
random
variable
notation

code

likelihood
function

(pdf)

cdf

LAST LECTURE

Bespoke probability distributions: from code to likelihood

what we need for
machine learning

There are four ways to specify a distribution:

a good way to think
about the problem

r
e
w
r
it

e

di
f
f
e
r
e
nt

ia
te

𝑥

cdf(𝑥)

0

1

def rx(𝑢,𝑣,𝑤,𝑝):

 # preconditions: u < v < w, and 0 < p < 1
 k = np.random.choice(["left","right"], [𝑝,1-𝑝])
 if k == "left":
 return np.random.uniform(𝑢,𝑣)
 else:
 return np.random.uniform(𝑣,𝑤)

EXERCISE
What’s the pdf for this random variable?

Let 𝐾 = ቊ
left with prob. 𝑝

right with prob. 1 − 𝑝

Let 𝑋 ∼ ቊ
𝑈[𝑢, 𝑣] if 𝐾 = left

𝑈[𝑣, 𝑤] if 𝐾 = right

ℙ 𝑋 ≤ 𝑥 = ℙ 𝑋 ≤ 𝑥 𝐾 = left × ℙ 𝐾 = left + ℙ 𝑋 ≤ 𝑥 𝐾 = right × ℙ(𝐾 = right)

u v w

left right

by the Law of Total Probability

= 𝑝 ℙ 𝑈 𝑢, 𝑣 ≤ 𝑥 + 1 − 𝑝 ℙ(𝑈 𝑣, 𝑤 ≤ 𝑥)

if 𝑥 < 𝑢:

if 𝑥 ∈ [𝑢, 𝑣]:

if 𝑥 ∈ [𝑣, 𝑤]:

if 𝑥 > 𝑤:

=

① Rewrite it in random variable notation

② Do the maths: simplify the cdf into elementary building blocks

ℙ 𝑋 = 𝑥 = ෍

𝑦

ℙ 𝑋 = 𝑥 𝑌 = 𝑦 ℙ(𝑌 = 𝑦)

Wikipedia: Uniform distribution

Our goal:
to find the best distribution we can to fit this dataset.

§7

IA Probability lecture 10

Empirical cumulative distribution functions

ECDF

Given a dataset of numerical values
[𝑥1, 𝑥2, … , 𝑥𝑛], the empirical cumulative
distribution function or ecdf is

෠𝐹 𝑥 =
1

𝑛

how many datapoints
there are ≤ 𝑥

x = [...]
F = np.arange(1, len(x)+1) / len(x)
plt.plot(np.sort(x), F, drawstyle='steps-post')

§7.1

෠𝐹(𝑥)

𝑥

What if there are repeated values in the dataset, e.g.

x = [0.8, 0.8, 1.3]

x = [...]
F = np.arange(1, len(x)+1) / len(x)
plt.plot(np.sort(x), F, drawstyle='steps-post')

§7.1

(This code will plot an extra point at (0.8, 1/3), but who cares?
The plot is still correct.)

fitted
Gaussian mixture
model

§7.1

But can I find a better-fitting distribution?

Can I generate a random variable with this pdf?
Is this even a valid pdf?

Can I generate a random variable with this cdf?

§7.1

It’s certainly a valid cdf:
it starts at 0, goes to 1,
and is non-decreasing.

But can I find a better-fitting distribution?

Let’s build up our skills at turning cdf plots into code.

𝑥

cdf(𝑥)

𝑢 𝑣 𝑤0

𝑝

1

𝑥

cdf(𝑥)

𝑢1 𝑢2 𝑣1
0

ൗ1
2

1

𝑣2

def rx(𝑢,𝑣,𝑤,𝑝):
 k = np.random.choice(["left","right"], [𝑝,1-𝑝])
 if k == "left":
 return np.random.uniform(𝑢,𝑣)
 else:
 return np.random.uniform(𝑣,𝑤)

def rx(𝑢1,𝑢2,𝑣1,𝑣2):
 # pick either left or right, with equal probability
 k = np.random.choice(["left","right"])
 if k == "left":
 return np.random.uniform(𝑢1,𝑢2)
 else:
 return np.random.uniform(𝑣1,𝑣2)

§7.2

𝑥

cdf(𝑥)

𝑥1 ± 𝛿
0

ൗ1
2

1

𝑥2 ± 𝛿

def rx(𝑥1,𝑥2,𝛿):
 k = np.random.choice(["left","right"])
 if k == "left":
 return np.random.uniform(𝑥1 − 𝛿,𝑥1 + 𝛿)
 else:
 return np.random.uniform(𝑥2 − 𝛿,𝑥2 + 𝛿)

def rx(𝑥1,𝑥2):
 k = np.random.choice(["left","right"])
 if k == "left":
 return 𝑥1

 else:
 return 𝑥2𝑥

ൗ1
2

1

𝑥1 𝑥2

cdf(𝑥)

§7.2

[𝑥1 − 𝛿, 𝑥1 + 𝛿] [𝑥2 − 𝛿, 𝑥2 + 𝛿]

def rxhat([𝑥1, … , 𝑥𝑛]):
 return np.random.choice([𝑥1, … , 𝑥𝑛])

𝑥

ൗ1
𝑛

ൗ2
𝑛

smallest 2nd
smallest

cdf(𝑥)

𝑥

ecdf 𝑥

ൗ1
𝑛

ൗ2
𝑛

smallest 2nd
smallest

Recall the empirical distribution for a
dataset Ԧ𝑥 = 𝑥1, 𝑥2, … , 𝑥𝑛 :

ecdf 𝑥 =
1

𝑛
#points ≤ 𝑥

To generate a random variable ෠𝑋 whose cdf
matches exactly this step function:

§7.2

The empirical distribution
Given a dataset [𝑥1, 𝑥2, … , 𝑥𝑛]
let ෠𝑋 be the random variable obtained
by picking one of the 𝑥𝑖 at random.
(This is a discrete random variable.)

We say this random variable has the
empirical distribution of the dataset.

The ecdf only applies to real-valued random
variables, whereas this definition makes
sense for any type of data (text, images, etc.)

Instead of saying “the cdf of ෠𝑋 matches the
ecdf of the data”, we can say

 ℙ ෠𝑋 ∈ 𝐴 =
1

𝑛
σ𝑖=1

𝑛 1𝑥𝑖∈𝐴

𝔼 ℎ ෠𝑋 =
1

𝑛
σ𝑖=1

𝑛 ℎ(𝑥𝑖)

§7.3

§7.3

Monte Carlo
When we want probabilities / expectations
but the maths is too hard
generate a sample and work with it instead.

𝔼 ℎ 𝑋 ≈
1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑥𝑖

Holdout approximation
When we want probabilities / expectations
but we don’t know the true distribution,
find a sample and work with it instead.

𝔼 ℎ 𝑋 ≈
1

𝑛
෍

𝑖=1

𝑛

ℎ 𝑥𝑖 = 𝔼 ℎ(෠𝑋)

TRUE PROBABILITY MODEL

in-the-
wildtraining

hold-
out

“Whenever you want to work with a true distribution, you can just bung in an empirical distribution instead.”

Applications of the empirical distribution

= 𝔼 ℎ ෠𝑋

The empirical distribution is a
perfect fit for a dataset. Why
bother fitting a parametric
probability model at all?

§7.3

“God forbid that we should give out
a dream of our own imagination for
a pattern of the world.”

Francis Bacon, 1561–1626

§9. The frequentist approach to generalization

I tossed four coins
and got 𝑥 = 1 head.
My data model is

𝑋 ∼ Bin(4, 𝜃)

What can I say about the
laws of nature, i.e. about
the true value of 𝜃?

I saw x=1. Let me
go figure out how
likely is each
possible
explanation Θ=θ.

I saw x=1, ෠𝜃=1/4,
IN THIS REALITY.

What was ෠𝜃 in other
dimensions of the
multiverse?

Bayes’s rule:
PrΘ 𝜃 𝑥 = 𝜅 PrΘ 𝜃 Pr𝑋(𝑥|Θ = 𝜃)

I see temperatures rising
by ො𝛾=2.58oC / century, in
this reality.

What are the
values in other

parallel universes?

Climate confidence challenge.
Find a 95% confidence interval for 𝛾,
for Cambridge from 1985 to the present.
(It’s your choice how to simulate the
multiverse.)

Please submit your answer on Moodle
by Tuesday 11 November

<CS VERSION>

How might I
simulate the

parallel universes?

Confidence intervals
via resampling

Given a dataset 𝑥,

1. Decide on a readout function 𝑡(𝑥)

2. “Simulate a multiverse of datasets.”
▪ Fit a model for the dataset

▪ Let 𝑋∗ be a random synthetic dataset,
generated from the fitted model

▪ Simulate many synthetic datasets

3. Compute 𝑡 for each dataset,
and report the spread of 𝑡
for example with a histogram
or a confidence interval np.quantile(tsamples, [.025, .975])

np.quantile(tsamples, [0,.95])

Two-sided 95% confidence interval

One-sided 95% confidence interval

§9.1, 9.2

This has to be a computable function of x,
i.e. it’s not allowed to have any unknown
parameters. Such a function is called a
statistic.

Example.
We are given a dataset

𝑥 = 4.3, 5.1, 6.1, 6.8, 7.4, 8.8, 9.9
which we decide to model as independent samples
from 𝑁(𝜇, 𝜎2). Find a 95% confidence interval for Ƹ𝜇.

1 # 1. Define a readout statistic
 2 def t(x): return np.mean(x)

3 # 2. To generate a synthetic dataset ...
4 def rx_star():
 5 return np.random.choice(x, size=len(x))

§9.6

since the MLE ොμ is just the sample mean

i.e. to simulate what the dataset might have been,
simply sample n values from the empirical distribution
(which is a perfect fit to the data)

8 # 3. Sample the readout statistic, and report its spread
 9 t_ = [t(rx_star()) for _ in range(10000)]
10 lo,hi = np.quantile(t_, [.025, .975])

Example 9.2.1.
We are given a dataset

𝑥 = 4.3, 5.1, 6.1, 6.8, 7.4, 8.8, 9.9
which we decide to model as independent samples
from 𝑁(𝜇, 𝜎2). Find a 95% confidence interval for Ƹ𝜇.

1 # 1. Define a readout statistic
 2 def t(x): return np.mean(x)

3 # 2. To generate a synthetic dataset ...

8 # 3. Sample the readout statistic, and report its spread
 9 t_ = [t(rx_star()) for _ in range(10000)]
10 lo,hi = np.quantile(t_, [.025, .975])

4 μhat = np.mean(x)
 5 σhat = np.sqrt(np.mean((x-μhat)**2))
 6 def rx_star():
 7 return np.random.normal(loc=μhat, scale=σhat, size=len(x))

§9.6

i.e. to simulate what the dataset might have been,
fit the probability model N(μ,σ2), then sample n values from it

Confidence intervals
via resampling

Given a dataset 𝑥

1. Decide on a readout function 𝑡(𝑥)

2. “Simulate a multiverse of datasets.”
▪ Fit a model for the dataset.

▪ Let 𝑋∗ be a random synthetic dataset,
generated from the fitted model

▪ Simulate many synthetic datasets

3. Compute 𝑡 for each dataset,
and report the spread of 𝑡
for example with a histogram
or a confidence interval

and a parametric probability model Pr(𝑥; 𝜃)

Fit this model, i.e. estimate ෠𝜃

parametric resampling

§9.1, 9.2

Exercise 9.2.3 (Comparing groups).
We are given data 𝑥 = [𝑥1, … , 𝑥𝑚] which we believe is 𝑁(𝜇, 𝜎2)
and further data 𝑦 = [𝑦1, … , 𝑦𝑛] which we believe is 𝑁(𝜇 + 𝛿, 𝜎2).

Find a 95% confidence interval for መ𝛿.

1 x = [4.3, 5.1, 6.1, 6.8, 7.4, 8.8, 9.9]
 2 y = [8.3, 8.5, 8.9]
 3 m,n = len(x), len(y)

13 # 3. Sample the readout statistic, and report its spread
14 𝒕_ = [𝑡(*rx_star()) for _ in range(10000)]
15 lo,hi = np.quantile(𝒕_, [.025, .975])
16 plt.hist(𝒕_)

6

 7 # 2. To generate a synthetic dataset ...

4 # 1. Define the readout statistic
 5 def 𝑡(x,y): return np.mean(y) - np.mean(x)

The MLEs for 𝜇, 𝛿, 𝜎 are what you calculated in Example Sheet 1 question 4:

Ƹ𝜇 = ҧ𝑥
መ𝛿 = ത𝑦 − ҧ𝑥
ො𝜎 = ⋯

8 Ƹ𝜇, መ𝛿 = np.mean(x), np.mean(y) – np.mean(x)
 9 ො𝜎 = np.sqrt((np.sum((x- Ƹ𝜇)**2 + np.sum((y- Ƹ𝜇- መ𝛿)**2))/(m+n))

10 def rxy_star():
11 return (np.random.normal(loc= Ƹ𝜇, scale= ො𝜎, size=m),
12 np.random.normal(loc= Ƹ𝜇 + መ𝛿, scale= ො𝜎, size=n))

When you fit a model by maximizing
Pr(data; params) use ALL the data
and ALL the parameters.!
When you resample,
resample the FULL data.

TRUE PROBABILITY MODEL

I trained my ML system on a dataset. How will it work on in-the-wild data?

GENERALIZATION, ACCORDING TO FREQUENTISTS

▪ The job of a ML system is to report an output, e.g. a parameter or a prediction.

▪ I want to know what output my system might report on in-the-wild data.

▪ Let me consider an ensemble of systems, trained on many possible datasets.
What range of outputs do they report?

▪ This range says how confident I can be about my system’s output
(assuming I’ve even got the probability model right).

in-the-
wilddataset

My system reports a

parameter estimate ෠𝜃.
What’s the frequency

of ෠𝜃 ∈ [lo, hi] across
the multiverse?

Office hours
1–1.30pm in the cafe area today

No lecture on Friday
Only Mon+Wed from now on

	Slide 1: LAST LECTURE Bespoke probability distributions: from code to likelihood
	Slide 2
	Slide 3
	Slide 4
	Slide 5: IA Probability lecture 10 Empirical cumulative distribution functions
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Applications of the empirical distribution
	Slide 15
	Slide 17: §9. The frequentist approach to generalization
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 28
	Slide 29

