| tossed four coins and got one head.
What is it reasonable to infer about the probability of heads (call it 8)?

0 A
“ . £\ 1- i . _ 0
@ 3 " “The'maximum I|kellhgod estlmat(?r s 0 - 25%, un justified!
© thus the true probability,of headsis 25%
(hence if | tossed millions mere coins that’s the fraction of heads I'd see)
®
© = “Alfwe know-fer-eertaifi isthat 0_<.8-<"1" logical, but vseless!

"  Let’s use a random variable to express our beliefs about 0.
Thus, we’re proposing a joint model Prg .

unknown
parameter

probability model
for the data

Bayes’s rule tells us how to update our beliefs in the light of data:
simply use the conditional distribution, (0|X = x).



CEONCJO!

@ ~ U[0,1] Prg(0) is called the prior.

v

X ~ Bin(4,0)

Prg(8|X = x) is called the posterior.

PF@(Q) PF@(B'X = 1)
®)
©®
@
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A PARADOX ABOUT THE MEANING OF PROBABILITY

| tossed four coins
and got one head.

Using a Bin(n, 8) model, | estimate
the probability of heads is § = 25%

| tossed twelve coins
and got three heads.

Using a Bin(n, 8) model, | estimate
the probability of heads is § = 25%

| thought “probability”
measured uncertainty.
Surely there’s a difference in
uncertainty between these
two cases?!



| tossed four coino

QUESTION. If we toss 100
and got one head.

more coins, how many heads
Using a Bin(n, 8) model, | estimate do you predict we'd see?
the probability of heads is § = 25%

There are two types of uncertainty
in our prediction:

EPISTEMIC UNCERTAINTY
= We don’t know 6 exactly

ALEATORIC UNCERTAINTY
= Even if we knew 0 exactly, we

still wouldn’t know the exact
number of heads we’ll get



“This is a HOmph speed
imit, with probability 98%."

\_ /
Y

Does it mean 98%+0.01%
or 98%+63% ?

Neural networks classifiers
report aleatoric probabilities,
but they don’t tell us their
epistemic confidence.



In Bayesianism, the posterior distribution is exactly our epistemic belief about the parameter.
It depends on the amount of evidence we’ve seen.

prior belief N data IR posterior belief
PF@(Q) X PF@(Q'X = X)

@3 \

@ PO € [.2,.3] | data) = 21%
®
© A tighter
0.0 0.5 1.0 0.0 0.5 1.0 posterior
6 > distribution for O

means we are
more confident
about its value.

e
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P(© € [.2,.3] | data) = 33%
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Typically, the more data we
- have, the closer our posterior

gets to the truth. observed

fraction of heads

_ after after
prior 4 tosses 40 tosses

after
200 tosses
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We must have a prior belief about every
§ unknown parameter. We must choose it
® before seeing the dataset in question.

CRON NG

() ~uo1]

v

X ~Bin(4,0)

But where does the prior come from?

It comes from what you know already — it’s how you can
integrate your existing knowledge into your modelling.

If you don’t have a prior to start off with, you have no
business even thinking about the experiment!




~ Often, with lots of data, the
prior doesn’t make much
¥ difference.

Pro(0|X = x) = k Prg(0) Pry(x|® = 6)

Prg(6)

Pry(x|® = 0)




Preconception
that 6 > 0.6 is
impossible

Prg(0)

PF@(Q'X — X') — K PF@(B) Prx(X|® — 9)

You are entitled to your own personal prior beliefs.
They are entirely your choice.
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___ The preconception
is unshakeable
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If your prior is extreme, it will
- be reflected in your posterior
(even if there’s lots of data).

observed
fraction of heads

after

4 tosses

40 tosses

200 tosses
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How should we report the posterior distribution?

Prior distribution for ©
] o5

e

We could report the posterior mean.

We could report the point with highest likelihood,
- the MAP or maximum a-posteriori estimate.

Posterior distribution for ©

K Example (Laplace smoothing).
L We counted x successful outcomes from n trials.

Using the model X ~ Bin(n, ©), and the prior ® ~ U[0,1],
the posterior meanof O is (x + 1)/(n + 2).

@ We could report a 95% confidence interval [10,hi ] such that
. ‘2.5% P(0® < lo|data) = 2.5%
Z'SA’ [~ P(® > hi| data) = 2.5%
or indeed any other 95% confidence interval e.g.
/:\5\% lo = —0
-k P(O > hi | data) = 5%

(though these only really work well for continuous 0,
as for discrete ® we might not be able to hit the probabilities exactly)




prior belief
Prg(6)
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posterior belief
PF@(H'X = X)

0.0

1.0

1.0

| estimate the probability of
heads is 25%, and my 95%
confidence interval is [3%, 72%]

| estimate the probability of
heads is 25%, and my 95%
confidence interval is [12%, 51%]
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From Wikipedia, the free encyclopedia
This article is about the 21st-century movement. For the philosophical concept, see Rationalism. For other
uses, see Rationalism (disambiguation).

The rationalist community is a 21st-century movement that formed around a group of internet blogs,
primarily LessWrong and Astfral Codex Ten (formerly known as Slate Star Codex). The movement initially

gained prominence in the San Francisco Bay Area. It

biases. Common interests include probability, effectiy
from artificial general intelligence.

o Bayesianism is an epistemology, i.e. a
The borders of the rationalist community are blurry ar
et e el theory of knowledge and evidence,
that passes all these “smell tests”.

adjacent" [*]

Description et

Rationality (< Surely it’s how any rational person
et raonany —acma mz ey ozenee{  SHOULA think!

The rationalists are concerned with applying science

to Bayesian inference.[®! According to Ellen Huet, the

unbiased, even when the conclusions are scary".”]




To apply Bayes’s rule, first write out your probability model

§6.2

® —— X and state the distributions of ® and of (X; ®). Then,

ALGEBRAIC BAYES

1. WriteQuiFrot)
2. Use ghe formula
r X ) A\ Prg/O) Pryx | © )
t find Kk to’ma is iNntégrate’to 1

... but these are vsually intractable

This lets us calculate confidence intervals:

P rghgy]X A\x) = )

One way to do

COMPUTATIONAL BAYES

1. Generate a sample (64, ..., 0,,) from ©

2. Compute weights
w; = Pry(x|0 = 6;),
then rescale weights to sum to one

n

P 198 ~ WiAQ krange

i=
It’s more elegant to use the generalized version

E[h(®)[X = x] = Z;w;h(6;)




Example §6.2
| got x = 1 head outof n = 4 .
@ n? propose the probability modél X ~ Bin(n, 0).

- ®, so I'll treat it as a random variable,
® ~ U[0,1].

Plot the distribution of (O|X = x).

Pr. (x | ©-0) = (2) @~ (-)"

CRON O]

= 4’ Q (("6)3
Likelihood of the data: X ~ Bin (n, 6)

1. Generate a sample (84, ..., 6,,) from ©: @~ u (o, ’J

i 20 = (OO
Q.SGW‘P < np. andom.oni fevw (0, |, sr2 ( )

- m?)
2. Compute weights w; = Pry(x|© = 6;), W= b x (65"""19"""1) X ((l OSM'P)

then rescale weights to sum to one: W= W [“P- sum (W)

Reason about (®@|X = x) indirectly, using
E[h(®)|X = x] = Z;w;h(6;)



Example §6.2
| got x = 1 head out of n = 4 coin tosses. |
@; Y propose the probability model X ~ Bin(n, 0). |
3? don’t know ®, so I'll treat it as a random variable,
® ~ U[0,1].

CRON O]

Plot the distribution of (O|X = x).

Reason about (O|X = x) indirectly, using
E[h(®)|X = x] = Z;w;h(6;)

@ e b¢ ( oluu{'q
Let’s plot a histogram: P : )

we’ll split the range of 8 into bins, E (1 ® e biv [Jout-q) = lE[h (6| da}q] wheve  h(9)- 1@@ bin

and for each 8-bin, we’ll draw a bar vsing the indicator/probability trick
of height P(8 € bin | X = x)

W

v 2w h ()
T ‘ by computational Bayes approximation
0.075
- Z W 1@* b = .Z/ . W[
0.050 - ; ¢ €51 (1 @;€bin
S ore unwrapping the indicator function
0.000 - 0 In code, to plot all bins: plt.hist(6samp, weights=w)

0.0 0.2 0.4 0.6 0.8 1.0



For continuous random variables, | prefer to scale the bar heights

§6.2

P(® € bin|data)

so that the total area is 1. This is known as a density histogram.

plt.hist(Osamp, weights=w) density=True)

It means the plot is directly comparable to a pdf.

2.0 A
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1.0 -

0.5 A

0.0 -

0.0
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0.4

pdf of Beta(2,4)

0.6 0.8

(which is the poste

1.0

rior distribution we derived mathematically)

- bar height = RE—Tn



How do we compute confidence intervals from a weighted sample? K

a We'd like to report a 95% confidence interval [10,hi] such that
. 2.5% P(® < lo | data) = 2.5%
Z'S/A—— I~ P(© > hi | data) = 2.5%

We can find 1o via a computational Bayes estimate (and hi similarly):

P(O < lo | data) = Z wi 1g.<1o
i

Consider a dot-plot of the 6;,
showing their weights. 14

\o“o—oj‘ o - 0
Y |

We want to choose 10so
that the sum of weights
for these 6; is 0.025

4 B Osamp, w = ..
|eumsum=0.025> = [_ cumulative sum of i = np.argsort(Bsamp)
weights of sorted 6; Osamp, w = Osamp[i], w[i]

F = np.cumsum(w)
——— lo = Osamp[F<0.025][-1]

v



Exercise 8.3.2 (Multiple unknowns) g £ hewm

We have a dataset [x4, ..., X;,]. We propose to model it as A u‘?-e/*"‘M

independent samples from U[4, A + B], where A and B

are unknown parameters. j

Using A ~ Exp(0.5) and B ~ Exp(1.0) as prior Jot oaet

distributions for the unknown parameters, find the X, = Xa ’___&.a_n_l_._.«_* —
distribution of (B|data). ~

((""J')' o @ ‘")) (n,l) Pr (x-Xn | A=o, 5= !’) b“ L,.le,, < (s, a+b ]

1. Generate a sample Wfromﬂ

g (M‘l ac;‘t

2. Compute weights w; = PrGet0—="167),
then rescale weights to sum to one

TS 1,¢mnx; ] orx; so7

# The dataset
x =[2, 3, 2.1, 2.4, 3.14, 1.8]
Reason about (O|X = x) indirectly
# Step 1
asamp = np.random.exponential(scale=1/0.5, size=100000)
bsamp = np.random.exponential(scale=1/1.0, size=100000)
#absamp = zip(asamp, bsamp)

# Step 2
w = 1/bsamp**len(x) * np.where((asamp <= min(x)) & (max(x) <= asamp+bsamp), 1, 9)
Ww=w/ np.sum(w)

# Plot the posterior distribution of B
plt.hist(bsamp, weights=w, density=True)



Exercise 8.3.2 (Multiplg uagyowns) , TIP. If n is large, we can run into underflow problems
We have a dataset [xq, . e propose to model it as when we compute Pr(x x,,|params) directl
independent samples from.LLIiA4, A + B], where A and B P 1 Xn|P \Z

are unknown parameters. Fix: be clever about rescaling the weights,
Using A ~ Exp(0.5) and B ~ Exp(1.0) as prior using the log-sum-exp trick (exercise 8.3.4).

distributions fgetiveynknown parameters, find the
distribution ¢f (B|dath).

TIP. First find the joint posterior distribution for all
the unknown parameters. Then, just report on the
readout we’re interested in.

In maths,

Prgz(b|data) = jPrA,B(a,bldata) da

a

Computationally,

1. Generate samples (a;, b;) from the joint prior
2. Compute a weight w; for each pair

3. Plot a weighted histogram of just the b;

This is called marginalization.






20 A

10 A

Consider the dataset of monthly average temperatures in Cambridge.
Proposed model: Temp ~ o + f3 sin(Zn(t + qb)) + y(t — 2000) + N(0,02)

+

+

+

+ % +
N[ F

V I RV v

2010

2015 2020 2025 2030 2035 2040 2045 2050

If we fit this model we get the maximum likelihood estimate ¥ = 0.027 °C/year.

How confident are we about this value?

Climate confidence challenge.
Find a 95% confidence interval for y,

for Cambridge from 1985 to the present.
(Use your own priors for the unknowns.)

Please submit your answer on Moodle.
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