
I tossed four coins and got one head.
What is it reasonable to infer about the probability of heads (call it 𝜃)?

▪ “The maximum likelihood estimator is መ𝜃 = 25%, 
thus the true probability of heads is 25%”

▪ “All we know for certain is that 0 < 𝜃 < 1”

▪ ???

unjustified!

logical, but useless!

(hence if I tossed millions more coins that’s the fraction of heads I’d see)

Let’s use a random variable to express our beliefs about Θ.
Thus, we’re proposing a joint model PrΘ,𝑋.

We might choose Θ ∼ 𝑈 0,1
to express ignorance about Θ.Θ

𝑋
probability model 
for the data

unknown 
parameter

For this problem, a reasonable
model is 𝑋 ∼ Bin(4, Θ)

Bayes’s rule tells us how to update our beliefs in the light of data:
simply use the conditional distribution, (Θ|𝑋 = 𝑥).
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Θ

𝑋 ∼ Bin(4, Θ)

∼ 𝑈[0,1]
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𝜃

PrΘ 𝜃

𝜃

PrΘ 𝜃|𝑋 = 1

PrΘ(𝜃) is called the prior.

It expresses our beliefs prior 
to having seen the data.

PrΘ(𝜃|𝑋 = 𝑥) is called the posterior.

It expresses our beliefs about Θ 
in the light of the data.



I tossed four coins 
and got one head.

Using a Bin(𝑛, 𝜃) model, I estimate 

the probability of heads is መ𝜃 = 25%

25%

I tossed twelve coins 
and got three heads.

Using a Bin(𝑛, 𝜃) model, I estimate 

the probability of heads is መ𝜃 =

A PARADOX ABOUT THE MEANING OF PROBABILITY I thought “probability” 
measured uncertainty. 
Surely there’s a difference in 
uncertainty between these 
two cases?!



I tossed four coins 
and got one head.

Using a Bin(𝑛, 𝜃) model, I estimate 

the probability of heads is መ𝜃 = 25%

QUESTION. If we toss 100 
more coins, how many heads 
do you predict we’d see?

There are two types of uncertainty 
in our prediction:

▪ We don’t know 𝜃 exactly

▪ Even if we knew 𝜃 exactly, we 
still wouldn’t know the exact 
number of heads we’ll get

EPISTEMIC UNCERTAINTY

ALEATORIC UNCERTAINTY



“This is a 40mph speed 
limit, with probability 98%.”

Neural networks classifiers 
report aleatoric probabilities, 
but they don’t tell us their 
epistemic confidence.

Does it mean 98%±0.01%
or 98%±63% ?



In Bayesianism, the posterior distribution is exactly our epistemic belief about the parameter.
It depends on the amount of evidence we’ve seen.

prior belief
PrΘ 𝜃

 + 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

A tighter 
posterior 
distribution for Θ 
means we are 
more confident 
about its value.

ℙ Θ ∈ .2, . 3  data) = 21%

ℙ Θ ∈ .2, . 3  data) = 33%

𝜃 𝜃

𝜃 𝜃
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Typically, the more data we 
have, the closer our posterior 
gets to the truth. observed 

fraction of heads
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Θ

𝑋 ∼ Bin(4, Θ)

∼ 𝑈[0,1]

We must have a prior belief about every 
unknown parameter. We must choose it 
before seeing the dataset in question.

§8.1

But where does the prior come from? 

It comes from what you know already — it’s how you can 
integrate your existing knowledge into your modelling.

If you don’t have a prior to start off with, you have no 
business even thinking about the experiment!



Often, with lots of data, the 
prior doesn’t make much 
difference.

PrΘ 𝜃 𝑋 = 𝑥  =  𝜅 PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)

PrΘ 𝜃 Pr𝑋 𝑥|Θ = 𝜃

× =

𝜃 𝜃 𝜃

PrΘ 𝜃|𝑋 = 𝑥



You are entitled to your own personal prior beliefs.
They are entirely your choice.

Preconception 
that 𝜃 > 0.6 is 
impossible

The preconception 
is unshakeable

= 𝜅 PrΘ 𝜃  Pr𝑋(𝑥|Θ = 𝜃)

§8.1

PrΘ 𝜃 PrΘ 𝜃|𝑋 = 𝑥



If your prior is extreme, it will 
be reflected in your posterior 
(even if there’s lots of data). observed 

fraction of heads
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Prior distribution for Θ

Posterior distribution for Θ

We could report the point with highest likelihood, 
the MAP or maximum a-posteriori estimate.

We could report a 95% confidence interval [lo,hi] such that
 ℙ Θ < lo data = 2.5%
 ℙ Θ > hi data = 2.5%

2.5%
2.5%95%

§8.4

Example (Laplace smoothing).

We counted 𝑥 successful outcomes from 𝑛 trials. 

Using the model 𝑋 ∼ Bin(𝑛, Θ), and the prior Θ ∼ 𝑈 0,1 , 

the posterior mean of Θ is (𝑥 + 1)/(𝑛 + 2).

We could report the posterior mean.

or indeed any other 95% confidence interval e.g.
 lo = −∞
 ℙ Θ > hi data = 5%95%

5%

How should we report the posterior distribution?

(though these only really work well for continuous Θ,
as for discrete Θ we might not be able to hit the probabilities exactly)



prior belief
PrΘ 𝜃

 + 
data

𝑥
 →  

posterior belief
PrΘ 𝜃 𝑋 = 𝑥

I estimate the probability of 
heads is 25%, and my 95% 
confidence interval is [3%, 72%]

I estimate the probability of 
heads is 25%, and my 95% 
confidence interval is [12%, 51%]
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Bayesianism is an epistemology, i.e. a 
theory of knowledge and evidence, 
that passes all these “smell tests”.

Surely it’s how any rational person 
should think!



1. Write out PrΘ(𝜃)

2. Use the formula 
PrΘ 𝜃|𝑋 = 𝑥 = 𝜅PrΘ 𝜃 Pr𝑋 𝑥|Θ = 𝜃
then find 𝜅 to make this integrate to 1

This lets us calculate confidence intervals:

ℙ Θ ∈ range 𝑋 = 𝑥 = න
θ∈range

 

PrΘ 𝜃 𝑋 = 𝑥  𝑑𝜃

ALGEBRAIC BAYES

… but these are usually intractable

§6.2To apply Bayes’s rule, first write out your probability model

Θ 𝑋

1. Generate a sample 𝜃1, … , 𝜃𝑛  from Θ

2. Compute weights 
𝑤𝑖 = Pr𝑋(𝑥|Θ = 𝜃𝑖), 
then rescale weights to sum to one

ℙ Θ ∈ range 𝑋 = 𝑥 ≈ ෍
𝑖=1

𝑛

𝑤𝑖1𝜃𝑖∈range

𝔼 ℎ Θ |𝑋 = 𝑥 ≈ Σ𝑖𝑤𝑖ℎ 𝜃𝑖

It’s more elegant to use the generalized version

One way to do

COMPUTATIONAL BAYES

and state the distributions of Θ and of (𝑋; Θ). Then,



Example

I got 𝑥 = 1 head out of 𝑛 = 4 coin tosses. I 
propose the probability model 𝑋 ∼ Bin(𝑛, Θ). I 
don’t know Θ, so I’ll treat it as a random variable, 
Θ ∼ 𝑈[0,1].

Plot the distribution of (Θ|𝑋 = 𝑥).

Likelihood of the data:

1. Generate a sample 𝜃1, … , 𝜃𝑛  from Θ:

2. Compute weights 𝑤𝑖 = Pr𝑋(𝑥|Θ = 𝜃𝑖), 
then rescale weights to sum to one:

Reason about (Θ|𝑋 = 𝑥) indirectly, using
𝔼 ℎ Θ |𝑋 = 𝑥 ≈ Σ𝑖𝑤𝑖ℎ 𝜃𝑖

§6.2



Reason about (Θ|𝑋 = 𝑥) indirectly, using
𝔼 ℎ Θ |𝑋 = 𝑥 ≈ Σ𝑖𝑤𝑖ℎ 𝜃𝑖

In code, to plot all bins: plt.hist(θsamp, weights=w)

§6.2

𝜃

Example

I got 𝑥 = 1 head out of 𝑛 = 4 coin tosses. I 
propose the probability model 𝑋 ∼ Bin(𝑛, Θ). I 
don’t know Θ, so I’ll treat it as a random variable, 
Θ ∼ 𝑈[0,1].

Plot the distribution of (Θ|𝑋 = 𝑥).

Let’s plot a histogram: 
we’ll split the range of 𝜃 into bins, 
and for each 𝜃-bin, we’ll draw a bar 
of height ℙ 𝜃 ∈ bin 𝑋 = 𝑥) 

using the indicator/probability trick

by computational Bayes approximation

unwrapping the indicator function



plt.hist(θsamp, weights=w)plt.hist(θsamp, weights=w, density=True)

For continuous random variables, I prefer to scale the bar heights 
so that the total area is 1. This is known as a density histogram.

pdf of Beta(2,4)
(which is the posterior distribution we derived mathematically)

§6.2

It means the plot is directly comparable to a pdf.

bar height =
ℙ Θ ∈ bin data

bin width



Consider a dot-plot of the 𝜃𝑖, 
showing their weights.

We’d like to report a 95% confidence interval [lo,hi] such that
 ℙ Θ < lo data = 2.5%
 ℙ Θ > hi data = 2.5%

2.5%
2.5%95%

We can find lo via a computational Bayes estimate (and hi similarly):

ℙ Θ < lo data ≈ ෍

𝑖

𝑤𝑖 1𝜃𝑖<lo

§8.4

𝜃

We want to choose lo so 
that the sum of weights 
for these 𝜃𝑖  is 0.025

lo

cumulative sum of 
weights of sorted 𝜃𝑖

cumsum=0.025
1  θsamp, w = …
2  i = np.argsort(θsamp)
3  θsamp, w = θsamp[i], w[i]
4  F = np.cumsum(w)
5  lo = θsamp[F<0.025][-1]

How do we compute confidence intervals from a weighted sample?



Exercise 8.3.2 (Multiple unknowns)
We have a dataset 𝑥1, … , 𝑥𝑛 . We propose to model it as 
independent samples from 𝑈[𝐴, 𝐴 + 𝐵], where 𝐴 and 𝐵 
are unknown parameters. 

Using 𝐴 ∼ Exp(0.5) and 𝐵 ∼ Exp(1.0) as prior 
distributions for the unknown parameters, find the 
distribution of (𝐵|data).

1. Generate a sample 𝜃1, … , 𝜃𝑛  from Θ

2. Compute weights 𝑤𝑖 = Pr𝑋(𝑥|Θ = 𝜃𝑖), 
then rescale weights to sum to one

Reason about (Θ|𝑋 = 𝑥) indirectly

# The dataset
x = [2, 3, 2.1, 2.4, 3.14, 1.8]

# Step 1
asamp = np.random.exponential(scale=1/0.5, size=100000)
bsamp = np.random.exponential(scale=1/1.0, size=100000)
#absamp = zip(asamp, bsamp)

# Step 2
w = 1/bsamp**len(x) * np.where((asamp <= min(x)) & (max(x) <= asamp+bsamp), 1, 0)
w = w / np.sum(w)

# Plot the posterior distribution of B
plt.hist(bsamp, weights=w, density=True)



Exercise 8.3.2 (Multiple unknowns)
We have a dataset 𝑥1, … , 𝑥𝑛 . We propose to model it as 
independent samples from 𝑈[𝐴, 𝐴 + 𝐵], where 𝐴 and 𝐵 
are unknown parameters. 

Using 𝐴 ∼ Exp(0.5) and 𝐵 ∼ Exp(1.0) as prior 
distributions for the unknown parameters, find the 
distribution of (𝐵|data).

TIP. First find the joint posterior distribution for all 
the unknown parameters. Then, just report on the 
readout we’re interested in.

TIP. If 𝑛 is large, we can run into underflow problems 
when we compute Pr(𝑥1, … , 𝑥𝑛|params) directly.

Fix: be clever about rescaling the weights,
using the log-sum-exp trick (exercise 8.3.4).

In maths,

Pr𝐵 𝑏|data = න
𝑎

Pr𝐴,𝐵 𝑎, 𝑏 data  𝑑𝑎

Computationally,
1. Generate samples (𝑎𝑖 , 𝑏𝑖) from the joint prior
2. Compute a weight 𝑤𝑖 for each pair
3. Plot a weighted histogram of just the 𝑏𝑖

This is called marginalization.



Why does computational Bayes 
work?

It’s a simple argument —
see §6.2 of lecture notes.



If we fit this model we get the maximum likelihood estimate ො𝛾 = 0.027 °C/year.

How confident are we about this value?

Proposed model:   Temp ∼ 𝛼 + 𝛽 sin 2𝜋 𝑡 + 𝜙 + 𝛾 𝑡 − 2000 + 𝑁(0, 𝜎2)

Climate confidence challenge.
Find a 95% confidence interval for 𝛾,
for Cambridge from 1985 to the present. 
(Use your own priors for the unknowns.)

Please submit your answer on Moodle.

Consider the dataset of monthly average temperatures in Cambridge.
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