

def X1(t): return np.column_stack([np.sin(2*n*t), np.cos(2*n*t), (t-2eee)/1e8])
modell.fit(X1(df.t), df.temp)

modell.coef [-1

# Compare Log Likelihoods
def loglik(e):
= np.sqgrt(np.mean(g**2))

return - 1/2*np.sqrt(2*m*o**2) - 1/(2*c**2)*np.mean(g**2)

loglik(df.temp - model@.predict(Xe(df.t))), loglik(df.temp - modell.predict(X1(df.t)))



# Periodic model

model® = sklearn.linear_model.lLinearRegression()

def Xe@(t): return np.column_stack([np.sin(2*mn*t), np.cos(2*n*t)])
model®.fit(Xe(df.t), df.temp)

# Model with Linear trend

modell = sklearn.linear_model.lLinearRegression()

def X1(t): return np.column_stack([np.sin(2*n*t), np.cos(2*n*t), (t-2eee)/1e8])
modell.fit(X1(df.t), df.temp)

modell.coef [-1

# Confidence interval for the trend term

. Define the readout statistic, yhat
m = sklearn.linear_model.LinearRegression()
x = X1(df.t)

def trend(temp): return m.fit(x,temp).coef [-1

# 2. Fit the model, and generate resampled data based on the fitted model
predl = modell.predict(X1(df.t))

g = df.temp - modell.predict(X1(df.t))

o = np.sqrt(np.mean(g**2))

def tempstar(): return np.random.normal(loc=predl, scale=0)

# 3. Find the spread of the readout statistic
V_ = [trend(tempstar()) for _ in range(20000)
lo,hi = np.quantile(y_,[.825,.975])

lo,hi




Once we’ve tried all the models we can think of
and chosen the best, what next?

1. Eyeball our model’s fit, to see if we can spot any specific improvements
=  Compute the residuals €; = y; — pred(x;) and look for patterns

= More generally, compute the likelihood of each datapoint, and investigate
datapoints that our model thinks are unlikely

2. Ask: is it plausible that our model might have generated the dataset?

\» this is Hypothesis Testing



§9.3
RESEARCH QUESTION
Can you taste the difference between
milk-first versus tea-first?

EXPERIMENT
Make 4 cups of each style, shuffle them,
and ask taster to label them




RESEARCH QUESTION
Can you taste the difference between
milk-first versus tea-first?

EXPERIMENT
Make 4 cups of each style, shuffle them,
and ask the taster to label them

DATASET
8 pairs of (truth,label)

HYPOTHESIS / MODEL

There’s no difference. Thus the dataset
arose by chance, from purely random
choice

milk first

m‘Hk first «

milk first

t‘eaﬁf irst ,

tea first

tea first

mitk first Izl

tea first

milk first |z|

tea first

§9.3



Hypothesis testing asks whether a proposed probability
model Hy, is consistent with the dataset.

Consider a hypothesis H

If Hy were true, we
would expect ...
What really
happened is ...

Is reality
consistent

| shall

Mu reject Hy

QUESTION.
Can we conclude
that H, is true?

Because of noise, this isn’t a simple yes/no
decision.

It’s about degree of consistency, which we
measure by the p-value. Instead of yes/no,
wecangobyp < 5% /p = 5%.

The p-value is the probability, according to
the model H,, of seeing something at
least as extreme as what we actually saw.

histogram of what
we'd expect to see
A if H, were true

p—value

!

¢

1
what we
actually saw

N




“Every genuine scientific theory must
be falsifiable. It is easy to obtain
evidence 1n support of virtually any
theory; the evidence only counts if it
1s the positive result of a genuinely
risky prediction.”

Karl Popper (1902-1994)




cup id |truth |taster
Fisher’s hypothesis testing 1 milk | milk
2 tea tea
Let x be the dataset. X = taster's assignment of labels
State a null hypothesis Hy, i.e. a probability H,: the taster can't tell the difference
model for the dataset and just assigned labels randomly

1. Choose a test statistic
t : dataset » R t(X) = #correct

2. Define a random synthetic dataset X~,

what we might see if H, were true. def X*(): return random permutation of {t,t,t,t,m,m,mm}

nise. 4 € (X7)
3. Look at the histogram of t(X™). What would be the
Let p be the probability of seeing a value as distribution of the test
extreme or more so than the observed t(x). statistic if H, were true?
p=P( e(X*) 7 "'(x)) = 1Y

A low p-value is a sign that H, should be
rejected. p<5% 90 we shall re ject H,,

“The evidence against H, is statistically significant (p=1.4%)"



Example 9.6.2.

| have a dataset with readings from
two groups, x = [x4, ..., x,,| and

Y = V1, ..., Vn|. Test whether the two
groups are significantly different,

using the test statistic y — x.
e ——

'D‘J_Gw‘: (7(.,5)

H < Md‘y NVEe SO Q!
v hdh
from MR e B
Tes€ 5&»!:"3(-:':: j"\lcm e # 1. Define the test statistic
on. def t(x,y): return np.mean(y) - np.mean(x)

# 2. To generate a synthetic dataset, assuming H,,
Xy = np.concatenate([x,y])

def rxy_star():
return (np.random.choice(xy, size=len(x)),
np.random.choice(xy, size=len(y)))

# 3. Sample the test statistic under H9; find p-value for observed data
t_ = np.array([t(*rxy_star()) for _ in range(10000)1])

p = .



Example 9.3.1. WM mo ol

| have a dataset with readings from W W Y SQ,,PG_QQ Nowm N (j\A ) 0":.)

two groups, x = [x4, ..., x,,| and V?/ 2
v = [vq, ..., V,]. Test whether the two o\w Y S‘Mfc'-d (TO'W' N O\l +d‘, g )
groups are significantly different, @9"

using the test statistic y — X. He . J = Q.

Ha: x,y ome both sawpkd
fremt W (p,67)
(_}a,O' UWL“WFS,

# 1. Define the test statistic
def t(x,y): return np.mean(y) - np.mean(x)

# 2. To generate a synthetic dataset, assuming H,,
Xy = np.concatenate([x,y])

i = np.mean(xy)
g = np.sqrt(np.mean((xy - [)**2))
def rxy_star():
return (np.random.normal(loc=f, scale=d, size=len(x)),

np.random.normal(loc=fi, scale=d, size=len(y)))

# 3. Sample the test statistic under HO; find p-value for observed data
t_ = np.array([t(xrxy_star()) for _ in range(10000)])

p = 2 * min(np.mean(t_ >= t(x,y)), np.mean(t_ <= t(x,y)))



What counts as ‘more extreme’?

=  Plot the histogram for t(X™), assuming H, is true

= Also plot the histogram for some scenarios
where H is false

= Do the alternatives push t(X™) bigger, or smaller, or If the observed t lies
either? This determines what ‘more extreme’ means —

either one-tailed or two-tailed. at either extreme,

observed t it's evidence against

Ho: 6=0 : Ho: 6=0

|

|

l

=4 =2 0 2 4

6>0
6<0




How do we compute p for a two-tailed test?

The p-value is

P ( t(X™) at least

Hy is true)
as extreme as t(x) | ~°

observed t
HQZ 6=0 I

6. “ 2 “6 of my samples of t(X*Y*)
are more extreme than t(X,y)."

p = 2 * min(np.mean(t_ >= t(x,y)), np.mean(t_ <= t(x,y)))



Where do test statistics come from?

Indeed, why do we even need test statistics?
We want to know if the dataset is plausible according to H,,
so why not simply measure its likelihood under H,?

—this is answered in §9.4 of lecture notes.



Example 9.3.1.
| have a dataset with readings from
two groups, x = [x4, ..., X, | and

Y = |V1, ..., Vn|. Test whether the two
groups are significantly different,
using the test statistic y — Xx.

. . o~ w ()
In some problems, it’s natural to express H, as a constraint H,: X S )
on the parameters of a more general model H;. Y ~ N (N,
oo p=V
¢ For the test statistic: - g =_J'
estimate the parameters un-der H;, and Iet' t measure Vol ; ~ T -§| m._{_“("* res +
how close they are to meeting the constraint. t = \v - \ = 1Y reject H, ,/ t~ (/R
- - 1Gd te ot
- wo-tailed
t = \j ’ t

** For resampling:

| pr fato ; . va)

%
Fit Hy by maximizing the likelihood of the parameters »{'3?0- .‘/\A-‘-V
under the constraint. Then, sample from this fitted - ax 57 Pr (J,J..a.,- PP, ,O‘)
model. 2 Al %,



Exercise 9.3.2 (Equality of group means).
We are given three groups of observations from
three different systems

=[7.2,7.3,7.8,8.2,8.8,9.5]
y = [8.3,8.5,9.2]
= [7.4,8.5,9.0]

Do all three groups have the same mean?

H: X~N(4,0%) YaN(bo?) ZVNET)

He : azb =c

observed €

# 1. Define test statistic

def t(x,y,z):
u = np.mean(np.concatenate([x,y,z]1))
a,b,c = [np.mean(v) for v in [x,y,z]]
return (a-u)**2 + (b-u)**2 + (c-p)**2

# 2. To generate a synthetic dataset, assuming H, ...
Xyz = np.concatenate([x,y,z])

f = np.mean(xyz)
6 = np.sqrt(np.mean((xyz-fi)**2))
def rxyz_star():

return (np.random.normal(size=len(x), loc=fi, scale=d),
np.random.normal(size=1len(y), loc=fi, scale=d),
np.random.normal(size=1en(z), loc=fi, scale=dG))

# 3. Sample the test statistic, find the p-value
t_ = np.array([t(*rxyz_star()) for _ in range(10000)])
p = np.mean(t_>=t(x,y,z))



| wish to consider a
hypothesis H,

If Hy were true, we
would expect ...
What really
happened is ...

Is reality
consistent
with H,?

« - .
Data science is | sl e
quantitative rhetoric”

@ @ We only get a definite publishable

conclusion if we reject Hy,.

phrase it as “reject Hy” for a suitable H,.

7\ Anything we want to argue, we have to



EXERCISE. m

Here are marks for IA Algorithms questions.

F

| think there might be a gender bias.
What H, do | choose? F
M
@ Hy: | think everyone gets pretty much O
the same marks, regardless of gender M

A

14
18
11
17

Null hypothesis:

Let’s introduce a richer model, H;: Mark ~ pgenger + N (0, d?)
and express Hy as a constraint: ug = Uy = Uo

[Hl: | think gender affects marks]\/ @

i

Test statistic: ¢t = (fp — )% + (uy — A)? + (ip — 1)? where [ig, iy, fip are MLE under H,
and fi is MLE under H,

Resampling: Fit H, which says Mark ~ N (u, 62) then sample from this fitted N(/i, 62)



Here are marks for IA Algorithms questions. m

| think there might be a gender bias. F 17
What Hy do | choose?

F 14
M 18
Under the general H; model 0 11
M 17

| propose Hy: iy = Urp = Uo

? Mark ~ pgender + N (0, o?)

QUESTION. Suppose we reject Hy. Does this mean
we believe that the means p, are not all equal?

¢ Our H, claims several things at the same time:
(means are equal) & (variances are equal) & (all are Gaussian) & (all are independent)

¢ If we reject Hy, we reject it in its entirety.
We might be rejecting it because of evidence against any one or more of its subclaims.



What makes a good hypothesis test?

“* Your Hy is credible to your audience.
If you propose a non-credible Hy and then reject it — who cares?

¢ Your H, matches the research question you want to answer,
and doesn’t bring in contentious subclaims.

¢ Your resampling method assumes H, and nothing more.

@ Under the general H; model
Mark ~ pgender + N (0, o?)
| propose Hy: iy = tp = Uo

ﬁoi the marks have the same distribution, for
each gender.

Now imagine a parallel universe where every
student gets assigned a random gender (with the
same totals as in our observed dataset x).
Simulate this by creating a dataset X™ with a
randomly permuted Gender column.

If Hy is true, then t(x) is a sample from t(X™).
This lets me test Hy. /

=P




Consider a hypothesis H,

Choose a test statistic t

If Hy were true, we
would expect ...

=  What really

happened is ...

Compute p for this t

Is reality
consistent
with H,?

Our original goal today was to decide
whether a model is adequate.

QUESTION. Can | at least conclude

| shall reject H,

that “H, could plausibly have
generated the dataset”?



Consider a hypothesis H,

Choose a test statistic t

If Hy were true, we
would expect ...
What really
happened is ...

Compute p for this t

Is reality
consistent
with H,?

| shall reject H, Hy is plausible wrt t

Different t are sensitive to different
violations of H,.

If | settle for my Hy and then
someone comes up with a better
model, | lose. So it’s on me to test
H, using several test statistics.



NEXT LECTURE

THE GREAT GENERALIZATION

m Climate confidence challenge

Find a 95% confidence interval for the rate of temperate increase in Cambridge from 1985 to the present, in °Clyear
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