Syllabus for IB Data Science

Models that depend on linear Parameter interpretation

>
combinations of features \and identifiability

Maximum likelihood . )
» Fitting via least squares

estimation




GENERALIZATION

| trained my model on a dataset. Will it work well on in-the-wild data?

‘" TRUE PROBABILITY MODEL

in-the-
A

\

We’'ll assume that dataset & in-the-wild satisfy the same Laws of Nature.
(Otherwise it’s impossible to say anything useful.)
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Table 2: Results on HotpotQA distractor (dev). means usage of extra hyperlink data in
Wikipedia. Models beginning with *“—"" are ablation studies without the corresponding design. Most ML papers don’t state an

Model AnsEM Ans F;, SupEM Sup F; JointEM Joint F} inductive claim.

Baseline [53] 4560  59.02 2032 6449 1083  40.16 ,
DecompRC [29] 5520  69.63  N/A N/A N/A N/A Perhaps the authors haven’t thought

QFE [30] 53.86 68.06 57.75 84.49 34.63 59.61 hard enough to be able to state one?
DFGN [36] 5631  69.69 5150 81.62 3362  59.82

SAE [45] 6036 7358 5693 84.63 3881  64.96
SAE-large 6692 7962 6153 8686 4536  71.45 Perhaps they prefer to leave you, the

66.07  79.36 87.33  43.57 71.03 reader, to make the inference?
69.22  82.19 88.47  47.11 74.21

BERT (sliding window) variants

BERT Plus
LQR-net + BERT
GRN + BERT
EPS + BERT
LQR-net 2 + BERT

oo

69.76 42 8¢ 80.74 27.13 58.
70.66 ) 82.42 31.18 59.
68.98 325! 84.06 32.88 60.
73.31 32.5: 83.20 35.40 63.41
73.78 6.2 84.09 36.56 63.68

P-BERT 74.16 ]3¢ 82.76 3542 T
EPS + BERT(large) 76.36 5.2 85.60 413"

CoglTX 65.09 718.72

multi-step reasoning 62.00 75.39 y1.74 8§3.10
rehearsal & decay 61.44 74.99 e 47.37
train-test matching 63.20 17.21 2.5 84.21
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All science 1s either physics
Results. Table 2 shows that CogLTX outperforms most of previous method

¥ : . 9
solutions on the leaderboard.* These solutions basically follow the frame ” or Stamp—C()lleCtlng.

results from sliding windows by extra neural networks, leading to bounded

to insufficient interaction across pill'ilg['ilph.‘é. . ’ . > Ern e St Ruth e rfo rd ('I 8 7 '| — 'I 9 3 7)




FITTING

LECTURE 4

timepoint t - W
How do we measure how well a model “works”? S
. . at timepointt

= prediction accuracy, or mean square error [MLRD]

= |og likelihood is a more general metric > A4 W
random variable for

temperatureY

at timepointt

So, let’s fit our model’s parameters by maximimum likelihood estimation.
Then it’ll surely work well on in-the-wild data! &



FITTING AND MODEL CHOICE

LECTURE 8
temp =~ a + B, sin(2nt) + B, cos(2mt) + yt + 6t  temp = B, sin(2nt) + B, cos(2mt) + Yaecade

Choosing between models can be seen as estimating a discrete parameter ...
1. Define a full model that has a “switch” parameter m specifying which submodel to use

def ry(m,06,,0,):

if m == 1:
r-e1.:ur‘n ry1(6,) Pry(y; m,04,0,) = rg(y_ 1) l " _
else: Fis (5 ) s = 2

return ry2(6,)

2. Then we can estimate it using maximum likelihood estimation: _max Pr(data; m, 64, 6,)
»U1,U2

— max {r%ax Pr'(data; 6;) , max Pr’ (data; 92)}

1 2

The mle for m is the model with the highest likelihood, m = arg max Pr(data; m)
m



MODEL COMPLEXITY

When we’re choosing between models of different complexity,

the more complex model will always score better.

LECTURE 5

What degree polynomial?
~ polynomial in SL of degree K

degree K=2 degree K=3

degree K=4 degree K=10
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Linear or quadratic trend term?
~ a + By sin(2nt) + B, cos(2nt) +y
a + By sin(2nt) + B, cos(2nt) +yt + 6

Observed
Linear trend
= = Quadratic trend

LECTURE 10

What model for the number of heads?

X~Bin(n, %)
versus
X~Bin(n, @) for some 8 € [0,1]

LECTURE 3

How many clusters, in a Gaussian mixture model?

ﬂ
| AN

10000 20000 30000 40000
Radial velocity [km/s]




OVERFITTING AND HOLDOUT EVALUATION

A too-complex model will typically fit the dataset well, but generalize poorly to in-the-wild data.

in-the-

How can we detect and avoid too-complex models?

We can approximate in-the-wild performance by holdout performance.

_ hold- in-the-
training out ol

This suggests we should simply choose the model
that maximizes the holdout likelihood

With this approach, there’s an inner loop where we
fit a model to the training data, and an outer loop
where we choose between fitted models.

QUESTION. Can we do it all in a single loop?

i MOd.el likelihood of
likelihood training data

Modef
complexity

I \ likelihood of

holdout data

UNDERFIT BEST FIT OVERFIT




REGULARIZATION

Some models have a natural continuous measure of complexity.

In such cases, we can maximize the regularized score, which penalizes complex models:
max {log Pr(data; 6) — A complexity(8)}

= Gradient descent will choose a tradeoff between fit and complexity.
We're baking “too much complexity is bad” into the training itself.

= We control the relative importance by specifying A > 0.

= (We'll still want to tune A to maximize holdout likelihood,

but this maximization is pretty forgiving.)

likelihood of
training data

Model com;)/exity

< JregmisdgRgrreq score

\ likelihood of

holdout data




BAYESIANIST MODEL CHOICE 58.4

Suppose we want to choose between several models.
We’re uncertain which is the correct model.



BAYESIANIST EPISTEMOLOGY

Whenever there’s an unknown parameter, you should
express your uncertainty about it by treating it as a
random variable.

Q. What are we uncertain about?

Q. How do we represent unknowns?

Q. What do we report?

Q. How do we find this?



Exercise 8.3.3 (Bayesian classification)

There are two types of expense claims, legitimate and fraudulent.
The legitimate claim sizes are ~ Exp(4;) and the fraudulent ones
are ~ Exp(Az) where 4;, = 0.1 and Az = 0.02.

In my prior experience, 99% of claims I've seen are legitimate.

A new claim comes in, for an amount £x. Is it likely to be fraudulent?

What are we uncertain about?

How do we represent uncertainty?

What is my prior?

What is the posterior | want to report?



How should we choose between two models?

Modeller 1: Temp ~ « + 3 sin(27(t + ¢)) + y(t — 2000) + N(0, 5'2)
Modeller 2: Temp ~ o’ + ('sin(27n(t + ¢)) + N(0, 0'?)

20 1 + + k F _ + +
. “.‘

10 A

2010 2015 2020 2025 2030 2035 2040 2045 2050

What are we uncertain about?
Which model is correct (and also all nine unknown parameters)

How do we represent uncertainty? With random variables,
Introduce a “switch” random variable M saying which model is correct, M=1 or M=2,
Invent a prior for M, and for the other nine parameters,
Pr(data | params) = Pr(temp,,...,temp, | M=m, a,B,¢,y,0,0,8,¢ ,0)

What do | want to report?
First find the posterior distribution of (M,a,..) given the data.
Then report the mar ginal of M, P(M=1 | data).



BAYESIANIST MODEL CHOICE 58.4

OUr Prior exXpresses our
preconceptions about

in—the-wild data
Suppose we want to choose between several models. /

We’re uncertain which is the correct model.

Introduce a “switch” parameter. Let the correct model be M, with prior Pry,(m).
Pry,(m|data) = k Pry,(m) Pr(data|m)

We could simply report our posterior for M.
Or we could report a point estimate. The MAP estimator says to pick the m that maximizes the posterior likelihood:

m = arg max Pry,(m|data)
m

= arg max {log Pr(data|m) + log Pry,(m)}
m

\

a regularizer, that penalizes
models that are inconsistent
with our prior beliefs



IB Data Science syllabus

Using a probability model
to describe data

How well does my model fit Note: model choice and parameter
the dataset? estimation are the same thing

How well does my model
generalize to in-the-wild data?

[EMPIRICIST] We can use holdout evaluation to approximate :
in-the-wild performance, without making any assumptions |
(other than that there is a common true distribution). :

[BAYESIANIST] If we have a prior belief about the true TRUE PROBABILITY MODEL
distribution, we should use it. In this case, we don’t need
holdout evaluation. vild

[FREQUENTIST / HYPOTHESIS TESTING] ...




INDUCTION IS NOT DEDUCTION

| have data, and I've learned something from it. What can | say about the future?
Philosophers call this The Problem of Induction.

It is IMPOSSIBLE to mathematically deduce the true probability model from a dataset,
so don’t hanker after rigorous proofs for why one school of induction is better than another.

N

)"“ b é“ All science 1s What’s the chance Sanll - * Induction 1s the glory

@ - either physics or " % the sun will rise ot 0 ofScience and the

stamp-collecting.” L tomorrow? X S scandal of Philosophy.”

/ n+2 iy
Ernest Rutherford s ¢ C.D. Broad
(1871-1937) Pierre-Simon Laplace % 1926

' ' (1749-1827) 4




IB Data Science syllabus — maths skills

= familiarity with a range of models
= |inear models; parameter interpretation

= maximum likelihood estimation
= numerical optimization

= Bayes’s rule

= e Carlo
= bespoke distributio@




This chart shows the distribution of the speeds of 120 galaxies,
from a survey of the Corona Borealis region.
Postman, Huchra, Geller (1986)

----- theoretical distribution for uniform universe
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" ----- fitted Gaussian mixture model
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What’s the best distribution we
can find, to model this dataset?

0 10000 20000 30000 40000
galaxy speed [km/s]




Bespoke probability distributions part I:

from code to likelihood (for continuous random variables)

There are four ways to specify a distribution:

random likelihood whot we need for

varia |:’)|e function machine learning
notation (pdf)
QL
N
Q S
= =
c :
v -
G4
e
code cdf

a good way-to think
about the problem



Exercise 5.3.2 STRATEGY
Find the pdf of the random variable

Try to write our probability in terms
generated by this code:

of simple standard random variable
u = np.random.uniform() (for which we can look up the cdf)

X = - np.log(u) / A (\) {Breakitdown so that the random

variables are on the left
(so we can use the textbook cdf)
Step 1: random variable notation A~ U-Eol '1

X = "'!}\chu

Step 2: X is a continuous r.v., so find its cdf

S e x i P(X Ex) = P(-5rU tx) by demfX o # e <O
P(U se ) P(u ce™*) = ¢ -0
-~ P(n<e™) -

1 i eV
—-

= |- @ ass5Y x 20, j?«'em A>0

;",, - s

[

Step 3: differentiate cdf to get pdf

B (1-e™) = ne



Wikipedia: Uniform distribution

Cumulative distribution function

1
F(x)

0 a b
Notation Upap)

Parameters —oco<a<b< oo

Support
PDF L forz € [a,b]

otherwise
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