
Syllabus for IB Data Science

Using a probability model 
to describe data

Fitting a model to the data

Models that depend on linear 
combinations of features

Parameter interpretation 
and identifiability

Does the model generalize?

Fitting via least squares
Maximum likelihood 
estimation



TRUE PROBABILITY MODEL

in-the-
wilddataset

I trained my model on a dataset. Will it work well on in-the-wild data?

We’ll assume that dataset & in-the-wild satisfy the same Laws of Nature.
(Otherwise it’s impossible to say anything useful.)

GENERALIZATION



“ All science is either physics 

or stamp-collecting.”

Ernest Rutherford (1871–1937)

Most ML papers don’t state an 
inductive claim.

Perhaps the authors haven’t thought 
hard enough to be able to state one? 

Perhaps they prefer to leave you, the 
reader, to make the inference?



FITTING

How do we measure how well a model “works”?

▪ prediction accuracy, or mean square error [MLRD]
▪ log likelihood is a more general metric

So, let’s fit our model’s parameters by maximimum likelihood estimation.
Then it’ll surely work well on in-the-wild data! 

LECTURE 4



FITTING AND MODEL CHOICE

1. Define a full model that has a “switch” parameter 𝑚 specifying which submodel to use

def ry(m,θ1,θ2):
  if m == 1:
    return ry1(θ1)
  else: # m==2
    return ry2(θ2)

Pr𝑌 𝑦; 𝑚, 𝜃1, 𝜃2 = ൝
Pr𝑌

1(𝑦; 𝜃1) if 𝑚 = 1

Pr𝑌
2(𝑦; 𝜃2) if 𝑚 = 2

The mle for 𝑚 is the model with the highest likelihood, ෝ𝑚 = arg max
𝑚

Pr(data; 𝑚)

max
𝑚,𝜃1,𝜃2

Pr(data; 𝑚, 𝜃1, 𝜃2)

= max max
𝜃1

Pr1 data; 𝜃1 , max
𝜃2

Pr2(data; 𝜃2)

How should we choose between models?

LECTURE 8

2. Then we can estimate it using maximum likelihood estimation:

Choosing between models can be seen as estimating a discrete parameter …



MODEL COMPLEXITY

When we’re choosing between models of different complexity,
the more complex model will always score better.

What model for the number of heads?

𝑋~Bin(𝑛, ½) 
versus
𝑋~Bin 𝑛, 𝜃  for some 𝜃 ∈ [0,1]

LECTURE 10

Linear or quadratic trend term?
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t
temp ≈ 𝛼 + 𝛽1 sin 2πt + 𝛽2 cos 2𝜋t + 𝛾t + 𝛿t2

LECTURE 8

What degree polynomial?
PL ≈ polynomial in SL of degree 𝐾

LECTURE 5

How many clusters, in a Gaussian mixture model?

LECTURE 3



OVERFITTING AND HOLDOUT EVALUATION

in-the-
wildtraining hold-

out

Model 
complexity

Model 
likelihood

likelihood of 
training data

likelihood of
holdout data

A too-complex model will typically fit the dataset well, but generalize poorly to in-the-wild data.

We can approximate in-the-wild performance by holdout performance.

in-the-
wilddataset

This suggests we should simply choose the model 
that maximizes the holdout likelihood

With this approach, there’s an inner loop where we 
fit a model to the training data, and an outer loop 
where we choose between fitted models.

QUESTION. Can we do it all in a single loop?
UNDERFIT OVERFITBEST FIT

How can we detect and avoid too-complex models?



REGULARIZATION

Some models have a natural continuous measure of complexity. 
In such cases, we can maximize the regularized score, which penalizes complex models:

max
𝜃

log Pr data; 𝜃 − 𝜆 complexity(𝜃)

▪ Gradient descent will choose a tradeoff between fit and complexity.
We’re baking “too much complexity is bad” into the training itself.

▪ We control the relative importance by specifying 𝜆 > 0.

▪ (We’ll still want to tune 𝜆 to maximize holdout likelihood,
but this maximization is pretty forgiving.)

Model complexity

likelihood of
training data

likelihood of
holdout data

regularized score
𝜆 = 1.3

regularized score
𝜆 = 2.1



BAYESIANIST MODEL CHOICE §8.4

Suppose we want to choose between several models.
We’re uncertain which is the correct model.



BAYESIANIST EPISTEMOLOGY

Whenever there’s an unknown parameter, you should 
express your uncertainty about it by treating it as a 
random variable.

Q. What are we uncertain about?
Depends on the problem

Q. How do we represent unknowns?
Answer: As random variables, with a prior

Q. What do we report?
Answer: The posterior distribution of the quantity of interest

Q. How do we find this?
Answer: Using Bayes’s rule

§8.2



Exercise 8.3.3 (Bayesian classification)
There are two types of expense claims, legitimate and fraudulent. 
The legitimate claim sizes are ∼ Exp(𝜆𝐿) and the fraudulent ones 
are ∼ Exp 𝜆𝐹  where 𝜆𝐿 = 0.1 and 𝜆𝐹 = 0.02. 
In my prior experience, 99% of claims I’ve seen are legitimate. 
A new claim comes in, for an amount £𝑥. Is it likely to be fraudulent?

What are we uncertain about?

How do we represent uncertainty?

What is my prior?

What is the posterior I want to report?

whether the new claim is fraudulent

Let 𝑀 = ቊ
ℓ if the new claim is legitimate

𝑓 if it′s fraudulent 

Pr𝑀 ℓ = 0.99  and  Pr𝑀 𝑓 = 0.01

Pr𝑀 𝑓 𝑥)
i.e. ℙ 𝑀 = 𝑓 𝑥)



Modeller 1: Temp ∼ 𝛼 + 𝛽 sin 2𝜋 𝑡 + 𝜙 + 𝛾 𝑡 − 2000 + 𝑁(0, 𝜎2)

Modeller 2: Temp ∼ 𝛼′ + 𝛽′sin 2𝜋 𝑡 + 𝜙′ + 𝑁(0, 𝜎′2)

What are we uncertain about?

How do we represent uncertainty?

What do I want to report?

How should we choose between two models?

Which model is correct (and also all nine unknown parameters)

With random variables. 

First find the posterior distribution of (M,α,...) given the data.

Introduce a “switch” random variable M saying which model is correct, M=1 or M=2.
Invent a prior for M, and for the other nine parameters.

§8.4

Pr(data | params) = Pr(temp1,…,tempn | M=m, α,β,φ,γ,σ,α’,β’,φ’,σ’)  

Then report the marginal of M, ℙ(M=1 | data).

TIP: in multi-parameter 
problems, use Bayes’s rule 
on all the unknowns 
simultaneously



BAYESIANIST MODEL CHOICE §8.4

Introduce a “switch” parameter. Let the correct model be 𝑀, with prior Pr𝑀(𝑚).

Pr𝑀 𝑚 data = 𝜅 Pr𝑀 𝑚  Pr data|𝑚

We could simply report our posterior for 𝑀. 
Or we could report a point estimate. The MAP estimator says to pick the 𝑚 that maximizes the posterior likelihood:

our prior expresses our 
preconceptions about 
in-the-wild data

a regularizer, that penalizes 
models that are inconsistent 
with our prior beliefs

Suppose we want to choose between several models.
We’re uncertain which is the correct model.

ෝ𝑚 = arg max
𝑚

Pr𝑀(𝑚|data)

= arg max
𝑚

log Pr data 𝑚 + log Pr𝑀(𝑚)



Using a probability model 
to describe data

How well does my model fit 
the dataset?

How well does my model 
generalize to in-the-wild data?

[EMPIRICIST] We can use holdout evaluation to approximate 
in-the-wild performance, without making any assumptions
(other than that there is a common true distribution).

[BAYESIANIST] If we have a prior belief about the true 
distribution, we should use it. In this case, we don’t need 
holdout evaluation.

IB Data Science syllabus

Note: model choice and parameter 
estimation are the same thing

[FREQUENTIST / HYPOTHESIS TESTING] …

TRUE PROBABILITY MODEL

in-the-
wildtraining

hold-
out

TRUE PROBABILITY MODEL

in-the-
wilddataset



TRUE PROBABILITY MODEL

in-the-
wilddataset

I have data, and I’ve learned something from it. What can I say about the future?

INDUCTION IS NOT DEDUCTION

It is IMPOSSIBLE to mathematically deduce the true probability model from a dataset,
so don’t hanker after rigorous proofs for why one school of induction is better than another.

Philosophers call this The Problem of Induction.

“ All science is 

either physics or 

stamp-collecting.”

Ernest Rutherford 

(1871–1937)

What’s the chance 

the sun will rise 

tomorrow? 
𝑥+1

𝑛+2

Pierre-Simon Laplace

(1749–1827)

“ Induction is the glory 

of Science and the 

scandal of Philosophy.”

C.D. Broad

1926



Using a probability model 
to describe data

How well does my model fit 
the dataset?

How well does my model 
generalize to in-the-wild data?

IB Data Science syllabus — maths skills 

▪ maximum likelihood estimation
▪ numerical optimization

▪ familiarity with a range of models
▪ linear models; parameter interpretation

▪ Bayes’s rule
▪ Monte Carlo
▪ bespoke distributions



This chart shows the distribution of the speeds of 120 galaxies, 
from a survey of the Corona Borealis region.
Postman, Huchra, Geller (1986)

theoretical distribution for uniform universe

§7



fitted Gaussian mixture model

§7



What’s the best distribution we 
can find, to model this dataset?

§7



random
variable
notation

code

likelihood
function

(pdf)

cdf

Bespoke probability distributions part I:

from code to likelihood (for continuous random variables)

§5.3

what we need for 
machine learning

There are four ways to specify a distribution:

a good way to think 
about the problem
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Exercise 5.3.2
Find the pdf of the random variable 
generated by this code:

u = np.random.uniform()
x = - np.log(u) / λ   # λ>0

Step 1: random variable notation

Step 2: 𝑋 is a continuous r.v., so find its cdf

Step 3: differentiate cdf to get pdf

STRATEGY

Try to write our probability in terms 
of simple standard random variable 
(for which we can look up the cdf)

Break it down so that the random 
variables are on the left 
(so we can use the textbook cdf)

§5.3



Wikipedia: Uniform distribution
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